
Delta Send-Recv for Dynamic Pipelining in MPI Programs

Bin Bao, Chen Ding
Department of Computer Science,

University of Rochester
Rochester, NY, USA

{bao, cding}@cs.rochester.edu

Yaoqing Gao, Roch Archambault
IBM Toronto Software Lab

Markham, ON, Canada
{ygao, archie}@ca.ibm.com

Abstract—Pipelining is necessary for efficient do-across par-
allelism but the use is difficult to automate because it requires
send-receive analysis and loop blocking in both sender and
receiver code. The blocking factor is statically chosen.

This paper presents a new interface called delta send-
recv. Through compiler and run-time support, it enables
dynamic pipelining. In program code, the interface is used
to mark the related computation and communication. There
is no need to restructure the computation code or compose
multiple messages. At run time, the message size is dynamically
determined, and multiple pipelines are chained among all tasks
that participate in the delta communication. The new system
is tested on kernel and reduced NAS benchmarks to show
that it simplifies message-passing programming and improves
program performance.

Keywords-MPI; communication-computation overlapping;
dynamic pipelining

I. INTRODUCTION

Computation and communication overlapping is a basic
method in optimizing distributed programs. A straightfor-
ward way is non-blocking send and receive, which overlaps
communication with unrelated computation. For dependent
computation that either produces the outgoing message or
consumes the incoming data, overlapping still can be done
in a finer grain, known as pipelining. Pipelining cannot be
easily automated for complex code because it requires exact
send-receive pairing to perform matching transformations in
both the sender and the receiver code. Manual transforma-
tion, on the other hand, makes code harder to understand and
maintain. In addition, a static solution is not sufficient if the
send-receive relation is not completely known at compile
time.

In this paper, we present delta send-recv, an extension
of the MPI send/receive interface and its run-time sup-
port. It divides a data message at run time into pieces
which we call deltas or increments. On the sender side,
the communication starts as soon as the first increment is
computed. On the receiver side, the data can be used as
soon as the first increment arrives. Delta receive is similar
to early release [1]. When combined with delta send, it
forms pipelining dynamically. Multiple senders and receivers
may be dynamically chained to produce cascading in a

task group, improving performance by a factor linear to the
number of tasks.

For example, delta send-recv supports efficient coarse-
grained reduce. Pipeline cascading reduces the cost by
O(log k) for k tasks in a tree topology, compared to using
MPI non-blocking send-recv.

In terms of programmability, delta send-recv enables
pipelining without having to reorganize the computation
code. It supports variable-size communication, where the
size is unknown until the complete message is generated.
In addition, it can be implemented using virtual-memory
support which does not need access to program source
code. It allows communication optimization for interpreted
languages such as Matlab and R, whose use of separately
compiled or dynamically loaded libraries makes manual
transformation impractical.

The current design has several shortcomings.
• Pipelining is useful only when the amount of dependent

computation is significant.
• The interface is applicable only when the computation

follows the certain pattern, i.e. computation writes to
the send buffer only once.

• The run-time support incurs overheads, which include
the cost of monitoring message data usage and sending
and receiving multiple messages. We will study the
costs both analytically and empirically.

The main contributions of the paper are as follows:
• A new interface for delta-send/recv for pipelining com-

munication and dependent computation.
• Two implementation schemes based on compiler and

the OS support respectively and a common run-time
system.

• Evaluation of the benefits and overheads. The benefits
include both performance and programmability.

The rest of the paper is organized as follows. Section II
describes the interface and the implementation. In Sec-
tion III, we evaluate performance using three sets of tests
mainly on a PC cluster and show the effects of the amount
of computation, the cost of communication, the overhead
of delta send-recv, and the minimal size needed for a delta
increment. Finally, we discuss related work in Section IV

MPI_Delta_send_begin(...);

/* dependent computation */
... ...
MPI_Delta_send_end(...);

/* independent computation */
... ...
MPI_Delta_wait(...);

(a) Delta-send to overlap both dependent and independent
computation with the receive

MPI_Delta_recv(...);

/* independent computation */
... ...

/* dependent computation */
... ...

(b) Delta-recv to overlap both dependent and independent
computation with the receive

/* dependent computation */
... ...
MPI_Isend(...);

/* independent computation */
... ...
MPI_Wait(...);

(c) Non-blocking send to overlap independent computation
with the send

MPI_Irecv(...);
/* independent computation */
... ...

MPI_Wait(...);
/* dependent computation */
... ...

