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Abstract

As the speed gap between CPU and memory widens,
memory hierarchy has become the primary factor limiting
program performance. Until now, the principal focus of
hardware and software innovations has been overcoming
latency. However, the advent of latency tolerance tech-
niques such as non-blocking cache and software prefetch-
ing begins the process of trading bandwidth for latency by
overlapping and pipelining memory transfers. Since actual
latency is the inverse of the consumed bandwidth, mem-
ory latency cannot be fully tolerated without infinite band-
width. This perspective has led us to two questions. Do
current machines provide sufficient data bandwidth? If not,
can a program be restructured to consume less bandwidth?
This paper answers these questions in two parts. The first
part defines a new bandwidth-based performance model
and demonstrates the serious performance bottleneck due
to the lack of memory bandwidth. The second part describes
a new set of compiler optimizations for reducing bandwidth
consumption of programs.

1 Introduction

As modern single-chip processors improve the rate at
which they execute instructions, it has become increasingly
the case that the performance of applications depends on the
performance of the machine memory hierarchy. For some
years, there has been an intense focus in the compiler and
architecture community on ameliorating the impact of mem-
ory latency on performance. This work has led to extremely
effective techniques for reducing and tolerating memory la-
tency, primarily through cache reuse and data prefetching.

As exposed memory latency is reduced, memory band-
width consumption is increased. For example, when CPU
simultaneously fetches two data items from memory, the
actual latency per access is halved, but the memory band-
width consumption is doubled. Since actual latency is the
inverse of the consumed bandwidth, memory latency can-

not be fully tolerated without infinite bandwidth. Indeed on
any real machine, program performance is bounded by the
limited rate at which data operands are delivered into CPU,
regardless of the speed of processors or the physical latency
of data access.

Because of the past focus on memory latency, the band-
width constraint had not been carefully studied nor had the
strategy of bandwidth-oriented optimization. The purpose
of this paper is to address these two important issues. The
first part of the paper introduces a bandwidth-based perfor-
mance model and presents a performance study based on
this model. By measuring and comparing the demand and
supply of data bandwidth on all levels of memory hierarchy,
the study reveals the serious performance bottleneck due to
the lack of memory bandwidth.

The second part of the paper presents new compiler op-
timizations for reducing bandwidth consumption of a pro-
gram. Unlike memory latency which is a local attribute
of individual memory references, bandwidth consumption
of a program is a global property of all memory access.
Therefore, a compiler needs to transform the whole pro-
gram, not just a single loop nest. In addition, since memory
writebacks equally consumes bandwidth as memory reads,
a compiler needs to optimize data stores, not just data loads.
For these purposes, this paper introduces three new tech-
niques. The first is bandwidth-minimal loop fusion, which
studies how to organize global computation so that the to-
tal amount of memory transfer is minimized. The second is
storage reduction, which reduces the data footprint of com-
putation. The last one is store elimination, which removes
writebacks to program data. These three techniques form a
compiler strategy that can significantly alleviate the prob-
lem of memory bandwidth bottleneck.

The rest of the paper is organized as follows. Section 2
defines the bandwidth-based performance model and mea-
sures the memory bandwidth bottleneck. Section 3 de-
scribes three new compiler transformations for bandwidth
reduction. Section 4 discusses related work and Section 5
summarizes.



2 Memory bandwidth bottleneck

This section first shows an example where memory la-
tency is clearly not the primary constraint on performance.
The most serious constraint is memory bandwidth, as stud-
ied in the rest of the section.

2.1 A simple example

The example program has two loops performing stride-
one access to a large data array. The only difference is that
the first one also writes the array back to memory. Since
both loops perform the same reads, they should have the
same latency and the same performance if latency is the de-
termining factor. Both loops also have the same number of
floating-point operations.

double precision A[2000000]

for i=1 to N
A[i] = A[i]+0.4

end for

for i=1 to N
sum = sum+A[i]

end for

Surprisingly, the first loop takes 0.104 second on a R10K
processor of SGI Origin2000, which is almost twice the
execution time of the second loop, 0.054 second. On
HP/Convex Exemplar, the first loop takes 0.055 second and
the second 0.036. The reason, as shown next, is that the per-
formance is determined by memory bandwidth, not memory
latency. The first loop takes twice as long because it writes
the array to memory and consequently consumes twice as
much memory bandwidth.

