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Abstract
Collaborative caching allows software to use hints to influence
cache management in hardware. Previous theories have shown that
such hints observe the inclusion property and can obtain optimal
caching if the access sequence and the cache size are known ahead
of time. Previously, the interface of a cache hint is limited, e.g., a
binary choice between LRU and MRU.

In this paper, we generalize the hint interface, where a hint
is a number encoding a priority. We show the generality in a
hierarchical relation where collaborative caching subsumes non-
collaborative caching, and within collaborative caching, the prior-
ity hint subsumes the previous binary hint. We show two theoret-
ical results for the general hint. The first is a new cache replace-
ment policy, priority LRU, which permits the complete range of
choices between MRU and LRU. We prove a new type of inclusion
property—non-uniform inclusion—and give a one-pass algorithm
to compute the miss rate for all cache sizes. Second, we show that
priority hints can enable the use of the same hints to obtain optimal
caching for all cache sizes, without having to know the cache size
beforehand.

Categories and Subject Descriptors B.3.2 [MEMORY STRUC-
TURES]: Design Styles - Cache memories; D.3.4 [PROGRAM-
MING LANGUAGES]: Processors - Compilers, Optimization

General Terms Algorithms, Performance, Theory

Keywords collaborative caching, cache replacement policy, prior-
ity cache hint, priority LRU, optimal size-oblivious hint

1. Introduction
The performance of modern chips is largely determined by cache
management. A program has a high performance if the working
set can be cached. When the size of the working set is too large,
replacement decisions have to be made. LRU replacement policy,
the most commonly used one in practice, is rigid in that it caches
program data in the same way whether the data is part of the
program’s working set or not. This may lead to serious under-
utilization of cache. An alternative solution is for a program to
influence the cache management by providing hints distinguishing
the type of data it uses.
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A number of hardware systems have been built or proposed
to provide an interface for software to influence cache manage-
ment. Examples include cache hints on Intel Itanium [4], bypass-
ing access on IBM Power series [25], and evict-me bit [29]. Wang
et al. called a combined software-hardware solution collaborative
caching [29].

In this paper, we study collaborative caching in the framework
shown in Figure 1. Given an execution trace, hints are added by
annotating each memory access with a numerical priority. Data ac-
cessed with a higher priority (smaller numerical value) takes prece-
dence than data accessed with a lower priority (larger value). We
number the priority this way to match the numbering of memory
hierarchy, where the layers of caches are numbered top down start-
ing with L1 cache at the highest level.

Trace-level hint insertion: optimality, 
cache size independence (Section 4)

The original execution: addr1, addr2, ...

The hinted execution: addr1-hint1, addr2-hint2, ...

Collaborative caching in all cache sizes for 
all types of hints (optimal or not): 
generality (Section 2), inclusion property 
and one-pass evaluation (Section 3)
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Figure 1. The framework of collaborative caching. Hints are added
in software to influence hardware cache management. The interac-
tion raises questions concerning the benefit of software intervention
and the stability of the hardware cache under such intervention. We
answer the questions in this paper for the generalized priority hints.

In traditional caching methods such as LRU, the hardware infers
the “importance” of data and manages cache based on the inferred
priority. Collaborative cache enables software intervention, which
specifies the “importance” of data and changes the priority in which
the hardware manages the data. In previous types of hints including
evict-me [29], cache bypass [1, 25], and LRU-MRU hints [11, 12],
they all have a single bit and exert a binary effect—it gives a
data block either the highest or the lowest priority. Priority hints
generalizes the interface and allows software to choose any priority.

In this paper, we address mainly three issues concerning this
generalization:

• We categorize the effect of priority hints on cache management.
The complete effect includes four cases at a cache hit and two



cases at a cache miss. The many cases make it difficult to
analyze caching properties such as cache inclusiveness. We go
through a lengthy but thorough proof to consider all these cases.
• We show a unique phenomenon of non-uniform inclusion,

caused by the conflicts between the hinted priority and the
inferred priority (by the cache) from the past accesses. One
cannot simulate such cache using a priority list, as has been
done for all other types of inclusive cache including LRU, OPT,
and collaborative LRU-MRU. We describe a more general rep-
resentation called span and give a new, one-pass simulation
algorithm based on spans.
• Previous single-bit hints for optimal performance are cache-size

dependent. A consequence is that the inability to optimize a
memory hierarchy with multiple layers of cache. We show how
to obtain size-oblivious optimal hints using priority hints.