(d) Non-blocking recv to overlap independent computation
with the receive

Figure 1. The delta communication primitives used to pipeline communication and dependent computation. It subsumes the use of non-blocking send
and receive, also shown in the figure for comparison, to overlap communication with independent computation. Delta send needs one more call than
non-blocking send. Delta receive uses one fewer call than non-blocking receive.

and summarize in Section V.

II. DELTA SEND-RECV

A. The Interface

We show the interface by the use of the communication
primitives in the context of computation. The computation
has two parts: the dependent computation that produces
and consumes the communicated data and the independent
computation that does not use the communicated data.

On the sender side, as in Figure 1(a) shows,
MPI Delta send begin is called before the dependent com-
putation that produces the sent message. It has the same pa-
rameters as a normal MPI nonblocking send, which includes
7 parameters including the buffer address, size, data type,
destination task, tag, MPI communicator, and request handle.
MPI Delta send end is called after the dependent computa-
tion. It has just one parameter, which is the request handle.
MPI Delta wait is called after the independent computation,
taking the request handle and returning a status pointer.
MPI Delta wait implies MPI Delta send end, so the latter
can be omitted if there is no independent computation before
the wait.

The purpose of these primitives is to enable pipelining
by the sender, where a chunk, i.e. a delta, of message is
produced and sent while the next chunk is being computed.
The production of the message data may be sequential or not
depending on the implementation which we will describe
next.

On the receiver side, as Figure 1(b) shows,
MPI Delta recv is called before the message data is

used. The parameter list is the the same as a MPI Recv,
including the buffer address, size, data type, source task,
tag, MPI communicator, and status. Data may be received
out of order. There is no need for an MPI Wait.

Figure 1(c,d) show the use of non-blocking send/receive
as a comparison. Non-blocking communication can
overlap communication with independent computation.
MPI Delta wait is like MPI Wait for a non-blocking
send. It blocks the sender until the message has been
delivered. MPI Delta send begin and MPI Delta recv
take the same list of parameters, but they are placed
before (rather than after) the dependent computation. As a
result, delta-send/receive combines goes one step further
and overlaps the communication with both the dependent
computation and the independent computation.

The run-time effect is illustrated by an example in Fig-
ure 2. The left-side figure shows the effect of non-blocking
communication, which overlaps the independent computa-
tion and communication. The right-side figure shows that
delta send and receive improves processor utilization by
pipeline parallelism and network utilization by incremental
communication.

B. The Implementation

The implementation has two parts. The first is access mon-
itoring. The second is dynamic messaging. In the general
case, the message data can be produced and consumed in any
order. To simplify the presentation, we first show a limited
design which assumes the sequential order and then discuss
the extensions needed to remove the limitation.

use
data

data

use
data

sender,
receiver,
network,
all busy

delta send begins

delta recv begins

(a) Single message communication of
dependent data. Overlapping of
i n d e p e n d e n t c o m p u t a t i o n a n d
communication using MPI non-
blocking send. No overlap between
dependent computations in sender and
receiver.

(b) Incremental communication between
sender and receiver. Delta send overlaps
sender computation and communication. Delta
recv overlaps communication and receiver
computation. Together they form sender-
receiver pipelining and fully utilize parallel
machines and their network.

delta
increments

unrelated
comp.

compute
data

non-blocking
send begins

unrelated
comp.

compute
data

recv done

only
sender
busy

sender/
network

busy

only
receiver

busy

Figure 2. (Left) MPI non-blocking send-recv cannot overlap communication with dependent computation. (Right) Delta send-recv enables pipelining
between the sender and the receiver and better utilizes the processors and the network.

comment: sent, requested are two integers initialized to 0
proc delta send data(s) ≡

comment: Adding another s bytes to the message
requested = requested+ s
if requested > deltasize

then MPI Isend(sent, requested− sent)
fi

end

comment: received, nextmsg are two integers initialized to 0
proc delta wait data(base, size) ≡

comment: Waiting for message data at base for size bytes
while base+ size > received do

MPI Wait(nextmsg)
s = MPI getsize(nextmsg)
received = received+ s
nextmsg = nextmsg + 1

od
end

Figure 3. Simplified algorithms for the delta send/receive. Access
monitoring is done by calling these two functions, which instigates dynamic
messaging.

As the sender computes the message data, it calls
delta send data when it finishes computing a piece of the
data. The pseudo code is shown in Figure 3. The func-
tion waits until the finished pieces amount to a threshold,
deltasize, and sends these data in a message. The code
shows the connection between access monitoring, done by
calling delta send data, and dynamic messaging, done by
executing the function. The message size can be determined
and adjusted at run time.

On the receiver side, the program calls delta wait data
before it uses a piece of message data. The pseudo code is
also shown in Figure 3. The function keeps waiting for the
next increment until the waited data has arrived.