2.2 Program and machine balance

To understand the supply and demand of memory band-
width as well as other computer resources, it is necessary to
go back to the basis of computing systems, which is the bal-
ance between computation and data transfer. This section
first formulates a performance model based on the concept
of balance and then uses the model to examine the perfor-
mance bottleneck on current machines.

Both a program and a machine have balance. Program
balance is the amount of data transfer (including both data
reads and writes) that the program needs for each computa-
tion operation; machine balance is the amount of data trans-
fer that the machine provides for each machine operation.
Specifically, for a scientific program, the program balance
is the average number of bytes that must be transferred per
floating-point operation (flop) in the program; the machine

Programs Program/machine Balance
L1-Reg L2-L1 Mem-L2

convolution 6.4 5.1 5.2
dmxpy 8.3 8.3 8.4
mm (-O2) 24.0 8.2 5.9
mm (-O3) 8.08 0.97 0.04
FFT 8.3 3.0 2.7
NAS/SP 10.8 6.4 4.9
Sweep3D 15.0 9.1 7.8
Origin2000 4 4 0.8

Figure 1. Program and machine balance

balance is the number of bytes the machine can transfer per
flop in its peak flop rate. On machines with multiple lev-
els of cache memory, the balance includes the data transfer
between all adjacent levels.

The table in Figure 1 compares program and machine
balance. The upper half of the table lists the balance of
six representative scientific applications1, including four
kernels—convolution, dmxpy, matrix multiply, FFT—and
two application benchmarks—SP from the NAS benchmark
suite and Sweep3D from DOE. For example, the first row
shows that for each flop, convolution requires transferring
6.4 bytes between the level-one cache (L1) and registers,
5.1 bytes between L1 and the level-two cache (L2), and
5.2 bytes between L2 and memory. The last row gives the
balance of a R10K processor on SGI Origin20002, which
shows that for each flop at its peak performance, the ma-
chine can transfer 4 bytes between registers and cache, 4
bytes between L1 and L2, but merely 0.8 bytes between
cache and memory.

As the last column of the table shows, with the exception
of mm(-O3), all applications demand a substantially higher
rate of memory transfer than that provided by Origin2000.
The demands are between 2.7 to 8.4 bytes per flop, while
the supply is only 0.8 byte per flop. The striking mismatch
clearly confirms the fact that memory bandwidth is a serious
performance bottleneck. In fact, memory bandwidth is the
least sufficient resource because its mismatch is much larger
than that of register and cache bandwidth, shown by the sec-
ond and the third column in Figure 1. The next section will
take a closer look at this memory bandwidth bottleneck.

The reason matrix multiply mm (-O3) requires very little
memory transfer is that at the highest optimization level of
-O3, the compiler performs advanced computation block-

1Program balances are calculated by measuring the number of flops,
register loads/stores and cache misses/writebacks through hardware coun-
ters on SGI Origin2000.

2The machine balance is calculated by taking the flop rate and register
throughput from hardware specification and measuring memory bandwidth
through STREAM[8] and cache bandwidth through CacheBench[9].
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Applications Ratios of demand over supply
L1-Reg L2-L1 Mem-L2

convolution 1.6 1.3 6.5
dmxpy 2.1 2.1 10.5
mmjki (-O2) 6.0 2.1 7.4
FFT 2.1 0.8 3.4
NAS/SP 2.7 1.6 6.1
Sweep3D 3.8 2.3 9.8

Figure 2. Ratios of demand to supply

ing, first developed by Carr and Kennedy[3]. The dramatic
change of results from -O2 to -O3 is clear evidence that a
compiler may significantly reduce the application’s demand
for memory bandwidth; nevertheless, the current compiler
is not effective for all other programs. We will return to
compiler issues in a moment and for the rest of this paper.

2.3 Memory Bandwidth Bottleneck

The precise ratios of the demand of data bandwidth to its
supply can be calculated by dividing the program balances
with the machine balance of Origin2000. The results are
listed in Figure 2. They show the degree of mismatch for
each application at each memory hierarchy level. The last
column shows the largest gap: the programs require 3.4 to
10.5 times as much memory bandwidth as that provided by
the machine, verifying that memory bandwidth is the most
limited resource. The data bandwidth on the other two lev-
els of memory hierarchy is also insufficient by factors be-
tween 1.3 to 6.0, but the problem is comparatively less seri-
ous.

