Runtime Optimization of
Application Level Communication
Patterns

Edgar Gabriel and Shuo Huang

Department of Computer Science
University of Houston
gabriel@cs.uh.edu

HIPS 2007 Long Beach
Edgar Gabriel (3

Finite Difference code on a PC cluster using IB and GE interconnects

Motivation

Execution time for 200 iterations of the solver on 32 processes/processors

execution time [sec]

30

25

20

15

10

1

128x128x64 1B

128x128x128 IB 128x128x64 TCP 128x128x128 TCP

| fcfs
O fcfs-pack
O ordered

W overlap

How to implement the required
communication pattern efficiently?

 Dependence on platform

— Some functionality only supported (efficiently) on
certain/platforms or with certain network interconnects

 Dependence on MPI library
— Does the MPI library support all available methods
— Efficiency in overlapping communication and computation
— Quality of the support for user defined data-types
 Dependence on application
— Problem size
— Ratio of communication to computation

HIPS 2007 Long Beach
Edgar Gabriel (3

1By

Problem: How can an (average) user understand the
myriad of implementation options and their impact on the
performance of the application?

(Honest) Answer: no way

— Abstract interfaces for application level communication
operations required — ADCL

— Statistical tools required to detect correlations between
parameters and application performance

HIPS 2007 Long Beach
Edgar Gabriel (3

ADCL - Adaptive Data and
Communication Library

e Goals:

— Provide abstract interfaces for often occurring application
level communication patterns

» Collective operations

* Not-covered by MPI specification

— Provide a wide variety of implementation possibilities and
decision routines which choose the fastest available
Implementation (at runtime)

* Not replacing MPI, but add-on functionality
— Uses many features of MPI

HIPS 2007 Long Beach
Edgar Gabriel (3

ADCL terminology

ADCL object

Functionality

Attribute

Abstraction for a characteristic of an implemen-
tation represented by the set its possible values

Attribute-set

Group of attributes

Function

Implementation of a particular operation
* optionally including an attribute-set and values

Function-set

Set of functions providing the same functionality
 have to have the same attribute-set

Vector Abstraction for a multi-dimensional data object
Topology Abstraction for a process topology
Request Handle for tuple of < topology, vector,

function-set>

oo
“ Edgar Gabriel

Code sample

ADCL_Vector vec;
ADCL_Topology topo;
ADCL _Request request;

/* Generate a 2-D process topology */
MP1_Cart _create (comm, 2, cart dims, periods, 0,&cart_comm);
ADCL_Topology create (cart_comm, &topo);

/* Register a 2D vector with ADCL */
ADCL_Vector_register (ndims, vec dims, HALO WIDTH,
MPI_DOUBLE, vector, &vec);

/* Match process topology, data item and function-set */
ADCL_Request _create (vec, topo, ADCL FNCTSET NEIGHBORHOOD,
&request);

for (1=0; I<NIT; 1++) {
/* Main application loop */
ADCL_Request _start (request);

Runtime selection logic: brute force
search (1)
Implementation no.

2 3 4 56 7 Using the fastest implementation for

\ \ \ \ ‘ the rest of the application

oooooooo

Evecution time [usec]

Runtime selection logic: brute force
search (Il)

e Test each function of a given function set a given
number of times

— Store the execution time for each execution per process

e Filter the list of execution times in order to exclude
outliers

« Determine the avg. execution time per function i and
Process |

 Determine the max. execution time for function | across
all processes

max
1:i

=max(f.’), j=0..nprocs —1

— Requires communication (e.g. MP1_Al lreduce)

HIPS 2007 Long Beach
Edgar Gabriel (3

Runtime selection logic: brute force
search (lll)

Determine the function with the minimal max. execution
time across all processes

f

=min(f,"™"),i =0...nfuncs -1

winner

« Use this function for the rest of the application lifetime

HIPS 2007 Long Beach
Edgar Gabriel (3

Runtime selection logic:
performance hypothesis (1)

e Assumptions:

— every implementation can be characterized by a set of
attributes, which impact its performance, e.g. for
neighborhood communication

« Communication pattern/degree

« Handling of non-contiguous data

« Data transfer primitive

e Overlapping communication and computation

— The fastest implementation will also have the optimal
values for these attributes

HIPS 2007 Long Beach
Edgar Gabriel (3

Runtime selection logic:
performance hypothesis (ll)

e Approach: determine the optimal value for an attribute by
comparing the execution time of functions differing in
only a single attribute

Function a Function b Function c
Value for attribute 1 1 2 3
Value for attribute 2 X X X
Value for attribute 3 Y Y Y
Value for attribute 4 z z z

— E.g. if function c had the lowest execution time across all
processes:

l: ! « Hypothesis: value 3 optimal for attribute 1

ars So'e@Rfldence value in this hypothesis: 1

Value for attribute 1
Value for attribute 2

Value for attribute 3
Value for attribute 4

1By

Runtime selection logic:
performance hypothesis (llI)

« Evaluate a different set of functions differing in one other

attribute, e.g.

