
Adaptive Data Partition for Sorting using Probability Dist ribution

Xipeng Shen and Chen Ding
Computer Science Department, University of Rochester

{xshen,cding}@cs.rochester.edu

Abstract

Many computing problems benefit from dynamic parti-
tion of data into smaller chunks with better parallelism and
locality. However, it is difficult to partition all types of in-
puts with the same high efficiency. This paper presents a
new partition method in sorting scenario based on proba-
bility distribution, an idea first studied by Janus and Lam-
agna in early 1980’s on a mainframe computer. The new
technique makes three improvements. The first is a rigor-
ous sampling technique that ensures accurate estimate of
the probability distribution. The second is an efficient im-
plementation on modern, cache-based machines. The last
is the use of probability distribution in parallel sorting.Ex-
periments show 10-30% improvement in partition balance
and 20-70% reduction in partition overhead, compared to
two commonly used techniques. The new method reduces
the parallel sorting time by 33-50% and outperforms the
previous fastest sequential sorting technique by up to 30%.

1 Introduction

Many types of dynamic data have a total ordering and
benefit from partial sorting into sublists. Examples include
N-body simulation in physics and biology studies, where
particles are partitioned based on their coordinates, and
discrete-event simulation in computer networking and eco-
nomics, where events are ordered by their arrival time. Par-
tial sorting or partition allows these large scale problems
to be solved by massively parallel computers. Data par-
tition is also important on machines with a memory hier-
archy because it dramatically improves cache performance
for in-core data and memory performance for out-of-core
data. Therefore, the efficient and balanced data partition is
critical to good parallelism and locality.

Most previous methods either have a high overhead or
only apply to uniformly distributed data (as discussed in
Section 2.) For example, Blelloch et al. showed that one of
the fastest pivot-based methods,over-sampling, consumed

33-55% of the total sorting time [2]. It remained an open
question whether we could find balanced partitions for non-
uniform data in linear time.

In early 80s, Janus and Lamagna published a method that
first samples the data and estimates its cumulative distri-
bution function (CDF); it then assigns data into equal-size
(not necessarily equal-length) buckets through direct calcu-
lation [10]. This simple idea achieves balanced data parti-
tion in linear time, even for non-uniform distributions. We
call the partition methodPD-partitionand its use in sorting
PD-sortin short. Janus and Lamagna implemented their al-
gorithm using the PL/1 language and measured the perfor-
mance on an IBM 370 machine. Since then, however, this
method seems forgotten and is rarely mentioned by later
studies of sorting performance on modern cache-based ma-
chines.

In search for a better sorting method for unbalanced data
sets, we independently discovered the idea of using prob-
ability distribution. Compared to the method of Janus and
Lamagna, this work makes three improvements. The first
is a rigorous sampling method that ensures accurate esti-
mate of the probability distribution. Janus and Lamagna did
not address the sampling problem for non-standard distribu-
tions. They used a fixed number of samples (465) in their
experiments [10]. Using the sampling theory, our method
guarantees the statistical accuracy for a large class of non-
uniform distributions [21], with the number of samples in-
dependent of the size of data and number of categories.

The second contribution is an efficient implementation of
probability calculations on modern machines. It uses tem-
porary storage to avoid repeated calculations. It uses scalar
expansion to improve instruction-level parallelism and hide
memory latency. The latter two problems did not exist on
machines used by Janus and Lamagna. Our implementa-
tion is 19-28% faster than the base implementation ofPD-
partition.

Finally, we measure the effect ofPD-partition in sequen-
tial and parallel sorting and compare it with the fastest sort-
ing methods in the recent literature. OurPD-partition out-
performs other partition methods in both efficiency and bal-
ance. Our sorting implementation outperforms quick-sort

by over 10% and outperforms other cache-optimized algo-
rithms by up to 30% [11, 22].

Furthermore, we designed a parallel sorting algorithm
usingPD-partition. It achieves 33-50% time saving com-
pared to parallel sorting usingover-samplingand over-
partitioning, two techniques popular on modern systems
(see Section 2).

In the rest of this paper, we review related work in Sec-
tion 2 and describe PD-partition in Section 3, the statistical
sampling in Section 4, and an optimized implementation in
Section 5. We present an evaluation in Section 6, and con-
clude with a summary of our findings.

