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Finite Difference code on a PC cluster using IB and GE interconnects

Motivation

Execution time for 200 iterations of the solver on 32 processes/processors
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How to implement the required
communication pattern efficiently?

 Dependence on platform

— Some functionality only supported (efficiently) on
certain/platforms or with certain network interconnects

 Dependence on MPI library
— Does the MPI library support all available methods
— Efficiency in overlapping communication and computation
— Quality of the support for user defined data-types
 Dependence on application
— Problem size
— Ratio of communication to computation
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Problem: How can an (average) user understand the
myriad of implementation options and their impact on the
performance of the application?

(Honest) Answer: no way

— Abstract interfaces for application level communication
operations required — ADCL

— Statistical tools required to detect correlations between
parameters and application performance
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ADCL - Adaptive Data and
Communication Library

e Goals:

— Provide abstract interfaces for often occurring application
level communication patterns

» Collective operations

* Not-covered by MPI specification

— Provide a wide variety of implementation possibilities and
decision routines which choose the fastest available
Implementation (at runtime)

* Not replacing MPI, but add-on functionality
— Uses many features of MPI
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ADCL terminology

ADCL object

Functionality

Attribute

Abstraction for a characteristic of an implemen-
tation represented by the set its possible values

Attribute-set

Group of attributes

Function

Implementation of a particular operation
* optionally including an attribute-set and values

Function-set

Set of functions providing the same functionality
 have to have the same attribute-set

Vector Abstraction for a multi-dimensional data object
Topology Abstraction for a process topology
Request Handle for tuple of < topology, vector,

function-set>
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Code sample

ADCL_Vector vec;
ADCL_Topology topo;
ADCL _Request request;

/* Generate a 2-D process topology */
MP1_Cart _create ( comm, 2, cart dims, periods, 0,&cart_comm);
ADCL_Topology create ( cart_comm, &topo );

/* Register a 2D vector with ADCL */
ADCL_Vector_register (ndims, vec dims, HALO WIDTH,
MPI_DOUBLE, vector, &vec);

/* Match process topology, data item and function-set */
ADCL_Request _create (vec, topo, ADCL FNCTSET NEIGHBORHOOD,
&request );

for (1=0; I<NIT; 1++ ) {
/* Main application loop */
ADCL_Request _start (request );




Runtime selection logic: brute force
search (1)
Implementation no.

2 3 4 56 7 Using the fastest implementation for

\ \ \ \ ‘ the rest of the application
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Runtime selection logic: brute force
search (Il)

e Test each function of a given function set a given
number of times

— Store the execution time for each execution per process

e Filter the list of execution times in order to exclude
outliers

« Determine the avg. execution time per function i and
Process |

 Determine the max. execution time for function | across
all processes

max
1:i

=max(f.’), j=0..nprocs —1

— Requires communication (e.g. MP1_Al lreduce)
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Runtime selection logic: brute force
search (lll)

Determine the function with the minimal max. execution
time across all processes

f

=min(f,"™"),i =0...nfuncs -1

winner

« Use this function for the rest of the application lifetime
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Runtime selection logic:
performance hypothesis (1)

e Assumptions:

— every implementation can be characterized by a set of
attributes, which impact its performance, e.g. for
neighborhood communication

« Communication pattern/degree

« Handling of non-contiguous data

« Data transfer primitive

e Overlapping communication and computation

— The fastest implementation will also have the optimal
values for these attributes

HIPS 2007 Long Beach
Edgar Gabriel (3



Runtime selection logic:
performance hypothesis (ll)

e Approach: determine the optimal value for an attribute by
comparing the execution time of functions differing in
only a single attribute

Function a Function b Function c
Value for attribute 1 1 2 3
Value for attribute 2 X X X
Value for attribute 3 Y Y Y
Value for attribute 4 z z z

— E.g. if function c had the lowest execution time across all
processes:

l: ! « Hypothesis: value 3 optimal for attribute 1

ars So'e@Rfldence value in this hypothesis: 1



Value for attribute 1
Value for attribute 2

Value for attribute 3
Value for attribute 4
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Runtime selection logic:
performance hypothesis (llI)

« Evaluate a different set of functions differing in one other

attribute, e.g.

Function c

1

X+1

Function d

2

X+1

Function e

3

X+1

— If this set of measurements lead to the same optimal value

for attribute 1:

* Increase confidence value for this hypothesis by 1
— Else decrease the confidence value by 1

HIPS 2007 Long Beach
Edgar Gabriel




Runtime selection logic:
performance hypothesis (1V)

 If the confidence value for an attribute reaches a given
threshold
— Remove all functions not having the required value for this
attribute from the Function-set

 If the value for attribute (s) do not converge towards a
value this algorithm leads to the brute force search

e Advantage: potentially fewer functions have to be
evaluated to determine the winner
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Currently available implementations for
neighborhood communication

Name Comm. pattern | Handling of Data transfer primitive
non-cont. data
Isendlrecv_aao aao ddt MPI Isend/Irecv/Waitall
Isendlrecv pair pair ddt MPI Isend/Irecv/Waitall
Sendlrecv_aao aao ddt MPI Send/Irecv/Waitall
Sendlrecv pair pair ddt MPI Send/Irecv/Wait
Isendirecv _aao pack | aao ddt MPI Isend/Irecv/Waitall
Isendlrecv pair pack | pair Pack/unpack MPI Isend/Irecv/Waitall
Sendlrecv aao pack | aao ddt MPI Send/Irecv/Waitall
Sendlrecv pair pack | pair Pack/unpack MPI Send/Irecv/Wait
SendRecv pair pair ddt MPI Send/Recv
Sendrecv_pair pair ddt MPI Send/Recv
SendRecv pair _pack | pair Pack/unpack MPI Send/Recv
Sendrecv pair pack | pair Pack/unpack | MPI Send/Recv
WinfencePut aao aao ddt MPI Put/MPI Win fence
WinfenceGet aao aao ddt MPI Get/MPIl Win fence
PostStartPut aao aao ddt MPI Put/MPI Win post/start
PostStartGet aao aao ddt MPI Get/MPl Win post/start
WinfencePut pair pair ddt MPI Put/MPI Win fence
WinfenceGet pair pair ddt MPI Get/MPIl Win fence
PostStartPut pair pair ddt MPI Put/MPl Win post/starnt e
PostStartGet pair pair ddt MPI Get/MPl Win post/start i!i;i




Performance results (I)

InfiniBand 32 processes small problem size

Execution time [sec]
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Performance results (I1)

InfiniBand 32 processes large problem size
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Performance results (lIl)

TCP over Fast Ethernet 32 processes small problem size
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Performance results (V)

TCP over Fast Ethernet 32 processes large problem size
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Limitations of ADCL

Reproducibility of measurements even on dedicated compute nodes

a challenging topic

— Hyper-threading

— Processor frequency scaling

Network often shared between multiple jobs
Hierarchical networks

— Process placement by the batch scheduler
Performance hypothesis

— Attributes should not be correlated

User has to modify its code

— How much longer will we have to deal with MPI?
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Advantages of ADCL

* Provides close to optimal performance in many scenarios
« Simplifies the development of parallel code for many applications
« Simplifies the development of adaptive parallel code
e Currently ongoing work:
— Improving (nearly) all components of ADCL
 Data filtering
* Increase parameter space and set of implementation

o Experiment with other runtime selection algorithms
— Historic learning, Game theory, genetic algorithms

— Integration with a CFD solver in cooperation with Dr.
Garbey
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