The send/wait functions in Figure 3 form the core of

the run-time support. The interface calls are implemented
based on them. The delta send/receive calls are used to
initialize the internal parameters needed by the send/wait. It
is possible that a sender does not write the entire message.
MPI delta send end is used to inform the run-time system
that there will be no more calls to delta send data. The run-
time system then sends all the remaining data, if any, in one
(last) message. MPI delta wait is a blocking operation to
ensure that all delta sends are finished.

Delta send-recv may be implemented inside an MPI
library or as our prototype be built as a user-level library over
the standard MPI interface. Like standard MPI, its interface
can be used by C/C++/Fortran programs. Next we describe
two solutions for access monitoring.

1) OS Triggering: Virtual memory support can be used
to monitor data access at the sender and the receiver.

Delta-send: MPI Delta send begin places the send
buffer under page protection except for the first delta in-
crement. A delta is a group of consecutive memory pages.
The operation installs a custom page fault handler. When
a write to the send buffer triggers a page fault, it invokes
the signal handler. Since the fault address signals the com-
pletion of the previous delta, it takes the address range and
calls delta send data (shown in Figure 3), which initiates
dynamic messaging. The handler unprotects the pages in
the next delta, and resumes the execution of the sender. In
this fashion, the page fault handler sends all deltas except
for the last one, which is sent out when the sender reaches
MPI Delta send end. Finally, MPI Delta wait waits for all
(non-blocking) delta sends to finish. To be correct, delta-
send requires sequential write, which has to be guaranteed
by the user or compiler analysis.

Delta-recv: MPI Delta recv turns on the page pro-
tection for the receive buffer, creates a shadow buffer of
the same size, and then lets the receiver task continue its
execution. When the receiver accesses the message data, it

incurs a page fault if the page containing the data is not yet
received. The page fault handler calls delta wait data and
blocks until the page (or pages if the delta size is more than
a page) is received. The handler copies the pages from the
shadow to the receive buffer, unprotects them, and resumes
the receiver. The receiver can access data in any order in
the receiver buffer, not just in sequential order. Furthermore,
there is no need for a wait operation to follow the delta
receive. Any message data not accessed are not needed (by
the program).

The receive process is similar to early release developed
by Ke et al. [1] It protects the receive buffer and “releases”
the receiver task to continue to execute. Early release uses
alias memory pages, while delta recv creates a shadow
receive buffer to permit receiving in the background. Early
release incurs a page fault for every received page. Delta-
recv, like delta-send, is parameterized by the delta size.
As we will show later in Section III-C, the overhead is
substantially lower when the delta size is 4 or 5 pages rather
than 1 page.

2) Compiler annotation: A compiler can insert delta send
and wait calls directly instead of leveraging page protection.
The sender can write to the message data in any order, and
there is no paging overhead.

Delta-send: The compiler analyzes the computation
between MPI Delta send begin and MPI Delta wait to
identify the dependent computation and annotate the write
statements by calling delta send data. Standard dependence
analysis can be used [2]. If the write to a send buffer happens
in a tight innermost loop, direct annotation will incur a high
run-time cost. The compiler can strip-mine the loop and
insert the annotation in the outer loop to amortize the cost.

Our current delta send data function uses a range tree
data structure to merge data ranges. If a new range is
merged with existing ones, and the combined size exceeds
the threshold, the function calls MPI Isend to send out the
data chunk.

Delta-recv: Similar compiler analysis and loop trans-
formation can be performed on the receiver code following
MPI Delta recv and insert calls to delta wait data (shown
in Figure 3). Initially, the receiver posts non-blocking re-
ceives for the maximal number of delta messages and each
of them receives data into its own shadow buffer. Since the
actual delta size may be larger, and the specified and actual
size of the communication may differ, the receiver cancels
all remaining receives by calling MPI Cancel after the last
delta message (marked by the sender) has arrived.

In the general case, the message is managed and com-
municated as a set of data sub-ranges. Each call of
delta send/wait data adds a sub-range. Dynamic messaging
allows sub-ranges to be sent and received out of order. The
bookkeeping of these data sub-ranges can help to detect
misuse of delta send where a program may write to a

memory location that has already been sent. The run-time
support can abort the program and notify the user.

C. Dynamic Pipelining

Delta send-recv forms computation-communication
pipelines dynamically, which has benefits and overheads.

Send-receive de-coupling and one-sided transforma-
tion: Delta-send can be implemented in a way that the
message can be properly received by any type of receive
as non-blocking sends can. Similarly, delta-recv can support
messages from any type of sends.