2 Related work

Data partition is a basic step in program parallelization
on machines with distributed memory. Many applications
use irregular data, for example, particles moving inside a
space or a mesh representing a surface. Parallelization is
often done by an approach called inspector-executor, orig-
inally studied by Saltz and his colleagues [5]. For exam-
ple, in N-body simulation, the inspector examines the coor-
dinates of particles and partitions them into different ma-
chines. Much later work used this model, including the
language-based support by Hanxleden et. al. [8], the com-
piler support by Han and Tseng [7], the use on DSM [15],
and many others that are not enumerated here. When data
can be sorted, the partition problem in N-body simulation
can be viewed as a sorting problem. Instead of finding bal-
anced sublists, we need to find subspaces with a similar
number of data. Mellor-Crummey et al. [16] and Mitchell et
al. [17] used bucket sort to significantly improve the cache
locality of N-body simulation programs. Bucket sort pro-
duces balanced partitions for uniformly distributed data,
but may produce severely unbalanced partitions for highly
skewed distributions.

Parallel sorting [1, 2, 3, 4, 6, 9, 13, 20] is an impor-
tant application of data partition. Recent work includes
NOWSort by Arpaci-Dusseau et al. [1],(l; m)-merge sort
by Rajasekaran [18], an implementation of column-sort by
Chaudhry et al. [4], and parallel sorting on heterogeneous
networks by Cerin [3]. Most of these methods use pivots
to partition data. Three main ways to pick pivots are as fol-
lows. The termp represents the number of processors.

• Regular-sampling (RS)[20, 14]. Each processor sorts
the initial local data. It picksp equally spaced candi-
dates. Allp2 candidates are then sorted to pick(p− 1)
equally spaced pivots.

• Over-sampling (OS)[2, 9]. Thep ∗ r random candi-
dates are picked from the initial data, wherer is called
theover-sampling ratio. The candidates are sorted to
pick (p − 1) equally spaced ones as the pivots.

• Over-partitioning (OP)[13]. Thep ∗ r ∗ t candidates
are picked randomly from the whole data set, wheret
is calledover-partitioning ratio, andr is the same as in
Over-sampling. The candidates are sorted, and(pt−1)
pivots are selected by takingrth, 2rth, · · · , (pt−1)rth

candidates. The whole data set is partitioned intop ∗ t
sublists, which form a task queue for parallel proces-
sors.

Pivot-based methods have a significant time overhead.
They sort candidates and use a binary search to find a suit-
able bucket for each data. To balance the partitions, they
need a large number of candidates. As we will discuss later,
PD-partition is more efficient for parallel sorting because it
does not sort samples and calculates the bucket assignment
with only a constant number of operations.

Instead of using pivots, Arpaci-Dusseau et al. partition
data into even length buckets [1]. Xiao et al. used a simi-
lar algorithm—inplaced flash quicksort[22], which utilizes
an additional array to reuse elements in a cache line. Both
methods partition data in linear time, but both assume that
the input data have a uniform distribution. For other distri-
butions, the partitions may be severely unbalanced.

Our method provides a way to partition data efficiently
and yields good balance even for non-uniform distributions.
It extends the work by Janus and Lamagna [10] in three
ways. PD-partition depends on the accurate estimation of
the cumulative distribution function. Janus and Lamagna
did not show how to ensure accurate estimation for non-
standard input distribution. Our work solves this problem
using the sampling theory [21]. Janus and Lamagna de-
signed their algorithm for minimizing the total number of
instructions in sequential sorting. We adapt the algorithm
to maximize the parallelism and locality in dynamic data
partition. We also give an optimized implementation that
significantly reduces the partition overhead on modern ma-
chines. In addition, we evaluate dynamic data partition in
the context of parallel sorting against popular parallel sort-
ing methods. We also demonstrate fast sequential sorting of
non-uniform inputs (faster than quick-sort and other cache-
optimized sorting algorithms) on modern machines with a
deep memory hierarchy.

3 Probability distribution-based partition al-
gorithm

Probability Distribution-based partition (PD-partition),
similar to the extendeddistributive partitioned sortingby
Janus and Lamagna [10], has two steps: the selection of
buckets (by estimating theCumulative Distribution Func-
tion or CDF) and the assignment of data into buckets. The
complexity of the two steps is linear to the size of the input.