Function c

1

X+1

Function d

2

X+1

Function e

3

X+1

— If this set of measurements lead to the same optimal value

for attribute 1:

* Increase confidence value for this hypothesis by 1
— Else decrease the confidence value by 1

HIPS 2007 Long Beach
Edgar Gabriel

Runtime selection logic:
performance hypothesis (1V)

 If the confidence value for an attribute reaches a given
threshold
— Remove all functions not having the required value for this
attribute from the Function-set

 If the value for attribute (s) do not converge towards a
value this algorithm leads to the brute force search

e Advantage: potentially fewer functions have to be
evaluated to determine the winner

HIPS 2007 Long Beach
Edgar Gabriel (3

Currently available implementations for
neighborhood communication

Name Comm. pattern | Handling of Data transfer primitive
non-cont. data
Isendlrecv_aao aao ddt MPI Isend/Irecv/Waitall
Isendlrecv pair pair ddt MPI Isend/Irecv/Waitall
Sendlrecv_aao aao ddt MPI Send/Irecv/Waitall
Sendlrecv pair pair ddt MPI Send/Irecv/Wait
Isendirecv _aao pack | aao ddt MPI Isend/Irecv/Waitall
Isendlrecv pair pack | pair Pack/unpack MPI Isend/Irecv/Waitall
Sendlrecv aao pack | aao ddt MPI Send/Irecv/Waitall
Sendlrecv pair pack | pair Pack/unpack MPI Send/Irecv/Wait
SendRecv pair pair ddt MPI Send/Recv
Sendrecv_pair pair ddt MPI Send/Recv
SendRecv pair _pack | pair Pack/unpack MPI Send/Recv
Sendrecv pair pack | pair Pack/unpack | MPI Send/Recv
WinfencePut aao aao ddt MPI Put/MPI Win fence
WinfenceGet aao aao ddt MPI Get/MPIl Win fence
PostStartPut aao aao ddt MPI Put/MPI Win post/start
PostStartGet aao aao ddt MPI Get/MPl Win post/start
WinfencePut pair pair ddt MPI Put/MPI Win fence
WinfenceGet pair pair ddt MPI Get/MPIl Win fence
PostStartPut pair pair ddt MPI Put/MPl Win post/starnt e
PostStartGet pair pair ddt MPI Get/MPl Win post/start i!i;i

Performance results (I)

InfiniBand 32 processes small problem size

Execution time [sec]

HIPS 2007 Long Beach
Edgar Gabriel

Performance results (I1)

InfiniBand 32 processes large problem size

77.5
77
76.5
76
75.5
75
74.5
74
73.5
73
72.5

Execution time [sec]

HIPS 2007 Long Beach
Edgar Gabriel

Performance results (lIl)

TCP over Fast Ethernet 32 processes small problem size

400
350
300
250
200
150

Execution time [sec]

100
50

HIPS 2007 Long Beach
Edgar Gabriel

Performance results (V)

TCP over Fast Ethernet 32 processes large problem size

450
400
350
300
250
200
150
100

50

Execution time [sec]

HIPS 2007 Long Beach
Edgar Gabriel

Limitations of ADCL

Reproducibility of measurements even on dedicated compute nodes

a challenging topic

— Hyper-threading

— Processor frequency scaling

Network often shared between multiple jobs
Hierarchical networks

— Process placement by the batch scheduler
Performance hypothesis

— Attributes should not be correlated

User has to modify its code

— How much longer will we have to deal with MPI?

HIPS 2007 Long Beach
Edgar Gabriel

Advantages of ADCL

* Provides close to optimal performance in many scenarios
« Simplifies the development of parallel code for many applications
« Simplifies the development of adaptive parallel code
e Currently ongoing work:
— Improving (nearly) all components of ADCL
 Data filtering
* Increase parameter space and set of implementation

o Experiment with other runtime selection algorithms
— Historic learning, Game theory, genetic algorithms

— Integration with a CFD solver in cooperation with Dr.
Garbey

HIPS 2007 Long Beach
Edgar Gabriel (3