The insufficient memory bandwidth compels applica-
tions into unavoidable low performance simply because
data from memory cannot be delivered fast enough to keep
CPU busy. For example, the Linpack kernel dmxpy has a
ratio of 10.5, which means an average CPU utilization of
no more than 1/10.5, or 9.5%. One may argue that a kernel
does not contain enough computation. However, the last
two rows show a grim picture even for large applications:
the average CPU utilization can be no more than 16% for
NAS/SP and 10% for Sweep3D. In other words, over 80% of
CPU capacity is left unused because of the memory band-
width bottleneck.

The memory bandwidth bottleneck exists on other ma-
chines as well. To fully utilize a processor of comparable
speed as MIPS R10K on Origin2000, a machine would need
3.4 to 10.5 times of the 300 MB/s memory bandwidth of
Origin2000. Therefore, a machine must have 1.02 GB/s to
3.15GB/s of memory bandwidth, far exceeding the capacity
of current machines such as those from HP and Intel. As

CPU speed rapidly increases, future systems will have even
worse balance and a more serious bottleneck because of the
lack of memory bandwidth.

2.4 Comparing bandwidth with latency

So far, the balance-based performance model has not
considered the effect of the latency constraint and, in par-
ticular, the effect of memory latency. It is possible that
memory access incurs such a high latency that even the lim-
ited memory bandwidth is scarcely used. So the question
remains that whether the insufficient memory bandwidth is
directly limiting program performance. In other words, is
current memory bandwidth saturated. This section uses a
set of program kernels and a large application to show that
memory bandwidth is indeed saturated in most cases. Later
sections will also confirm the dominating effect of the band-
width bottleneck on latency by showing the significant per-
formance gain through bandwidth-reduction optimizations.

The following experiment measures the effective band-
width, which is the total memory transfer (both reads and
writebacks) divided by its execution time. The experiment
uses 13 simple data-traversal loop kernels, which access a
different number of arrays in a unit stride. The kernels are
named by the number of arrays they read and write. For ex-
ample, kernel 1w1r reads and writes a single array, and ker-
nel 1w2r reads two arrays and writes to one of them. Fig-
ure 3 shows both the effective memory bandwidth of these
kernels on both Origin2000 and Exemplar.
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Figure 3. Effective bandwidth of kernels

The results in Figure 3 show that all kernels have sim-
ilar effective bandwidth. On Origin2000, the difference is
within 20% among all kernels. On Exemplar, the effective
bandwidth ranges from 417 MB/s to 551 MB/s with the ex-
ception of 3w6r3. Given the typical variations of measure-
ments on these parallel machines, the results strongly sug-
gest that all kernels are reaching the bandwidth limit of the
machine.

In addition to these kernels, we measured a 3000-line
application, the NAS/SP benchmark from NASA. We found

3We suspect that 3w6r kernel causes excessive cache conflicts because
it accesses 6 large arrays on a direct-mapped cache. Cache conflicts re-
sult in a much higher amount of data transfer, which we cannot measure
because of the absence of hardware counters on Exemplar
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that 5 out of its 7 major computation subroutines utilized
84% or higher of the memory bandwidth of Origin2000.
The high bandwidth utilization shows that memory band-
width is the major performance bottleneck for SP, and the
bandwidth saturation we see on those kernels is indeed hap-
pening on full applications as well. We cannot measure the
bandwidth utilization of SP on Exemplar because of the ab-
sence of hardware counters.

The kernels represent difference patterns of stride-one
memory access. NAS/SP is a real application with regu-
lar data access patterns and a large amount of computation.
Since they together resembles many programs with regular
computations, their effective bandwidth suggest that regular
applications saturate memory bandwidth most of the times.
In these cases, memory bandwidth is a more limiting factor
to performance than is memory latency.

In conclusion, the empirical study has shown that for
most applications, machine memory bandwidth is between
one third and one tenth of that needed. As a result, over 80%
of CPU power is left un-utilized by large applications, indi-
cating a significant performance potential that may be real-
ized if the applications can better utilize the limited memory
bandwidth. The next section introduces new compiler tech-
niques that are aimed at exactly this goal, that is, reducing
the memory bandwidth demand of applications.

3 Bandwidth reduction by a compiler

This section presents a compiler strategy for reducing
the bandwidth consumption of a program. The first tech-
nique is a new formulation of loop fusion, which minimizes
the overall data transfer among fused loops. One effect of
global loop fusion is the localized live range of arrays. The
next two techniques exploit this opportunity and further re-
duce the bandwidth consumption after loop fusion, includ-
ing the unique opportunity of eliminating memory write-
backs.