3.1 CDF estimation

The estimation ofCDF includes three steps [10]:

1) Traverse data to find the range of data. Divide the
range intoc equal-lengthcells. Selects random sam-
ples from the data. Distribute the samples into the
cells. Letsi be the number of samples in celli. To
makesi > 0 (well-behaved), always add 1 tosi. Let
sc = s+c. Figure 1(b) shows the first step. The height
of each bar is the number of samples contained in each
cell.

2) Take si

sc
as the probability of a randomly picked data

value belonging to celli. The cumulative probabil-
ity p1, · · · , pc is therefore a cumulation ofsi

sc
for i =

1, 2, · · · , c. Figure 1(c) shows the cumulation step.

3) To getCDF , the third step fits a line between each
adjacent pair of cumulative probabilities. It saves the
y-intersect of each line to get an estimate of theCDF
of the total data. Figure 1(d) shows the final step.

The time cost ofCDF estimation is linear to the number
of samples. This estimation requireswell-behaveddistribu-
tions, i.e. the CDF is continuous and monotonic increasing.

Figure 1. Estimation of CDF

3.2 Assignment of data into buckets

The second step assigns data into buckets. For each
data elementx, the algorithm finds the bucket assignment
in three calculations. First it finds the cell number ofx.
Recall that during CDF estimation, the range between the

maximum and minimum of the total data is divided intoc
equal-length cells. The cell number ofx is therefore the
floor of (x − min)/lc, wherelc is the cell length. The sec-
ond step findspx, the cumulative probability or CDF ofx.
It equals to the cumulative probability of its preceding cell
plus the cumulative probability of elements smaller thanx
in this cell. The latter term is calculated based on the slope
of the cell. The calculation assumes a uniform distribution
within each cell.

Using the cumulative probabilitypx, we can get the
bucket number ofx in one calculation. Letb be the number
of buckets. Since we want balanced partitions, the buckets
should have an equal size. In other words, each bucket has
the equal probability,1/b, for x to fall into. Thus, the bucket
number ofx is ⌊px/ 1

b
⌋ or ⌊px ∗ b⌋. All three steps take a

constant amount of time. Therefore, the time complexity of
the bucket assignment isO(n), wheren is the size of the
input data. Figure 2 shows the algorithm for assigning data
into buckets.

4 Statistical measurement of CDF estimation

The accuracy of CDF estimation strongly effects the par-
tition balance ofPD-partition. An inaccurate CDF esti-
mation may result in severely unbalanced partition. In the
worst case, most data fall into a single partition and the per-
formance degrades to that of quick-sort plus the partition
overhead. The accuracy of CDF estimation is determined
by the number of samples used for the CDF estimation.
Janus and Lamagna used 465 samples in their sequential
sorting algorithm without formal statistic analysis. In our
experiments, we found it too few to generate accurate esti-
mations. Based on sampling theory [21], we provide a way
to determine the sample size with high accuracy guarantee.

We model the problem as a multinomial proportion es-
timation [21]— a problem to find the smallest number,s,
of random samples from a multinomial population (i.e. a
population including multiple categories) such that with at
least1−α probability the estimated distribution is within a
specified distance of the true population, that is,

Pr{

k⋂

i=1

| pi − πi |≤ di} ≥ 1 − α (1)

wherek is the number of categories in the population,pi

andπi are the observed and the actual size of categoryi, di

andα are the error bounds given. Thompson proposes the
following formula fors [21]:

s = max
m

z2(1/m)(1 − 1/m)/d2 (2)

wherem is an integer from 0 tok, z is the size of the
upper(α/2m) ∗ 100th portion of the standard normal dis-
tribution, andd is the distance from the true distribution.

The m that gives the maximum in Formula (2) depends
on α. Thompson shows, in the worst case,m = 2 for
0 ≤ α < .0344; m = 3 for .0344 ≤ α < .3466; m = 4
for .3466 ≤ α < .6311; m = 5 for .6311 ≤ α < .8934;
andm = 6 for .8934 ≤ α < 1 [21]. Note that for a givend
andα, s is independent to the size of data and the number
of categoriesk.