Since there is no need to transform send-recv pairs in
tandem, a user can optimize sender and receiver code
separately. We call it a one-sided transformation. A user can
transform an MPI send without knowing all the possible
matching receives. As a result, one-sided transformation
may improve performance more than previously possible or
reduce the amount of programming time.

Another benefit is adaptive control. For example, based
on the amount of computation, the size of message, and
the running environment, delta-send-recv can dynamically
choose different increment sizes to maximize performance.

Cascading: Delta send-recv may be chained together
between more than two tasks. If we extend the example in
Figure 2 such that when it finishes processing, the second
task sends the data to a third task. Then the second and
the third tasks form a pipeline in the same fashion as the
first two tasks do. With enough computation, all three tasks
will execute in parallel after an initial period. The benefit
of chaining is important for MPI aggregate communication
such as broadcast and reduce. Such communication is often
carried out on a tree topology so it takes O(log n) steps to
reach n tasks. Cascading happens between all tasks on the
same path from the root.

Overheads: Dynamic pipelining incurs two additional
costs. The first is the increased number of messages. More
messages require processor time in sending, receiving, stor-
ing meta data and acknowledging. Delta messages must
be non-blocking, which is more costly to manage than
blocking communication because of simultaneous transfers.
The second cost is access monitoring. OS triggering incurs
one page fault for each increment. Compiler annotation
invokes the run-time library. We must control the two costs
so they do not outweigh the benefit of pipelining.

Comparison with message splitting: In current MPI
libraries such as OpenMPI, a non-blocking send, if it sends a
large message, is divided into ”fragments” to avoid flooding
the network [3]. The library-level message splitting does
not interleave communication with dependent computation,
but delta send-recv does. In implementation, delta send-recv
may adjust the increment size based on not just the network
but also the program computation.

Comparison with compiler optimization: Prior work
has used loop strip-mining and tiling to enable sender-
receiver pipelining [4], [5]. Automatic transformation re-
quires precise send-receive matching, a difficult problem
for explicitly parallel code [6], [7]. In comparison, dynamic
pipelining does not need static send-receive matching.

III. EVALUATION

A. Methodology

Implementation: Our system is implemented as a user-
level library over the standard MPI interface. It is written
in C and provides an interface for use by C/C++/Fortran
programs. To optimize, we manually insert delta send-recv
functions in a way that can be automated with the compiler
support. The insertion of delta send end and wait calls is a
matter of replacing the original send and wait calls. Delta
send begin and delta receive require knowing the start of the
dependent computation. Loop unrolling is need by compiler
annotation (but not by OS triggering). For regular loop code,
such analysis and transformation can be implemented with
existing techniques. The run-time library uses a pre-set delta
size.

Test Suite: We use kernel and simplified application
benchmarks. The kernel tests are as follows:

1) pair: The sender computes and sends a data array
to the receiver, which performs identical computation
(and compares the two results).

2) cascade: p tasks connected as p− 1 pairs.
3) ring: A virtual ring of p tasks, each computes and

sends data to the right, gets from the left, and repeats.
4) array reduce: A virtual tree of p tasks, each gets data

from each child (if any), adds them and its own, and
forwards the result to its parent. Equivalent to n MPI
reduces, where n is the array size.

As the base line, we use blocking send-recv in all kernel
tests. For instance, in pair, after the computation, the sender
calls MPI Send to pass the data array to the receiver, and
the receiver calls MPI Recv to get the data before its
computation starts. The only exception is ring, which needs
non-blocking send-recv to avoid deadlock.

We let the kernel program compute a trigonometric oper-
ation, in particular, sin(i) ∗ sin(i)+ cos(i) ∗ cos(i) for each
element of the integer array. We run each test 100 times and
take the average as the result. The performance variance is
negligible, thus we don’t show it on our graphs.

A set of more realistic tests is due to Danalis et al. at
University of Delaware, who explained “Each kernel is an
actual segment of the original program ... [and invoked] from
a custom driver ... [to execute] multiple times (over 100) to
amortize random noise effects.” [8] We use 3 Delaware tests:

5) NAS LU btls(): LU is a complete computational fluid
dynamics simulation program in the NAS suite [9].
The kernel btls performs wavefront sweeps where each

Operations Time (µs)
computation (per page) 91.2
communicating 1 page 137.6
communicating 100 pages 5614.7
a (minor) page fault 9.9

Table I
BREAKDOWN OF PROCESSOR AND NETWORK SPEED

task waits for tasks on the “north” and “west.” The
standard test size, input C (message size 1KB), is not
large enough for pipelining with the OS triggering
implementation. We use input E instead (message
size 10KB). We embedded the packing and unpacking
loops into the compute loop so the message is created
during (instead of after) the computation.