The results in this paper are mostly theoretical (except for the
cost of stack simulation). There are significant obstacles preventing
a practical use. First, for a clean theory we consider fully associa-
tive cache. The same idea may be applied to each set of set asso-
ciative cache. It improves efficiency since the number of priorities
will be limited by the set associativity rather than the cache size.
Second, we assume unit size cache blocks.1 Third, we insert hints
at the trace level. A program-level method may be devised as done
for LRU-MRU hints [12]. Despite of the limitations, the theoretical
results are valuable. Previous schemes of LRU, MRU and collab-
orative LRU-MRU are all but a few special cases of priority hints.
The range of choices is far greater in this general case. It exposes
and solves a fundamental problem in collaborative caching—the
conflict between the priorities stated in the hints and those implied
in the access sequence.

The rest of the paper is organized as follows. Section 2 intro-
duces the basic concepts. Section 3 categorizes the six cases of
cache accesses, proves the inclusion property and gives the algo-
rithm for calculating the priority LRU stack distance. Cache hints
for optimal performance for all cache sizes are discussed in Sec-
tion 4 followed by the related work in Section 5 and a summary.

2. Basic Concepts and Generalized Caching
Inclusive cache The inclusion property is first characterized by
Mattson et al. in their seminal paper in 1970 [19]. The property
states that a larger cache always contain the content of a smaller
cache. The property is fundamental for three reasons.

i) In inclusive caches, the miss ratio is a monotone function of
the cache size. Belady anomaly does not occur [2].

ii) The miss ratio of an execution can be simulated in one pass for
all cache sizes. Mattson’s algorithms used a stack and hence
are called stack algorithms [19].

iii) Stack simulation provides a metric called stack distance. Stack
distance is useful for program analysis because it is indepen-
dent of specific cache sizes. In particular, the reuse distance,
which is the LRU stack distance, has been extensively used in
improving program and system locality [37].

Stack algorithms An inclusive cache can be viewed as a stack—
data elements at the top c stack positions are the ones in a cache
of size c. The stack position defines the priority of the stored
data. Stack simulation is to simulate cache of an infinite size. All
accessed data are ordered by their priority in a priority list. The

1 Petrank and Rawitz showed that optimal data placement (in non-unit size
cache blocks) cannot be solved or well approximated in polynomial time
unless P=NP [21].

stack distance gives the minimal cache size to make an access a
cache hit [19]. A stack distance is defined for each type of inclusive
cache and computed by simulating that type of cache of an infinite
size.

The following are examples of inclusive but non-collaborative
cache.

• LRU The data in an LRU cache is prioritized by the most
recent access time. The data element with the least recent ac-
cess time has the lowest priority (highest position number) and
is evicted when a replacement happens. Most hardware imple-
ments pseudo-LRU for efficiency [27]. The LRU stack distance
is called reuse distance in short. It measures the amount of data
accessed between two consecutive uses of the same data ele-
ment. Reuse distance is measured in near constant time by or-
ganizing the priority list as a dynamically compressed tree [37].
• MRU The data in an MRU cache is also prioritized by the most

recent access time. Unlike LRU, the lowest priority is the data
element with the most recent access time.
• OPT The data in an OPT cache is prioritized by the next

access time. The data element with the furthest reuse has the
lowest priority. OPT is impractical because it requires future
knowledge. It is used as the upper bound of cache performance.
The fastest method for calculating the OPT stack distance is the
one-pass algorithm by Sugumar and Abraham [28].

We are the first to formalize the inclusion property in collaborative
cache [12]:

• LRU-MRU A hint indicates whether an access is LRU or
MRU. The inclusion property holds even when LRU and MRU
accesses are mixed arbitrarily. To calculate the LRU-MRU stack
distance, the following priority scheme is used. An LRU access
is assigned the current access time as the priority, while an
MRU access is assigned the negation of the current access
time. A stack algorithm can compute the LRU-MRU stack
distance [12].

The inclusive cache management hierarchy We organize the
commonly used inclusive caching methods into the following three
categories. They form a hierarchy based on the “implemented-by”
relation, as explained below and shown pictorially in Figure 2.