In the CDF estimation, each cell is a category. The CDF
value in a cell is the size of this and all other cells of smaller
values. Formula (2) gives the minimal size of samples for a
given confidence (1 − α) and distanced. Suppose we want
the probability to be at least 95% that CDF values are within
0.01 distance of the true distribution, Formula (2) gives the
minimal sampling size 12736. In our experiments, we use
40000 samples, which guarantees with 95% confidence that
the CDF is within 0.0056 distance (i.e. 99.4% accurate).

5 Optimizations in implementation

It is important to make the bucket assignment as fast as
possible. In our implementation, we make two optimiza-
tions. In the loop of Figure 2, there are four floating-point
computations. LetbucketNum[i] be the bucket number
covered by the range from the minimal data to the end
of cell i. Let bucketNum1[i] be the number of buck-
ets covered by celli, which is equal tobucketNum[i] −
bucketNum[i − 1]. We store these two numbers for each
cell instead of recomputing them. Using the stored num-
bers, the assignment of each datum can be simplified to two
instead of four floating-point computations. The second op-
timization is scalar expansion inside the assignment loop
to increase the parallelism and hide the calculation latency.
For lack of space, we leave the detail algorithm in a tech-
nical report [19]. The evaluation section 6.2 will show that
the optimizations accelerate the PD-sort by 19-28%.

Notations: in the following discussion,n is the total num-
ber of data,s the total number of samples,c the number of
cells, andb the number of buckets. In parallel sorting,b is
the number of processors.

6 Evaluations

We first measure the efficiency and balance ofPD-
partition and compare them with those of other partition
methods. We then use them as sorting methods by applying
quick-sort within each bucket. We compare their speed in
sequential and parallel sorting.

Our experiments were conducted on Linux machines
with 2.0GHz Pentium 4 processors and 512MB main mem-
ory. The size of the second level cache was 512KB. All
methods were compiled bygcc −O3. They sorted ran-
domly generated integers of different distributions. For

/∗ data: the array of data, size isN ;
min,max: the minimum and maximum ofdata;
C: number of cells in range[min, max];
lc: the length of each cell;
cdf [i]: the cdf ofith cell;
cdf [0] = 0 andcdf [c] = 0.9999999;
slope[i]: the slope of the fitting line in celli;
B: the number of buckets∗/
......
lcR = 1/lc;
for (int i=0;i<N;i++){

/∗ find the cell number ofdata[i] ∗/
int n = (int)((data[i] - min)*lcR);
/∗ find the cdf ofdata[i] ∗/
float l = data[i]-min-n*lc;
float xcdf = cdf[n]+slop[n]*l;
/∗ bucket number ofdata[i] ∗/
int bucketNum = (int)(xcdf*B);
/∗ put data[i] into a new array corresponding to its bucket-

Num∗/
......}

Figure 2. Assigning data to buckets

PD-partition and sorting, unless otherwise noted, the cell
number was 1000, sample size was 40000, bucket number
was 128, and the input included 64 million integers. For
each type of the distribution, the result is the average of
20 randomly generated data sets. The uniformly distributed
data were generated by functionrandom() in the standard
C library; the normally distributed data were generated by
problib, a statistics library [12]. Our technical report in-
cludes the results of additional types of distributions [19].

6.1 Data partition

We show the partition results fromPD-partition, over-
sampling[2, 9] andover-partitioning[13]. Regular sam-
pling [20, 14] has more overhead and is not included in the
evaluation. Inover-sampling, the over-sampling rate is 32
(as in [2]). In over-partitioning, the over-sampling rate is
3 and the over-partitioning rate islog b (as in [13]), where
b is the number of buckets. Section 2 describes the three
algorithms in more detail.

We measure their speed by the partition time, and mea-
sure the partition balance using a concept calledbucket ex-
pansion(BE), which is the ratio of the largest size to the
average size of all buckets. It measures the worst-case
(im)balance. The ratio is equal to or greater than 1. A ra-
tio of 1 means perfect balance because all buckets have the
same size.

We use the relative balance and speed in the evaluation
to compare all three methods in a single figure in Figure 3.
The following factors affect the partition balance and cost.