3.1 Bandwidth-minimal loop fusion

This section first formulates the problem of loop fu-
sion for minimal memory transfer, then gives a polynomial
solution to a restricted form of this problem, and finally
proves that the complexity of the unrestricted form is NP-
complete. In the process, it also points out why the previous
fusion model given by Gao et al.[5] and by Kennedy and
McKinley[7] does not minimize bandwidth consumption.

3.1.1 Formulation

Given a sequence of loops accessing a set of data arrays,
Gao et al.[5] and by Kennedy and McKinley[7] modeled

both the computation and the data in a fusion graph. A fu-
sion graph consists of nodes—each loop is a node— and
two types of edges—directed edges for modeling data de-
pendences and undirected edges for fusion-preventing con-
straints. Our formulation uses the same definition of a fu-
sion graph. However, the objective of fusion is a different
one, as stated below.

Problem 3.1 Bandwidth-minimal fusion problem:
Given a fusion graph, how can we divide the nodes into
a sequence of partitions such that

• (Correctness) each node appears in one and only one
partition; the nodes in each partition have no fusion
preventing constraint among them; and dependence
edges flow only from an earlier partition to a later
partition in the sequence,

• (Optimality) the sum of the number of distinct arrays
in all partitions is minimal.

The correctness constraint ensures that loop fusion obeys
data dependences and fusion-preventing constraints. As-
suming arrays are large enough to prohibit cache reuse
among disjoint loops, the second requirement ensures opti-
mality because for each loop, the number of distinct arrays
is the number of arrays the loop reads from memory during
execution. Therefore, the minimal number of arrays in all
partitions means the minimal memory transfer and minimal
bandwidth consumption for the whole program.

For example, Figure 4 shows the fusion graph of six
loops. Assuming that loop 5 and loop 6 cannot be fused,
but either of them can be freely fused with any other four
loops. Loop 6 depends on loop 5. Without fusion, the total
number of arrays accessed in the six loops is 20. The op-
timal fusion leaves loop 5 alone and fuses all other loops.
The number of distinct arrays is 1 in the first partition and
6 in the second, thus the total memory transfer is reduced
from 20 arrays to 7.

The optimality of bandwidth-minimal fusion is different
from previous work on loop fusion of Gao et al.[5] and
Kennedy and McKinley[7]. They modeled data reuse as
weighted edges between graph nodes. For example, the
edge weight between loop 1 and 2 would be 4 because they
share four arrays. Their goal is to partition the nodes so that
the total weight of cross-partition edges is minimal. We call
this formulation edge-weighted fusion.

The sum of edge weights does not correctly model the
aggregation of data reuse. For example, in Figure 4, loop
1 to 3 each has a single-weight edge to loop 5. But the
aggregated reuse between the first three loops and loop 5
should not be 3; on the contrary, the amount of data sharing
is 1 because they share access to only one array, A.
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Loop 1

Loop 2

Loop 3

Loop 4

Data Arrays: A, B, C, D, E, F

A, D, E, F

A, D, E, F

A, D, E, F

B, C, D, E, F

B, CLoop 5 Loop 6A sumsum

fusion preventing constraint

data sharing

Scalar Data: sum

data dependence

Figure 4. Example loop fusion

To show that edge-weighted fusion does not minimize
bandwidth consumption, it suffices to give a counter ex-
ample, which is the real purpose of Figure 4. The optimal
edge-weighted fusion is to fuse the first five loops and leave
loop 6 alone. The total weight of cross-partition edges is 2,
which lies between loop 4 and 6. However, this fusion has
to load 8 arrays (6 in the first partition and 2 in the second),
while the previous bandwidth-minimal fusion needs only 7.
Reversely, the total weight of inter-partition edges in the
bandwidth-minimal fusion is 3, clearly not optimal based
on the edge-weighted formulation. Therefore, the previous
formulation by Gao et al. and Kennedy and McKinley does
not minimize overall memory transfer.

To understand the effect of data sharing and the complex-
ity of bandwidth-minimal fusion, the remaining part of this
section studies a model based on a different type of graphs,
hyper-graphs.