6) HYCOM xcsum(): HYCOM is an application for
ocean modeling run daily at the Navy DoD Super-
computing Resource Center [10]. The kernel xcsum
performs a reduce for each row of a 2D array.

7) NAS MG psinv(): MG is a multigrid solver in
the NAS suite [9]. The kernel psinv performs sten-
cil computation on three-dimensional data. Each task
communicates with up to 6 neighbors. We duplicated
both send and receive buffers to allow simultaneous
communication by delta send-recv.

In the three tests, we use array padding to avoid mixing
message array with other data on the same page. There are
two other kernels in the Delaware suite. One is the NAS
LU btls pre-conditioning loop. The kernel has no dependent
computation, so delta send-recv has no benefit. The other is
a simplified HYCOM xcaget kernel. The communication is
mostly redundant, so it is unclear what to optimize.

Test Machine: The test platform is an 1Gb-Ethernet
switched homogeneous PC cluster with 40 nodes. Each node
has two Intel Xeon 3.2GHz CPU and 6GB memory, installed
with Fedora 15 and GCC 4.6.1.. We use MPICH2 1.4.1 [11]
as the underlying MPI library. We also tested on an older 32-
processor IBM p690 multiprocessor machine and observed
similar improvements but will not include IBM machine
results for lack of space.

Table I shows the performance characteristics of the PC
cluster. Communicating a 400KB message is 2.45 times
faster than communicating 100 4KB messages, showing the
overhead of incremental communication. In OS triggering,
a page fault costs about 9.9 microseconds. In addition,
the table shows the time per page for the trigonometric
computation used in the kernel tests. Our test machine
represents a commodity cluster rather than an up-to-date
HPC system, however, delta send-recv should be applicable
to newer systems as long as the communication time is not
negligible.

pair ring reduce cascade hycom lu mg

Improvement of delta send−recv with the OS triggering implementation

sp
ee

du
p

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 4.

7
6.

7
3.

3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2 tasks
4 tasks
8 tasks
16 tasks
32 tasks

pair ring reduce cascade hycom lu mg

Improvement of delta send−recv with the compiler annotation implementation

sp
ee

du
p

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 3.

2
5.

4
7.

9
3.

5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2 tasks
4 tasks
8 tasks
16 tasks
32 tasks

Figure 4. Performance improvements over the 2 to 32 task runs for the kernel and reduced application tests by delta send-receive with compiler annotation
and OS triggering

B. Delta Send-Recv Performance

Figure 4 shows the improvement using delta send-recv
over MPI send and receive when running 2 to 32 tasks.

Kernel tests: We use a message size of 400KB in these
tests. The increment size is 16KB. We will evaluate different
message and delta sizes later. With the OS triggering, pair
shows 45% performance improvement. The base version
of ring is usually considered highly efficient since the
communication fully overlaps when each task sends and
receives at the same time. Still, delta send-recv improves
the performance by 13%, 11%, 14%, 27%, and 11% for 2,
4, 8, 16, and 32 tasks respectively. The baseline execution
time of ring is 2.19s, 2.3s, 2.27s, and 2.31s for 2, 4, 8,
and 16 tasks, but it increases to 17.8s when there are 32
tasks. Thus, the low improvement at 32 tasks does not show
a limitation of delta send-recv. It reflects the limitation in
our machine performance, such as the saturation of network
bandwidth. We observe a similar drop at 32 tasks in all the
tests on the PC cluster.

The test reduce is an MPI collective and similar to
MPI Bcast, MPI Scatter, and MPI Scatterv in that all im-
plement one-to-many communication using a logical tree
structure. An MPI library can internally pipeline the com-
munication in a collective operation, as it was done in
MPICH [12]. This test shows the effect of overlapping com-
putation with communication, which cannot be implemented

by current MPI collectives. In theory, the speedup increases
as a logarithmic function of the number of tasks. On the
cluster, we observe increasing speedups of 1.4, 1.9, 2.4, 2.8,
and finally a drop to 1.1 due to insufficient bandwidth.

Cascade shows the largest speedups due to pipeline
chaining, 1.8, 3.0, 4.7, 6.7, and 3.3. This test shows the best
possible case for delta send-recv, in which the improvements
increase linearly with the number of tasks in theory.

Compiler annotation is equally or more efficient. Pair
shows 70% improvement. Ring is improved by 9%, 12%,
13%, 23%, and 7%, which are comparable to OS triggering.
Reduce also shows similar speedups: 1.4, 2.0, 2.5, 2.9, and
1.1. Cascade shows higher improvements: 1.8, 3.2, 5.4, 7.9,
and 3.5 times respectively.