Effects of data distribution We use uniform and three nor-
mal distributions to study the effects of data distribution,
shown in Figure 3(a). Our method takes less than 80%
and 60% time ofover-samplingandover-partitioningand
achieves better balance. The uniform distribution has the
greatest gain because a uniform distribution is estimated
better by samples than heavily skewed distributions are. A
problem shown is that the bucket ratio of our method be-
comes worse when the distribution becomes less uniform.
The problem can be significantly alleviated by using more
samples as explained in Section 4.

Effects of data size and bucket numberFigure 3(b,c)
show the effect of the data size and bucket number on the
uniform distribution. Our method reduces partition over-
head fromO(Nlog b) to O(N). Thus, the time ratio is

O(N)
O(Nlog b) , which is independent ofN but proportional to

1
log b

, consistent with Figure 3(b,c). Figure 3(c) also shows
that PD-partition is more scalable and produces larger num-
ber of buckets faster with better balance thanover-sampling
andover-partitioning.

Effects of the number of samples and cellsMore cells al-
low the CDF fitting at a finer granularity (see Figure 1.)
More samples yields better estimation for each cell. The
number of samples depend on the number of cells because
more cells require more samples, as shown in Formula 2. In
Figure 3(d), we use 1000 cells but vary the number of sam-
ples from 5000 to 80000. We show results on uniform distri-
bution and other distributions have similar results. The fig-
ure shows that PD-based partition obtains greater improve-
ment in balance from using more samples than the other
two methods do. The time of PD-based sorting increases
slightly faster than the other two methods as the number
of samples increases. But the overhead is small even for a
larger number of samples. The time ratios are still less than
0.6 and 0.4.

Figure 3(e) shows the changes of the number of cells.
For a normal distribution (mean=3000,deviation=300.), the
partition balance is improved when the number of cells is
increased from 100 to 1600. It is worsened when the num-
ber of cells is increased from 1600 to 12800, because the
samples in a cell become too few to estimate the probability.
Figure 3(f) shows the effects using the uniform distribution.
The balance ratio decreases monotonically as the number
of samples increases, because a small number of samples is
enough for estimating CDF in this case.

6.2 Comparison with sequential quick-sort

Quick-sort is believed by many to be the fastest inter-
nal (in-memory) sorting method. A recent study by Xiao et
al. shows that for uniformly distributed input data, simple
partition is faster. But for non-uniform data distributions,

0

0.5

1

1.5

2

2.5

1M 2M 4M 8M 16M 32M

Data Size

R
at

io

PD/Quick OS/Quick Fquick/PD

Figure 4. Comparison of the sequential sort-
ing time on normal distribution (mean=3000,
std=1000). PD: PD-sort; Quick: quick-sort;
OS: over-sampling. Fquick: inplaced flash
quick-sort.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1M 2M 4M 8M 16M 32M

Data Size

R
a

ti
o

Time(Base)/Time(Quick) Time(Opt)/Time(Quick)

Figure 5. The effect of algorithm and imple-
mentation improvement to PD-partition. Base
is our basic data assignment algorithm. Opt.
is the optimized version. Quick is quick-
sort. The input data are in normal distribution
(mean=3000, std=1000).

Table 1. Time for Sequential Sorting (sec.)
Data Size PD-sort Quick-sort Over-sampling sort
2M 0.334 0.365 0.480
4M 0.647 0.719 0.985
8M 1.298 1.491 2.064
16M 2.624 2.951 4.341
32M 5.227 6.008 9.197

(a) Comparison on the uniform distribution, and three nor-
mal distributions (m=3000, d=3000,1000,300)

(b) Effect of data size on the uniform distribution

(c) Effect of the number of buckets on the uniform distri-
bution

(d) Effect of the number of samples on the uniform distri-
bution

(e) Effect of the number of cells on the normal distribution
(m=3000, d=300)

(f) Effect of the number of cells on the uniform distribu-
tion

Figure 3. Evaluating the major factors in data partition. BE : Bucket Expansion; d: PD-partition; os:
over-sampling; op: over-partitioning. The balance and speed ratios are lower than 1, showing that
PD-partition is more balanced and efficient than the over-samplingand over-partitioning.

quick-sort still gives the best performance because simple
methods could not give balanced partitions [22]. We now
show that PD-sort outperforms quick-sort for uniform and
non-uniform distributions.