3.1.2 Solution Based On Hyper-graphs

The traditional definition of an edge is inadequate for mod-
eling data sharing because the same data can be shared by
more than two loops. Instead, the following formulation
uses hyper-graphs because a hyper-edge can connect any
number of nodes in a graph. A graph with hyper-edges is
called a hyper-graph. The optimality requirement of loop
fusion can now be restated as follows.

Problem 3.2 Bandwidth-minimal fusion problem (II):
Given a fusion graph as constructed by Problem 3.1, add a
hyper-edge for each array in the program, which connects
all loops that access the array. How can we divide all nodes
into a sequence of partitions such that

• (Correctness) criteria are the same as Problem 3.1,
but

• (Optimality) for each hyper-edge, let the length be the
number of partitions the edge connects to after parti-
tioning, then the goal is to minimize the total length
of all hyper-edges.

The next part first solves the problem of optimal two-
partitioning on hyper-graphs and then proves the NP-
completeness of multi-partitioning.

Two-partitioning is a special class of the fusion problem
where the fusion graph has only one fusion-preventing edge
and no data dependence edge among non-terminal nodes.
The result of fusion will produce two partitions where any
non-terminal node can appear in any partition. The example
in Figure 4 is a two-partitioning problem.

Two-partitioning can be solved as a connectivity prob-
lem between two nodes. Two nodes are connected if there
is a path between them. A path between two nodes is a
sequence of hyper-edges where the first edge connects one
node, the last edge connects the other node, and consecutive
ones connect intersecting groups of nodes.

Given a hyper-graph with two end nodes, a cut is a set
of hyper-edges such that taking out these edges would dis-
connect the end nodes. In a two-partitioning problem, any
cut is a legal partitioning. The size of the cut determines the
total amount of data loading, which is the total size of the
data plus the size of the cut (which is the amount of data
reloading). Therefore, to obtain the optimal fusion is to find
a minimal cut.

The algorithm given is Figure 5 finds a minimal cut for
a hyper-graph. At the first step, the algorithm transforms
the hyper-graph into a normal graph by converting each
hyper-edge into a node, and connecting two nodes in the
new graph when the respective hyper-edges overlap. The
conversion also constructs two new end nodes for the trans-
formed graph. The problem now becomes one of finding
minimal vertex cut on a normal graph. The second step
applies standard algorithm for minimal vertex cut, which
converts the graph into a directed graph, splits each node
into two and connects them with a directed edge, and fi-
nally finds the edge cut set by the standard Ford-Fulkerson
method. The last step transforms the vertex-cut to the
hyper-edge cut in the fusion graph and constructs the two
partitions.

Although algorithm in Figure 5 can find minimal cut for
hyper-edges with non-negative weights, we are only con-
cerned with fusion graphs where edges have unit-weight. In
this case, the first step of the minimal-cut algorithm in Fig-
ure 5 takes O(E+V ); the second step takes O(V ′(E′+V ′))
if breadth-first search is used to find augmenting paths; fi-
nally, the last step takes O(E + V ). Since V ′ = E in the
second step, the overall cost is O(E(E′ + E) + V ), where
E is the number of arrays, V is the number of loops and
E′ is the number of the pair of arrays that are accessed by
the same loop. In the worst case, E′ = E2, and the algo-
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Input A hyper-graph G = (V, E).
Two nodes s and t ∈ V .

Output A set of edges C (a minimal cut between s and t).
Two partitions V1 and V2, where s ∈ V1, t ∈ V2,
V1 = V − V2, and e connects V1 and V2 iff e ∈ C .

Algorithm

/* Initialization */
let C, V1 and V2 be empty sets

/* Step 1: convert G to a normal graph G’*/
construct a normal graph G’=(V’,E’)

let array map[] maps from V’ to E
for each e in E, add a node v to V’

let map[v] = e
add edge (v1, v2) in G’

iff map[v1] and map[v2] overlap in G

/* add two end nodes to G’ */
add two new nodes s’ and t’ to V’
for each node v in V’

add edge (s’, v) if map[v]
contains s in G

add edge (t’, v) if map[v]
contains t in G

/* Step 2: minimal vertex cut in G’ */
convert G’ into a directed graph
split each node in V’ and

add in a directed edge in between
use For-Fulkerson method to find the

minimal edge cut between s’ and t’
convert the minimal edge cut into the

vertex cut in G’

/* Step 3: construct the cut set in G*/
let C be the vertex cut set found in step 2
delete all edges of G corresponding to

nodes in C
let V1 be the set of nodes connected to

s in G; let V2 be V-V1
return C, V1 and V2

Figure 5. Minimal-cut for hyper-graphs

rithm takes O(E3 + V ). What is surprising is that although
the time is cubic to the number of arrays, it is linear to the
number of loops in a program.