Delaware tests: Not all task numbers are permitted in
the HYCOM and LU kernels. With the OS triggering, the
improvement for HYCOM is 10% for 4 and 8 tasks, 62%
for 16 tasks, but a slowdown of 46% for 32 tasks due to the
adverse effect of bandwidth contention. The improvement
for LU is 68% for 16 tasks and 42% for 32 tasks. The
improvements for MG are 2%, 3%, 4%, 5%, and 4%. The
reason for the marginal improvement is that only 2 out of 6
communications can use delta send-recv.

Using compiler annotation, the performance improve-
ments are similar or greater, as in the kernel tests. The largest
enhancement happens at the 16-task run of HYCOM, 16-task

8KB
32KB

128KB
512KB

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10
Message size

Speedup

Delta size (pages)

1-1.2 1.2-1.4 1.4-1.6 1.6-1.8

(a) OS triggering implementation

8KB
32KB

128KB
512KB

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10
Message size

Speedup

Delta size (pages)

1-1.2 1.2-1.4 1.4-1.6 1.6-1.8

(b) Compiler annotation implementation

Figure 5. Improvement of pair for message sizes from 8KB to 1MB and delta increment sizes from 1 to 10 pages

and 32-task runs of LU. The improvements are 90%, 116%,
and 74%, higher than 62%, 68%, and 42% by OS triggering.

We used different delta sizes and observed similar results
except for LU. LU computes on a matrix and communicates
the boundary data. The computation-to-communication ratio
is high. We obtained a 2.52x speedup for 16 tasks when
using 1KB delta versus 2.16x speedup in Figure 4.

C. Effect of Delta Size and Message Size

We evaluate delta send-receive in more detail using the
pair test. We show the improvement as 3D plots as we vary
the delta size from 1 page to 10 pages (4KB to 40KB) for
the original message size from 8KB to 1MB, in Figure 5(a)
for OS triggering and Figure 5(b) for compiler annotation.

Compiler annotation has two advantages. First, the
speedup is higher in small message sizes: 9% vs 0% for
8KB messages, and 39% vs 10% for 16KB. Second, more
combinations show high speedups, 19 vs 5 in the 1.6x-1.8x
range.

Although not shown in Figure 5, we have evaluated some
other combinations of larger delta sizes and message sizes.
The general trend stays the same. The only difference is the
performance drops to almost no speedup once the delta size
reaches 32 pages. After looking into MPICH2 nemesis chan-
nel implementation, we find that a threshold on the cluster is
MPIDI CH3 EAGER MAX MSG SIZE, which defines
the switching point from eager protocol to rendezvous
protocol, and its default value is 128KB. When a message
is larger than this threshold, the communication will use the
rendezvous protocol, and now in order to start a data transfer,
the sender needs to wait for the acknowledgment from the
receiver. As a result, when the delta size is equal to or larger
than 32 pages, the latency almost doubles, and the effect of
dynamic pipelining is diminished.

D. Comparison with Non-blocking Send-Recv

The Delaware tests were created to evaluate compiler
techniques for overlapping communication with independent
computation. In Figure 6, we compare the 16-task perfor-
mance of their optimized code (tested on our machine) with
delta send-recv.

In all three cases, pipelining communication with depen-
dent computation is more profitable than overlapping with
independent computation. The improvements by the two
delta send-recv implementations and their code are 56%,
90% and 11% for HYCOM, 68%, 116% and 28% for LU,
and 6%, 5% and -2% for MG.

We should note that their code was not optimized for our
machines, so the performance may not represent the full
capability of their techniques. In addition, they can improve
communication when there is only independent computation

hycom lu mg

Comparison with Danalis et al.

sp
ee

du
p

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0OS triggering

Compiler annotat.
Danalis et al.

Figure 6. Comparing delta send-recv with Danalis et al. for overlapping
communication with independent computation (16 tasks)

but delta send-recv cannot. This happens in one of the
Delaware tests that we do not include here.

IV. RELATED WORK

Virtual memory support: Virtual memory support has
been used for incremental receive for messages in MPI [1]
and bulk transfers in UPC [13]. Early release changes only
one side of the communication. Our work adds incremental
send to create dynamic pipelining. Delta receive, when using
OS triggering, is similar to early release, except for the use
of multi-page increments to amortize the paging overhead.

SBLLmalloc, a user-level memory allocator, uses virtual
memory support to make MPI processes share read-only
data (when they are executed on a single machine) and
consequently reduces the memory consumption [14].