• Level 1, non-collaborative caching, including LRU, MRU and
OPT. The priority is entirely inferred from the access sequence.
• Level 2, limited collaborative caching, including cache bypass,

evict-me bit, and LRU-MRU. The priority is specified by a hint.
The specified priority is either the highest or the lowest. It is
easy to see that LRU-MRU subsumes LRU and MRU. It also
subsumes OPT as we have shown that LRU-MRU hints can
obtain optimal caching [11].
• Level 3, generalized collaborative caching. The priority hint is

the only member of this category. A priority hint is a number
encoding a priority. Since it allows a hint to specify any priority,
it subsumes the limited collaborative schemes in Level 2.

Being general, the priority hint not only can implement other
cache hints but also can create cache management scenarios not
possible with any prior method of inclusive caching. We will show
such an example and describe proofs and solutions for this general
scheme.

3. The Priority LRU Cache Replacement Policy
For this study, the cache is fully associative and organized as a
stack. The default scheme is LRU, where the data element is placed
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Figure 2. Common inclusive caching methods organized in a hi-
erarchy based on the “implemented-by” relation. Limited collab-
orative caching of LRU-MRU [12] subsumes non-collaborative
schemes of LRU, MRU and OPT [19]. Priority hint subsumes LRU-
MRU and other prior collaborative methods.

at the top of the stack at position 1 and displaced at the bottom of
the stack at position c, which is the cache size. Priority hint changes
the default scheme. In this section, the priority value directly spec-
ifies the stack position to insert the associated data element. The
phrase “a data element has a priority p” is used interchangeably
with “a data element is at position p in the cache stack”.

In priority LRU, an access is a pair (d, p), which means that the
accessed data element d is to be inserted at position p in the cache
stack. The priority p can be any positive integer. If p is always 1,
priority LRU becomes LRU. If p is the cache size, priority LRU is
the same as MRU. If p is greater than the cache size, the access is a
cache bypass. If p can be either 1 or the cache size, priority LRU is
the same as the collaborative LRU-MRU cache [12].

As an interface, priority hints may be used in arbitrary ways,
sometimes optimal but probably suboptimal most times and even
counter productive. In this section, we derive the properties for
collaborative caching under all possible priority hints. The problem
of optimal hint insertion will be discussed in Section 4.

We categorize priority LRU accesses into six classes, illustrated
in Figure 3 and 4. Consider an access to w with the priority i, i.e.
(w, i), arriving in the size-m cache. If w is in cache, the access is a
hit. Otherwise, the access is a miss. Let the current stack position be
j. A priority LRU access falls into one of the six classes, which is
determined by the relations between i, j,m. The hit has four cases
and the miss has two cases. To describe the change in priority, we
use the terms up move, no move, and down move. We should note
that the move is conceptual and may not be physical. The change in
“position” requires only an update on the associated position bits.

i) A hit up move (1 ≤ i < j ≤ m)—Figure 3(a) shows that w is
moved up to the position i, and the data elements between Si

and Sj−1 are moved one position lower.

ii) A hit no move (1 ≤ j = i ≤ m)—Figure 3(c) shows that all
data elements including w do not change their positions.

iii) A hit down move (1 ≤ j < i ≤ m)—Figure 3(b) shows that
w is moved down to the position i in the cache, and the data
elements between Sj+1 and Si are moved one position higher.

iv) A hit bypass (1 ≤ j ≤ m < i)—Figure 3(d) shows that w is
moved out of the cache, and the data elements between Sj+1

and Sm are moved one position higher. We also refer to this
case as a voluntary eviction.

v) A miss insertion (j = ∞ and 1 ≤ i ≤ m)—We take
j = ∞ when the accessed data element w is not in the cache.
Figure 4(a) shows that w is moved into the cache at the position
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(d) Priority i is lower than the
cache size m (i > m): w is moved
out of the cache

Figure 3. Four cases of data hit in the priority cache when the data
block w, at position j in cache, is accessed with a priority i.

i. The data elements between Si and Sm−1 are moved one
position lower. The lowest priority element Sm is evicted.

vi) A miss bypass (j = ∞ and i > m)—We assume that the
accessed data elements can be accessed without being stored
in the cache. Figure 4(b) shows that w bypasses the cache. The
data elements in the cache are unaffected.

We make a few observations of the above operations of priority
LRU:

i) A cache bypass can happen either for a hit or for a miss. In
the hit bypass, the accessed data element voluntarily vacates
its space in the cache. Neither case of bypass happens in LRU
or LRU-MRU.

ii) A forced eviction only happens in a miss insertion. The victim
is the data element with the lowest priority at LRU position be-
fore the insertion. This is the same as LRU and LRU-MRU. If
the LRU position is unoccupied, the eviction does not happen.

iii) Only a hit bypass or a miss insertion can change the content of
the cache. No data element is moved into or out of cache in the
other four cases.
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(b) Priority i is lower than m (i >
m): w bypasses the cache

Figure 4. Two cases of data miss in the priority cache when the
data block w, not in cache before the access, is accessed with
priority i.

iv) No data position is changed at the hit no-move case or the miss
bypass case. The cache stack stays unchanged.