By far the solution method has assumed the absence of
dependence edges. The dependence relation can be en-
forced by adding hyper-edges to the fusion graph. Given
a fusion graph with N edges and two end nodes s and t, as-
sume the dependence relations form an acyclic graph. Then
if node a depends on b, we can add three sets of N edges
connecting s and a, a and b, and b and t. Minimal-cut will
still find the minimal cut although each dependence adds a
weight of N to the total weight of minimal cut. Any de-
pendence violation would add an extra N to the weight of
a cut, which makes it impossible to be minimal. In other
words, any minimal cut will not place a before b, and the de-
pendence is observed. However, adding such edges would
increase the time complexity because the number of hyper-
edges will be in the same order as the number of dependence
edges.

3.1.3 The Complexity of General Loop Fusion

Although the two-partitioning problem can be solved in
polynomial time, the multi-partitioning form of bandwidth-
minimal fusion is NP-complete.

To prove, observe that the fusion problem is in NP be-
cause loops or nodes of a fusion graph can be partitioned in
a non-deterministic way, and the legality and optimality can
be checked in polynomial time.

The fusion problem is also NP-hard. To prove this, we
reduce k-way cut problem to the fusion problem. Given a
graph G = (V, E) and k nodes to be designated as termi-
nals, k-way cut is to find a set of edges of minimal total
weight such that removing the edges renders all k termi-
nals disconnected from each other. To convert a k-way cut
problem to a fusion problem, we construct a hyper-graph
G′ = (V ′, E′) where V ′ = V . We add in a fusion-
preventing edge between each pair of terminals, and for
each edge in E, we add a new hyper-edge connecting the
two end nodes of the edge. It is easy to see that a minimal
k-way cut in G is an optimal fusion in G′ and vice versa.
Since k-way cut is NP-complete, bandwidth-minimal fu-
sion is NP-hard when the number of partitions is greater
than two. Therefore, it is NP-complete.

Aggressive fusion enables other optimizations. For ex-
ample, the use of an array can become enclosed within one
or a few loops. The localized use allows aggressive storage
transformations that are not possible otherwise. The rest of
this section describes two such storage optimizations: stor-
age reduction, which replaces a large array with a small sec-
tion or a scalar; and store elimination, which avoids writing
back new values to an array. Both save a significant amount
more memory bandwidth than loop fusion.
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3.2 Storage Reduction

After loop fusion, if the live range of an array is short-
ened to stay within a single loop nest, the array can be re-
placed by a smaller data section or even a scalar. In par-
ticular, two opportunities exist for storage reduction. The
first case is where the live range of a data element (all uses
of the data element) is short, for example, within one loop
iteration. The second case is where the live range spans the
whole loop, but only a small section of data elements have
such a live range. The first case can be optimized by array
shrinking, where a small temporary buffer is used to carry
live ranges. The second case can be optimized by array
peeling, where only a reduced section of an array is saved
in a dedicated storage. Figure 6 illustrates both transforma-
tions.

The example program in Figure 6(a) uses two large ar-
rays a[N, N ] and b[N, N ]. Loop fusion transforms the pro-
gram into Figure 6(b). Not only does the fused loop con-
tain all accesses to both arrays, the definitions and uses of
many array elements are very close in computation. The live
range of a b-array element is within one iteration of the in-
ner loop. Therefore, the whole b array can be replaced by a
scalar b1. The live range of an a-array element is longer, but
it is still within every two consecutive j iterations. There-
fore, array a[N, N ] can be reduced into a smaller buffer
a3[N ], which carries values from one j iteration to the next.
A section of a[N, N ] array has a live range spanning the
whole loop because a[1 . . .N, 1] is defined at the beginning
and used at the end. These elements can be peeled off into
a smaller array a1[N ] and saved throughout the loop. After
array shrinking and peeling, the original two arrays of size
N2 have been replaced by two arrays of size N plus two
scalars, achieving a dramatic reduction in storage space.

Storage reduction directly reduces the bandwidth con-
sumption between all levels of memory hierarchy. First, the
optimized program occupies a smaller amount of memory,
resulting in less memory-CPU transfer. Second, it has a
smaller footprint in cache, increasing the chance of cache
reuse. When an array can be reduced to a scalar, all its uses
can be completed in a register, eliminating cache-register
transfers as well.