Compiler optimization: Danalis et al. developed a
compiler to systematically convert all communication from
blocking to nonblocking and automatically overlap com-
munication with independent computation [8]. It uses loop
distribution to move independent computations (so they
could be overlapped) and variable cloning to enable such
movements. Preissl et al. developed a hybrid approach,
with trace analysis first to identify inefficient patterns in
computation and communication and then compiler trans-
formation to remove the inefficiency [15]. One pattern is
a “late sender,” for which a compiler converts a receive
from blocking to non-blocking. Strout et al. developed data-
flow analysis for MPI programs, which models information
flow through communication edges [6]. Static techniques
like these require send-recv matching. There are some recent
advances in solving the matching problem, including the
notion of task groups [7] and techniques for matching tex-
tually unaligned barriers [16]. However, static send-receive
matching is not yet a fully solved problem especially with
dynamically created tasks. Delta send-recv complements
them by targeting dependent computation and by removing
the requirement on static send-receive matching.

Pipelining is standard in compiler parallelized code, ini-
tially through message strip-mining [4] and later more
systematically through give-n-take to place send as early as
possible and the matching receive as late as possible [17].
The give-n-take framework uses a system of dataflow equa-
tions similar to those used to solve for lazy code motion in
scalar compiler optimization [18]. It has been extended to
consider the resource constraint [19]. These techniques are
not designed for explicitly parallel code.

Manual programming: White and Dongarra developed
and evaluated various form of computation and communi-
cation overlapping, but the transformations are done man-
ually [20]. Marjanovic et al. studied a new programming
model that combines MPI and SMPSs [21], [22]. The hy-
brid programming model achieves overlapping by marking
communication and computation as SMPSs tasks and having
the tasks scheduled properly by the runtime system. The new

model requires a user to identify parallelism inside a task.
In comparison, delta send-recv follows the traditional MPI
programming paradigm.

MPI library design: Modern MPI libraries support
non-blocking send-recv and also non-blocking collectives in
libNBC [23] and the upcoming MPI-3 standard [24]. Non-
blocking communication yields significant benefits in large-
scale production MPI code [25]. It is generally useful for
messages of all sizes. Delta send-recv is complementary, and
the implementation is effective for mainly large messages.

MPI collectives such as irregular all-gather
(MPI Allgatherv) make use of communication
pipelining [26]. It requires no changes to the user
code but the effect is limited to a single MPI operation.
Delta send-recv requires code changes but extends the
benefit of pipelining beyond a single MPI call to include
the user computation.

V. SUMMARY

We have presented the delta send-recv interface and the
two faceted implementation by OS triggering and compiler
annotation. An MPI program can create pipelines dynam-
ically between two or more tasks. We have evaluated the
design using different communication topology, computation
intensity, message and increment sizes, real benchmark
kernels, different machines, networks, and MPI libraries.
The results show that the best size is as small as 8KB for the
message and 1KB for the delta increment. The improvement
is up to 2.9 times for 16-task MPI reduce and 7.9 times for
16-task cascade.

ACKNOWLEDGMENT

The authors would like to thank Anthony Danalis at
University of Tennessee Innovative Computing Laboratory
and Oak Ridge National Laboratory for sharing the extracted
NAS benchmark code. We thank Tongxin Bai for taking
part in the initial design of the system. We also thank the
anonymous CCGrid reviewers for their extremely valuable
questions and suggestions. Bin Bao is supported by the IBM
Center for Advanced Studies Fellowship. The research is
also supported by the National Science Foundation (Contract
No. CCF-1116104, CCF-0963759, CNS-0834566).

REFERENCES

[1] J. Ke, M. Burtscher, and W. E. Speight, “Tolerating message
latency through the early release of blocked receives,” in
Proceedings of the Euro-Par Conference, 2005, pp. 19–29.

[2] R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, Oct. 2001.

[3] T. Woodall, R. Graham, R. Castain, D. Daniel, M. Sukalski,
G. Fagg, E. Gabriel, G. Bosilca, T. Angskun, J. Dongarra,
J. Squyres, V. Sahay, P. Kambadur, B. Barrett, and A. Lums-
daine, “TEG: A high-performance, scalable, multi-network
point-to-point communications methodology,” in Proceedings
of Euro PVM/MPI, Budapest, Hungary, September 2004, pp.
303–310.

[4] A. Wakatani and M. Wolfe, “A new approach to array
redistribution: Strip mining redistribution,” in Proceedings of
PARLE, 1994, pp. 323–335.