3.1 The Inclusion Property
THEOREM 1. Let the access trace be executed on two priority LRU
caches C1 and C2 (|C1| < |C2|). At each access, every data
element in C1 locates at the same or a lower position compared
with the position of the corresponding element in C2.

Proof Let the access trace be P = (x1, x2, ..., xn). Let Ci(t) be
the collection of data in cache Ci after xt. A function loc() returns
the location of a data element in the cache stack—locti(d) = p
(1 ≤ p ≤ |Ci|) means that the data element d is at the position p
of Ci after xt. In other words, loc() returns the priority of a data
element. We let locti(d) = ∞ if d is not in Ci after xt. The initial
situation is C1(0) = C2(0) = ∅, in which the theorem holds. Now
we prove the theorem by induction on t.

Assume any d, d ∈ C1(t)→ loct1(d) ≥ loct2(d). Suppose there
is a data element d satisfying d ∈ C1(t) and d /∈ C2(t). Then we
have loct1(d) < loct2(d) =∞—a contradiction of the assumption.
So we have 9 possible cases for the next access xt+1(d

′, p′) shown
in Table 1. We prove for any d, d ∈ C1(t + 1) → loct+1

1 (d) ≥
loct+1

2 (d) for each case. We do not have to check all data elements
in C1(t + 1) but only the ones moved up in C1 or moved down in
C2.

xt+1 hits in xt+1 misses in xt+1 misses
C1 and C2 C1 but hits in C2 in C1 and C2

1 ≤ p′ ≤ |C1| I II III
|C1| < p′ ≤ |C2| IV V VI

p′ > |C2| VII VIII IX

Table 1. The 9 cases for the next access xt+1 to d′ with a priority
p′.

I. From the assumption, we know that loct1(d
′) ≥ loct2(d

′).
There are six sub-cases of xt+1 as shown in Table 2.

i) xt+1 is a hit up move in both C1 and C2, which means
p′ < loct2(d

′) ≤ loct1(d
′). The only data element moved

up in C1 is d′, which goes to the same position p′ in
C2. A data element d moved down in C2 satisfies p′ ≤
loct2(d) < loct2(d

′): 1 if p′ ≤ loct1(d) < loct1(d
′), given

loct1(d) ≥ loct2(d), we have loct+1
1 (d) ≥ loct+1

2 (d)
because loct+1

1 (d) = loct1(d) + 1 and loct+1
2 (d) =

loct2(d) + 1; 2 if loct1(d) > loct1(d
′), given loct1(d) ≥

up move no move down move
in C2 in C2 in C2

up move in C1 i ii iii
no move in C1 IMPOSSIBLE iv v

down move in C1 IMPOSSIBLE IMPOSSIBLE vi

Table 2. The 6 sub-cases of Case I in Table 1: the access xt+1 is
a hit in both C1 and C2. A hit can be one of the cases shown in
Figure 3 except the bypass case.

loct2(d), we have loct+1
1 (d) ≥ loct+1

2 (d) because
loct+1

2 (d) ≤ loct2(d
′) ≤ loct1(d

′) < loct1(d) =
loct+1

1 (d). The induction holds in this case.
ii) xt+1 is a hit up move in C1 but a hit no move in C2. The

only data element moved up in C1 is d′, which goes to the
same position p′ in C2. No other data location is changed
in C2. The induction holds.

iii) xt+1 is a hit up move in C1 but a hit down move in C2. d′

is the only data element moved up in C1 or the only one
moved down in C2, which goes to the same position p′ in
C2. The induction holds.

iv) xt+1 is a hit no move in both C1 and C2. No data location
is changed in either C1 or C2. The induction holds.

v) xt+1 is a hit no move in C1 but a hit down move in C2.
No data location is changed in C1. The only data element
moved down in C2 is d′, which goes to the same position
p′ in C1. The induction holds.