3.3 Store Elimination

While storage reduction optimizes only localized ar-
rays, the second transformation, store elimination, improves
bandwidth utilization of arrays whose live range spans mul-
tiple loop nests. The transformation first locates the loop
containing the last segment of the live range and then fin-
ishes all uses of the array so that the program no longer
needs to write new values back to the array.

The program in Figure 7 illustrates this transformation.

For i=1, N

sum = 0.0

For i=1, N

End for

print sum

End for

  res[i] = res[i]+data[i]

  sum += res[i]

(a) Original program

End for

sum += res[i]+data[i]

For i=1, N

sum = 0.0

print sum

(b) After loop fusion and 
store elimination

Figure 7. Store elimination

The first loop in Figure 7(a) assigns new values to the res
array, which is used in the next loop. After the two loops
are fused in (b), the writeback of the updated res array can
be eliminated because all uses of res are already completed
in the fused loop. The program after store elimination is
shown in Figure 7(c).

The goal of store elimination differs from all previous
cache optimizations because it changes only the behavior
of data writebacks and it does not affect the performance
of memory reads at all. Store elimination has no benefit if
memory latency is the main performance constraint. How-
ever, if the bottleneck is memory bandwidth, store elimina-
tion becomes extremely useful because reducing memory
writebacks is as important as reducing memory reads. The
following experiment verifies the benefit of store elimina-
tion on two of today’s fastest machines: HP/Convex Exem-
plar and SGI Origin2000 (with R10K processors).

The table in Figure 8 lists the reduction in execution time
by loop fusion and store elimination. Fusion without store
elimination reduces running time by 31% on Origin and
13% on Exemplar; store elimination further reduces exe-
cution time by 27% on Origin and 33% on Exemplar. The
combined effect is a speedup of almost 2 on both machines,
clearly demonstrating the benefit of store elimination.

machines original fusion only store elimination
Origin2000 0.32 sec 0.22 sec 0.16 sec
Exemplar 0.24 sec 0.21 sec 0.14 sec

Figure 8. Effect of store elimination

4 Related work

Callahan et al. first used the concept balance to study
whether register throughput can keep up with the CPU de-
mand for scientific applications[2]. They also studied com-
piler transformations that can restore program balance by
reducing the number of loads/stores through register reuse.
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For i=1, N
 b[i,N] = g(b[i,N],
            a[i,1])

// Check results

// Computation

b[i,j] = f(a[i,j-1],
           a[i,j])

For j=2, N

sum += a[i,j]+b[i,j]

read(a1[i])

read(a2)

if (j=2)

  b1 = f(a1[i],a2)
else

b1 = f(a3[i],a2)

For j=2, N

b[i,j] = f(a[i,j-1],
           a[i,j])

read(a[i,j])

read(a[i,1])

For j=2, N

if (j<=N-1)

sum += a[i,j]+b[i,j]

else
 b[i,N] = g(b[i,N],

end if

            a[i,1])

sum += b[i,N]+a[i,N]

end if

if (j<=N-1)

  sum += b1+a2
a3[i] = a2

else

b1 = g(b1,a1[i])

end if

  sum += b1+a2

(a) Original program (c) After array shrinking and peeling(b) After loop fusion

For j=2, N

// Initialization of data
For j=1, N

read(a[i,j])

For i=1, N

End for

End for

For i=1, N

For i=1, N

End for

End for

End for

End for

End for

sum = 0.0

print sum

sum = 0.0

End for

For i=1, N

End for

End for

print sum

sum = 0.0

End for

For i=1, N

End for

End for

print sum

For i=1, N
For i=1, N

Figure 6. Array shrinking and peeling

Our work is close in spirit to their work, but we extend the
balance to include all levels of memory hierarchy, and our
compiler transformations focus on reducing memory trans-
fer.