We use PD-partition to cut data into blocks smaller than
the cache size and then sort each block. Since the block
partition takes linear time, it has better cache locality than
the recursive partition schemes like quicksort, when data
size is much greater than the cache size.

We target buckets of the size 256KB in the partition
methods. It is less than the real cache size (512K) to leave
room for other data and to reduce cache interference. Fig-
ure 4 compares the speed on normal distribution with mean
of 3000 and variance of 1000. Other distributions have sim-
ilar results [19]. Table 1 shows the sorting time. We also
showover-samplingfor comparison. For sequential sorting,
over-partitioningis similar toover-samplingexcept using
more buckets.

When sorting more than four million data, PD-sort out-
performs quicksort by more than 10%. In comparison,over-
samplingis slower than quick-sort because of the high par-
tition overhead. The speed gap widens on larger data inputs.

The algorithm and implementation improvement de-
scribed in Section 5 are critical: without them the PD-sort
is no faster than quicksort. Figure 5 shows 19-28% time
reduction in the overall sorting time. The optimization is
designed to speed up the probability calculation and there-
fore not applicable to quicksort.

We also compared our method withInplaced flash quick-
sort, proposed by Xiao et. al [22]. It partitions data assum-
ing a uniform distribution and then sorts each bucket using
quick-sort. It takes an additional array to reuse elements in
a cache line. It was shown to be faster than many other se-
quential sorting methods [22]. Our method is slightly faster
than the inplaced flash quick-sort for data sizes smaller than
4 million and about 30% faster when sorting larger data sets.

6.3 Parallel sorting

We compare the parallel performance of PD-sort with
sorting methods usingover-samplingandover-partitioning.
In the absence of a large scale parallel computer, we ana-
lyze the communication costs and implement a simulator to
measure the computation costs. All three algorithms per-
form data partition on a single processor and then sort each
sub-list on a parallel processor. The communication cost
has two parts: the cost to obtain pivots or CDF, and the
cost to move data to their assigned processors. The second
part is similar in all methods. The first part is negligible as
shown in [19]. Assuming the same communication cost, we
use the computation costs to measure the performance of
parallel sorting.

Figure 6 compares the sorting speed on a normal dis-

0

0.2

0.4

0.6

0.8

1M 2M 4M 8M 16M 32M

Data Size

R
a

ti
o

pd/pss pd/psop

Figure 6. Computation cost ratios of over-
sampling(PSS) and over-partitioning(PSOP) to
PD-sort on normal distribution (mean=3000,
std=1000). PD-sort is represented by pd.

tribution (mean=3000, std=1000.) The other distributions
show similar results [19]. In the experiment, we assume that
the data are perfectly partitioned by all three algorithms,so
the computation time is the sorting time of D/P integers.
Section 6.1 shows better partition balance by PD-sort than
by over-samplingand over-partitioning. Since the actual
computation time is determined by the size of the largest
bucket, the perfect balance assumption grants higher bene-
fits to over-sampling. For over-partitioning, the use of the
task queue may lead to better load balance, but it also may
increase the run-time overhead. Assuming the perfect data
partition, Figure 6 shows over 33%-50% speed improve-
ment by PD-sort for large data sets (> 4M) because of faster
partitioning.

7 Conclusions

We have presented a new partition method, PD-partition,
for sequential and parallel sorting. Through extensive com-
parisons with previous methods, we found that

• PD-partition consistently improves the partition effi-
ciency for all types of distributions tested, while main-
taining better partition balance than other methods do.

• The performance improvement is independent of the
data size.

• Unlike pivot-based methods, the overhead of this ap-
proach does not increase with the number of buckets.
In fact, the improvement is greater for more buckets,
showing that it is suitable for use in large scale parallel
sorting.

• Using more samples improves the partition balance

with a slight increase in the overhead. The effect from
the number of cells depends on the number of samples.

Overall, PD-partition shows 10-30% improvement in
the partition balance and 20-70% reduction in the parti-
tion speed. Our cache-optimized PD-sort method is over
10% faster than quick-sort, commonly believed to be the
fastest sequential sorting method for unbalanced data in-
puts. It slightly outperforms other cache-optimized algo-
rithms [11, 22] for data size smaller than 4 million and about
30% for large data sets. The corresponding parallel sorting
method is 33% to 50% faster than two popular approaches
in the recent literature.