vi) xt+1 causes a down move in both C1 and C2, which
means loct2(d

′) ≤ loct1(d
′) < p′. A data element d

moved up in C1 satisfies loct1(d
′) < loct1(d) ≤ p′: 1

if loct2(d′) < loct2(d) ≤ p′, given loct1(d) ≥ loct2(d),
we have loct+1

1 (d) ≥ loct+1
2 (d) because loct+1

1 (d) =

loct1(d)−1 and loct+1
2 (d) = loct2(d)−1; 2 if loct2(d) <

loct2(d
′), given loct1(d) ≥ loct2(d), we have loct+1

1 (d) ≥
loct+1

2 (d) because loct+1
2 (d) = loct2(d) < loct2(d

′) ≤
loct1(d

′) ≤ loct+1
1 (d). The only data element moved

down in C2 is d′, which goes to the same position p′ in
C1. The induction holds again as in all previous five cases.

II. There are three sub-cases about xt+1 as shown in Table 3.

up move no move down move
in C2 in C2 in C2

a miss insertion i ii iii
in C1

Table 3. The 3 sub-cases of case II in Table 1: the access xt+1

misses in C1 but hits in C2. The hit and miss cases are shown in
Figures 3 and 4.

i) xt+1 is a miss insertion in C1 but a hit up move in
C2. No data element is moved up in C1 except that d′

is moved into C1, which goes to the same position p′

in C2. A data element d moved down in C2 satisfies
p′ ≤ loct2(d) < loct2(d

′): 1 if d ∈ C1(t) and p′ ≤
loct1(d) < |C1|, given loct1(d) ≥ loct2(d), we have
loct+1

1 (d) ≥ loct+1
2 (d) because loct+1

1 (d) = loct1(d)+1

and loct+1
2 (d) = loct2(d) + 1; 2 if loct1(d) = |C1|, we

do not have to worry about this case because d is evicted
and not in C1(t+ 1); 3 if d /∈ C1(t), we do not have to
worry about this case either because d is not in C1(t+1).
The induction holds.

ii) xt+1 is a miss insertion in C1 but a hit no move in C2. No
data element is moved up in C1 except that d′ is moved



time 1 2 3 4 5 6 7 8 9
access & hint A-2 B-2 C-5 D-1 B-6 D-6 A-4 C-1 A-4

stack: 1 D D C C
2 A B B A
3 A A B A
4 A A A
5 C A

(a) Cache size is 5. A is in position 5 after time 8.

time 1 2 3 4 5 6 7 8 9
access & hint A-2 B-2 C-5 D-1 B-6 D-6 A-4 C-1 A-4

stack: 1 D D C C
2 A B B A
3 A A B A C
4 A C A A A
5 C C B B B B
6 C B D D D D

(b) Cache size is 6. A is in position 4 after time 8.

Figure 5. An example of non-uniform inclusion. The priority LRU observes the inclusion principle but permits data to reside in different
positions in the smaller cache than in the larger cache. In this example, after time 8, A locates at a lower position in the size-5 cache than in
the size-6 cache.

into C1, which goes to the same position p′ in C2. No data
element changes location in C2. The induction holds.

iii) xt+1 is a miss insertion in C1 but a hit down move in
C2. No data element is moved up in C1 except that d′ is
moved into C1, which goes to the same position p′ in C2.
And d′ is the only data element moved down in C2. The
induction holds.

III. xt+1 is a miss insertion in both C1 and C2. No data element is
moved up in C1 except that d′ is moved into C1, which goes
to the same position p′ as in C2. A data element d moved
down in C2 satisfies loct2(d) ≥ p′: 1 if d ∈ C1(t) and
p′ ≤ loct1(d) < |C1|, given loct1(d) ≥ loct2(d), we have
loct+1

1 (d) ≥ loct+1
2 (d) because loct+1

1 (d) = loct1(d)+1 and
loct+1

2 (d) = loct2(d) + 1; 2 if loct1(d) = |C1|, we do not
have to worry about this case because d is evicted and not in
C1(t + 1); 3 if d /∈ C1(t), we do not have to worry about
this case either because d is not in C1(t + 1). The induction
holds.