[5] J. M. Mellor-Crummey, V. S. Adve, B. Broom, D. G.
Chavarrı́a-Miranda, R. J. Fowler, G. Jin, K. Kennedy, and
Q. Yi, “Advanced optimization strategies in the Rice dHPF
compiler,” Concurrency and Computation: Practice and Ex-
perience, vol. 14, no. 8-9, pp. 741–767, 2002.

[6] M. M. Strout, B. Kreaseck, and P. D. Hovland, “Data-flow
analysis for MPI programs.” in Proceedings of the Interna-
tional Conference on Parallel Processing, 2006, pp. 175–184.

[7] G. Bronevetsky, “Communication-sensitive static dataflow
for parallel message passing applications,” in Proceedings
of the International Symposium on Code Generation and
Optimization, 2009.

[8] A. Danalis, L. L. Pollock, D. M. Swany, and J. Cava-
zos, “MPI-aware compiler optimizations for improving
communication-computation overlap,” in Proceedings of the
International Conference on Supercomputing, 2009, pp. 316–
325.

[9] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS
parallel benchmarks,” NASA, Tech. Rep. 103863, Jul. 1993.

[10] E. P. Chassignet, L. T. Smith, G. R. Halliwell, and R. Bleck,
“North atlantic simulation with the hybrid coordinate ocean
model (HYCOM): Impact of the vertical coordinate choice,
reference density, and thermobaricity,” Journal of Physical
Oceanography, vol. 32, pp. 2504–2526, 2003.

[11] “MPICH2: an implementation of the message-passing inter-
face (MPI),” version 1.0.5 released on December 13, 2006,
available at http://www-unix.mcs.anl.gov/mpi/mpich/.

[12] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization
of collective communication operations in MPICH,” Interna-
tional Journal of High Performance Computing Applications,
vol. 19, no. 1, pp. 49–66, 2005.

[13] C. Iancu, P. Husbands, and P. Hargrove, “HUNTing the
overlap,” in Proceedings of the International Conference on
Parallel Architecture and Compilation Techniques, 2005, pp.
279–290.

[14] S. Biswas, B. R. de Supinski, M. Schulz, D. Franklin,
T. Sherwood, and F. T. Chong, “Exploiting data similarity
to reduce memory footprints,” in Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium, 2011,
pp. 152–163.

[15] R. Preissl, M. Schulz, D. Kranzlmüller, B. R. de Supinski,
and D. J. Quinlan, “Transforming MPI source code based
on communication patterns,” Future Generation Comp. Syst.,
vol. 26, no. 1, pp. 147–154, 2010.

[16] Y. Zhang and E. Duesterwald, “Barrier matching for programs
with textually unaligned barriers,” in Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2007, pp. 194–204.

[17] R. von Hanxleden and K. Kennedy, “A balanced code place-
ment framework,” ACM Transactions on Programming Lan-
guages and Systems, vol. 22, no. 5, pp. 816–860, 2000.

[18] K. Cooper and L. Torczon, Engineering a Compiler, 2nd
Edition. Morgan Kaufmann, 2010.

[19] K. Kennedy and A. Sethi, “A constraint based communica-
tion placement framework,” Center for Research on Parallel
Computation, Rice University, Tech. Rep. CRPC-TR95515-S,
Feb. 1995.

[20] J. B. White III and J. J. Dongarra, “Overlapping compu-
tation and communication for advection on hybrid parallel
computers,” in Proceedings of the International Parallel and
Distributed Processing Symposium, 2011, pp. 59–67.

[21] J. M. Pérez, R. M. Badia, and J. Labarta, “A dependency-
aware task-based programming environment for multi-core
architectures,” in Proceedings of the IEEE International Con-
ference on Cluster Computing, 2008, pp. 142–151.

[22] V. Marjanovic, J. Labarta, E. Ayguadé, and M. Valero, “Over-
lapping communication and computation by using a hybrid
MPI/SMPSs approach,” in Proceedings of the International
Conference on Supercomputing, 2010, pp. 5–16.

[23] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation
and performance analysis of non-blocking collective opera-
tions for MPI,” in Proceedings of the ACM/IEEE conference
on Supercomputing, 2007, p. 52.

[24] T. Hoefler and A. Lumsdaine, “Non-blocking collective op-
erations for MPI-3,” MPI Forum, 2008.

[25] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis,
“Quantifying the potential benefit of overlapping communi-
cation and computation in large-scale scientific applications,”
in Proceedings of the ACM/IEEE conference on Supercom-
puting, 2006, p. 125.

[26] J. L. Träff, A. Ripke, C. Siebert, P. Balaji, R. Thakur, and
W. Gropp, “A simple, pipelined algorithm for large, irregular
all-gather problems,” in Proceedings of Euro PVM/MPI, 2008,
pp. 84–93.