Single-loop transformations such as loop blocking have
been used to reduce memory latency through register and
cache reuse. These transformations also reduce the amount
of memory transfer, but they do not exploit global data reuse
because they do not bring together data access of disjoint
loops. Gao et al.[5] and Kennedy and McKinley[7] pi-
oneered loop fusion for the purpose of achieving register
reuse across loop boundary. They used weighted edges to
represent data reuse between a pair of loops. Normal edges,
however, cannot model data reuse accurately because the
same data can be shared by more than two loops. Con-
sequently, their formulation does not maximize data reuse
and minimize total amount of data transfer into registers or
cache. The loop fusion formulation presented in this paper
uses hyper-edges to model data reuse precisely and there-
fore minimizes the total amount of data transfer through
maximal data reuse among all loop nests. Kennedy and
McKinley proved that k-way fusion is NP-hard, and both
Gao et al. and Kennedy and McKinley gave a heuristic
which recursively bisect the fusion graph through minimal
cut. The minimal-cut algorithm presented in this paper can
be used in their heuristic to perform the bisection.

Sarkar and Gao proposed a storage reduction technique
called array contraction, which replaces an array with a
scalar[10]. Array peeling and shrinking, presented in this
paper, is more general and powerful because they can re-
duce the size of arrays that cannot be substituted with a
scalar or that can only be partially substituted by a scalar.
In addition, the method in this paper relies on loop fusion to
provide opportunities for store elimination while the previ-
ous work avoided this problem by requiring programs to be
written in a single-assignment functional language. We are
not aware of any previous technique with the explicit goal
of store elimination.

Loop fusion and writeback reduction are components of
the compiler strategy developed in Ding’s dissertation[4].
The strategy first improves global temporal reuse through
loop fusion, then maximizes global spatial reuse through
inter-array data regrouping, finally performs storage reduc-
tion and store elimination to further reduce the bandwidth
consumption of the whole program. For dynamic appli-
cations, the strategy applies computation fusion and data
grouping at run time by locality grouping and data packing.
Finally, the compiler strategy supports user tuning and ma-
chine scheduling with bandwidth-based performance tuning
and prediction.

Many architectural studies examined the memory band-
width constraint. McCalpin [8] used the STREAM bench-
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mark to demonstrate that machines had became increas-
ingly imbalanced because of the limited memory band-
width. He did not provide a model nor measurement to
examine the overall balance of programs and machines.
Burger et al.[1] measured the bandwidth constraint by simu-
lating SPEC programs on a machine both with and without
memory bandwidth constraint. Their measurement is pre-
cise but relies on machine simulation, which is experimen-
tal rather than analytical. They also used a concept called
cache traffic ratio, which is similar to balance except that
cache traffic ratios do not include CPU speed and load/store
bandwidth as balance does. Therefore, cache traffic ratios
alone cannot quantify the bound on CPU utilization and
especially the performance bound due to limited register
bandwidth. Our measurement on balance shows that reg-
ister bandwidth is the second most critical resource after
memory bandwidth for the applications tested. Burger et al.
exploited the potential of better cache management by us-
ing the optimal Belady cache-replacement policy. However,
the solution is not practical because it requires hardware to
have beforehand the perfect knowledge of whole execution.
Another related study is performed by Huang and Shen[6],
who defined and measured what they called intrinsic band-
width requirement due to the reuse of values. The intrin-
sic bandwidth indicates the lower bound on memory traffic.
Like Burger et al. their measurement relies on program sim-
ulation. In comparison, program and machine balance are
more suitable for practical use because they can be mea-
sured accurately and efficiently, and they include all band-
width constraints (along with CPU throughput) of a system.
The most important limitation shared by all architectural
studies is that they assumed a fixed order of computation.
None of them considered the potential of bandwidth reduc-
tion transformations. As explained in this paper, aggressive
program optimizations can significantly change the balance
or reduce the intrinsic bandwidth of a program. In fact, the
previous studies considered only existing optimizations that
were implemented in the compiler they used. For example,
Burger et al.[1] relied on hardware data prefetching while
most current machines such as Origin2000 uses software
data prefetching.

5 Contributions

In this paper, we have presented a bandwidth-based per-
formance model called balance, which measures the de-
mand and supply of data bandwidth on all levels of memory
hierarchy. Through this model, we have shown the serious
performance bottleneck due to the limited memory band-
width. To reduce the overall bandwidth consumption of a
program, we have described three new compiler transfor-
mations. Bandwidth-minimal fusion used hyper-graphs to
model data sharing among fused loops. It is the first for-
mulation of loop fusion that minimizes the overall memory

transfer of a program. We gave an efficient algorithm for
two-partitioning cases and proved that the general fusion
is NP-complete. After loop fusion, we proposed two addi-
tional transformations: array shrinking and peeling reduces
a large array into a scalar or several small sections, and store
elimination removes memory writebacks to the remaining
arrays.
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