IV. From the assumption, we know that loct1(d
′) ≥ loct2(d

′).
So xt+1 is a hit bypass in C1 but a hit down move in C2,
in which we have loct2(d

′) ≤ loct1(d
′) < p′. A data ele-

ment d moved up in C1 satisfies loct1(d) > loct1(d
′): 1 if

loct2(d
′) < loct2(d) ≤ p′, given loct1(d) ≥ loct2(d), we have

loct+1
1 (d) ≥ loct+1

2 (d) because loct+1
1 (d) = loct1(d)−1 and

loct+1
2 (d) = loct2(d) − 1; 2 if loct2(d) < loct2(d

′), given
loct1(d) ≥ loct2(d), we have loct+1

1 (d) ≥ loct+1
2 (d) because

loct+1
2 (d) = loct2(d) < loct2(d

′) ≤ loct1(d
′) ≤ loct+1

1 (d).
The only data element moved down in C2 is d′, which is
moved out of C1. The induction holds.

V. There are three sub-cases about xt+1 as shown in Table 4.

a hit up move a hit no-move a hit down move
in C2 in C2 in C2

a miss bypass i ii iii
in C1

Table 4. The 3 sub-cases of xt+1 of case V

i) xt+1 is a miss bypass in C1 but a hit up move in C2.
No data location is changed in C1. A data element d
moved down in C2 satisfies p′ ≤ loct2(d) < loct2(d

′):
we do not have to worry about this case because d /∈
C1(t+ 1). Otherwise, d ∈ C1(t+ 1) implies d ∈ C1(t)
because xt+1 is a miss bypass in C1, from which we get
loct2(d) ≤ loct1(d) ≤ |C1| < p′—a contradiction of the
assumption loct2(d) ≥ p′. The induction holds.

ii) xt+1 is a miss bypass in C1 but a hit no move in C2. No
data element changes location in either C1 or C2. The
induction trivially holds.

iii) xt+1 is a miss bypass in C1 but a hit down move in
C2. No data element changes location in C1. The only
data element moved down in C2 is d′, which is not in
C1(t+ 1). The induction again holds.

VI. xt+1 is a miss bypass in C1 but a miss insertion in C2. No
data element changes location in C1. A data element d moved
down in C2 satisfies loct2(d) ≥ p′: we do not have to worry
about this case because d is not in C1(t+ 1). Otherwise, d ∈
C1(t + 1) implies d ∈ C1(t) because xt+1 is a miss bypass
in C1, from which we get loct2(d) ≤ loct1(d) ≤ |C1| < p′—a
contradiction of the assumption loct2(d) ≥ p′. The induction
holds.

VII. xt+1 is a hit bypass in both C1 and C2. A data element
d moved up in C1 satisfies loct1(d) ≥ loct1(d

′): 1 if
loct2(d) > loct2(d

′), given loct1(d) ≥ loct2(d), we have
loct+1

1 (d) ≥ loct+1
2 (d) because loct+1

1 (d) = loct1(d) − 1

and loct+1
2 (d) = loct2(d)−1; 2 if loct2(d) < loct2(d

′), given
loct1(d) ≥ loct2(d), we have loct+1

1 (d) ≥ loct+1
2 (d) because

loct+1
2 (d) = loct2(d) < loct2(d

′) ≤ loct1(d
′) ≤ loct+1

1 (d).
No data element is moved down in C2 except that d′ is moved
out in both C1 and C2. The induction therefore holds.

VIII. xt+1 is a miss bypass in C1 and a hit bypass in C2. No data
element changes location in C1. No data element is moved
down in C2 except that d′ is moved out. The induction is
preserved.

IX. xt+1 is a miss bypass in both C1 and C2. No data changes
location in either C1 or C2. The induction trivially holds.



With the above long list, we have covered all possible cases.
The theorem is proved.

The inclusion property is shown in the following corollary.

COROLLARY 1. An access trace is executed on two priority LRU
caches—C1 and C2 (|C1| < |C2|). At any access, the content of
cache C1 is always a subset of the content of cache C2.

Proof Suppose a data element d is in C1(t) but not in C2(t). Then
we have loct1(d) < loct2(d) = ∞—a contradiction of Theorem 1.
The supposed situation is impossible. Priority LRU preserves the
inclusion property.

3.2 Uniform vs Non-uniform Inclusion
The generality of priority LRU can create cache management sce-
narios not possible in the past. In particular, the stack layout may
differ based on cache size—the same data element may reside in
a lower position in the smaller cache than in the larger cache. We
call this case non-uniform inclusion. In comparison, all previous in-
clusive caching schemes, e.g. LRU and LRU-MRU, have uniform
inclusion, in which the same data element has the same position
regardless of the cache size.