Adaptive data partition has important uses in many ap-
plication domains such as scientific simulation, sparse ma-
trix solvers, computer network simulation, and distributed
database and Web servers. We expect thatPD-partition
will significantly improve the partition balance and speed
in problems with unbalanced data inputs.

References

[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler,
J. M. Hellerstein, and D. A. Patterson. High-performance
sorting on networks of workstations. InProceedings of ACM
SIGMOD’97, pages 243–254, 1997.

[2] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zagha. An experimental analysis of
parallel sorting algorithms.Theory of Computing Systems,
31(2):135–167, 1998.

[3] C. Cerin. An out-of-core sorting algorithm for clusterswith
processors at different speed. In16th International Parallel
and Distributed Processing Symposium (IPDPS), Ft Laud-
erdale, Florida, USA, 2002.

[4] G. Chaudhry, T. H. Cormen, and L. F. Wisniewski. Column-
sort lives! an efficient out-of-core sorting program. InPro-
ceedings of the Thirteenth Annual Symposium on Parallel
Algorithms and Architectures, pages 169–178, July 2001.

[5] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communi-
cation optimizations for irregular scientific computations on
distributed memory architectures.Journal of Parallel and
Distributed Computing, 22(3):462–479, Sept. 1994.

[6] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. Parallel
sorting on a shared-nothing architecture using probabilistic
splitting. In Proceedings of the First International Confer-
ence on Parallel and Distributed Information Systems, pages
280–291, 1991.

[7] H. Han and C.-W. Tseng. Improving compiler and run-
time support for adaptive irregular codes. InProceedings of
the International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1998.

[8] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and
J. Saltz. Compiler analysis for irregular problems in Fortran
D. In Proceedings of the Fifth Workshop on Languages and
Compilers for Parallel Computing, New Haven, CT, Aug.
1992.

[9] J. S. Huang and Y. C. Chow. Parallel sorting and data parti-
tioning by sampling. InProceedings of the IEEE Computer
Society’s 7th International Computer Software and Applica-
tions Conference, pages 627–631, 1983.

[10] P. J. Janus and E. A. Lamagna. An adaptive method for un-
known distributions in distributive partitioned sorting.IEEE
Transactions on Computers, c-34(4):367–372, April 1985.

[11] A. LaMarca and R. Ladner. The influence of caches on the
performance of sorting. InProceedings of 8th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA97), pages 370–
379, 1997.

[12] A. Larrosa. http://developer.kde.org/ larrosa/otherapps.html.
[13] H. Li and K. C. Sevcik. Parallel sorting by overpartitioning.

In Proceedings of the 6th Annual Symposium on Parallel Al-
gorithms and Architectures, pages 46–56, New York, NY,
USA, June 1994.

[14] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and
H. Shi. On the versatility of parallel sorting by regular sam-
pling. Parallel Computing, 19(10):543–550, October 1993.

[15] H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Compiler and software distributed shared
memory support for irregular applications. InProceedings
of 1997 ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 1997.

[16] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improv-
ing memory hierarchy performance for irregular applica-
tions.International Journal of Parallel Programming, 29(3),
June 2001.

[17] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine
array references. InProceedings of International Confer-
ence on Parallel Architectures and Compilation Techniques,
Newport Beach, California, October 1999.

[18] S. Rajasekaran. A framework for simple sorting algorithms
on parallel disk systems. InProceedings of the Tenth Annual
Symposium on Parallel Algorithms and Architectures, 1998.

[19] X. P. Shen, Y. Z. Zhong, and C. Ding. Adaptive data parti-
tioning using probability distribution. Technical report823,
Computer Science, University of Rochester, Rochester, NY,
2003.

[20] H. Shi and J. Schaeffer. Parallel sorting by regular sampling.
Journal of Parallel and Distributed Computing, 14(4):361–
372, 1992.

[21] S. K. Thompson. Sample size for estimating multinomial
proportions.The American Statistician, 1987.

[22] L. Xiao, X. Zhang, and S. A. Kubricht. Improving memory
performance of sorting algorithms.ACM Journal on Exper-
imental Algorithmics, 5:1–23, 2000.