Figure 5 shows an example of non-uniform inclusion. The stack
layout at each access is shown in Figure 5(a) for cache size 5 and
Figure 5(b) for cache size 6. The non-uniformity happens after the
access at time 8—the data element A locates at the position 5 in the
smaller cache but at the position 4 in the larger cache. The reason
has to do with the data element C. Before time 8, C is out of the
size-5 cache but in the size-6 cache. When C is accessed again
at time 8, the element A is moved down by one position in the
size-5 cache but stays in situ in the size-6 cache, creating different
stack layouts. The example shows that the difference is allowed by
priority LRU but does not violate the inclusion property.

The non-uniform inclusion is shown formally by Theorem 1,
which allows for the data to locate in a lower position in a smaller
cache. Previous inclusive caching schemes have the stronger prop-
erty that the data has to be in the same position in caches of different
sizes.

Non-uniform inclusion uncovers a subtle distinction between
the inclusion property and the stack layout, which is that the inclu-
sion principle does not have to imply identical placement. The in-
clusion property can hold without requiring different caches to have
the same stack layout. Priority LRU represents this new category of
non-uniform inclusive caching. For this new type of caching, com-
puting the stack distance becomes problematic, as we discuss next.

3.3 The Priority LRU Stack Distance
For an access trace running on a priority LRU cache, for each
access, a minimal cache size exists to make the access a hit because
of the inclusion property. This critical minimal cache size is called
stack distance [19]. With a one-pass stack distance analyzer, we
can compute miss ratios for all cache sizes without doing cache
simulations repeatedly for each cache size.

time 1 2 3 4 5 6 7 8 9
trace A-2 B-2 C-5 D-1 B-6 D-6 A-4 C-1 A-4

stack 1 D D C C
2 A B B A
3 A A B A

4 A A A

Figure 6. For the same trace in Figure 5, the access at time 9 is a
miss in the size-4 cache.

3.3.1 Priority List ... No Longer Works
A priority list is the core data structure in the original stack algo-
rithms [19]. Different stack algorithms are identical in construction
and maintenance of the priority list. The only difference is the pri-
ority used. For example, the priority used for LRU is the most re-
cent access time but the one for OPT is the next access time. While
Mattson et al. considered only non-collaborative caches, this solu-
tion extends to the case of limited collaboration in particular the
LRU-MRU cache. Indeed, an important finding by us is a way to
assign a “dual” priority based on the LRU-MRU hint to maintain a
single priority list [12].

Because of non-uniform inclusion, a single priority list no
longer works for priority LRU. Since the stack position changes
depending on the cache size, so does the priority. We cannot main-
tain a single priority list to represent the layout for all cache sizes.

Still, can we solve the problem by simulating an infinitely large
cache and use the lowest position as the stack distance? We can
show a counter example as follows. Take the example trace in
Figure 5(b). It is the same as a simulation of infinite cache size.
The lowest position of A before the access at time 9 is 4 in the
infinitely large cache. However, this access is a miss in the size-4
cache, as shown in Figure 6. The lowest stack position, 4, is not the
right stack distance.

3.3.2 Span
We generalize the classic stack algorithms by replacing the priority
list with the notion of span. The purpose is to track the position of
a data element in all cache sizes (not just the infinite size). A span
is denoted as (d, c1, c2, loc), which means the data element d is
at position loc when cache size is between c1 and c2. An inherent
constraint for a span is that loc ≤ c1 ≤ c2 when loc 6= ∞. If
loc = ∞, d is not in the cache with the specific cache sizes. The
span leverages the fact that a data element usually locates at the
same position in multiple cache sizes.

In the following paragraphs, several cases of span update are
discussed in details with an example. Figure 7 shows how spans
work on an example trace with 9 accesses. Each step is a table
showing spans for all data elements. Unlike previous stack algo-
rithms that use an infinite cache size, the spans in these tables shows
data positions in all cache sizes. The first column of the table lists
all data. The first row shows all cache sizes. We show the sizes
from 1 to 6 separately and the rest are compacted into a single
“size” with ellipses. Each of the following rows with several spans
is for a data element. For example, there are two spans (A, 1, 1,∞)
and (A, 2,∞, 2) in Figure 7(a)—the former means that A is not in
cache with a size-1 cache and the latter means that A is at the po-
sition 2 for all cache sizes no less than 2. In this way, the locations
of the same data element for all cache sizes are represented. From
the column view, each column for a cache size indicates how data
elements locate in the cache with this specific cache size. Based
on these spans, we are able to simulate all size caches at the same
time. Because the spans accurately represent all stack layouts, the
correctness is ensured.

At the beginning, all caches are empty. The access at time 1
is about creating spans for itself—(A, 1, 1,∞) and (A, 2,∞, 2)
shown in Figure 7(a). For the first access to a data element, the
stack distance is infinity since it is a compulsory miss [13]. The
first access has an infinite stack distance. For the access at time 2,
it is a miss bypass with a cache size 1 but a miss insertion for larger
caches. So the span (A, 1, 1,∞) is unchanged because A stays out-
side the size-1 cache. The other span (A, 2,∞, 2) is first changed
to (A, 2,∞, 3) because moving B to the position 2 makes A one
position lower. Then the new (A, 2,∞, 3) is split into (A, 2, 2, 3)
and (A, 3,∞, 3)—the former is updated to (A, 2, 2,∞) to indicate
A is out of the size-2 cache. The two adjacent spans with the same



1 2 3 4 5 6 ....
A ∞ 2

(a) After access A-2 at time 1

1 2 3 4 5 6 ....
A ∞ 3
B ∞ 2

(b) After access B-2 at time 2

1 2 3 4 5 6 ....
A ∞ 3
B ∞ 2
C ∞ 5

(c) After access C-5 at time 3

1 2 3 4 5 6 ....
A ∞ 4
B ∞ 3
C ∞ 6
D 1

(d) After access D-1 at time 4

1 2 3 4 5 6 ....
A ∞ 3
B ∞ 6
C ∞ 5
D 1

(e) After access B-6 at time 5

1 2 3 4 5 6 ....
A ∞ 2
B ∞ 5
C ∞ 4
D ∞ 6

(f) After access D-6 at time 6

1 2 3 4 5 6 ....
A ∞ 4
B ∞ 5
C ∞ 3
D ∞ 6

(g) After access A-4 at time 7

1 2 3 4 5 6 ....
A ∞ 5 4
B ∞ 5
C 1
D ∞ 6

(h) After access C-1 at time 8

1 2 3 4 5 6 ....
A ∞ 4
B ∞ 5
C 1
D ∞ 6

(i) After access A-4 at time 9

Figure 7. An example of priority LRU stack simulation. The trace has 9 accesses to 4 data elements. A data element may locate at different
stack positions depending on cache sizes. All possible positions for each data element are tracked by its span list, shown in each row. Cache
sizes are shown by the header row.

loc, (A, 1, 1,∞) and (A, 2, 2,∞), are merged into a single span
(A, 1, 2,∞). At last, we create the spans for B: (B, 1, 1,∞) and
(B, 2,∞, 2). The updated all-size cache snapshot is in Figure 7(b).
The second access is also a compulsory miss and has an infinite
stack distance.

At time 5, the all-size cache snapshot is in Figure 7(d). First we
update the spans for other data elements except for B. There are
two spans for A—(A, 1, 3,∞) and (A, 4,∞, 4): the former stays
the same, and the latter is updated to (A, 4,∞, 3) because moving
B to the position 6 makes A one position higher. We update the
spans of C and D in the same way and obtain the new all-size cache
snapshot in Figure 7(e). When a data element is accessed again, the
stack distance equals to the c1 of the leftmost span with a finite loc,
which is the minimal cache size to keep the accessed data element
in cache. For this access, B is accessed again and its leftmost span
with a finite loc is (B, 3,∞, 3). So the stack distance is 3. At last,
we update the spans of B to (B, 1, 5,∞) and (B, 6,∞, 6).

At time 9 with the lower position exception, we have to look
back into the access at time 8. In the cache snapshot in Figure 7(g),
A has two spans (A, 1, 3,∞) and (A, 4,∞, 4). Moving C to the
position 1 has a different impact on A for different cache sizes. The
span (A, 1, 3,∞) stays the same. For the other span (A, 4,∞, 4),
A is moved one position lower when the cache size is 4 or 5 but
stays the same when the cache size is 6 or greater. This span is
updated into two spans: (A, 4, 5, 5) and (A, 6,∞, 4). The new span
(A, 4, 5, 5) is then split and merged with (A, 1, 3,∞) in the same
way as in the case at time 2. Finally, A has three spans after the
access at time 8: (A, 1, 4,∞), (A, 5, 5, 5), and (A, 6,∞, 4). When
the access at time 9 to A happens, the left most span with a finite
loc of A is (A, 5, 5, 5). The stack distance is 5.

3.3.3 The One-pass Simulation Algorithm
In the algorithm, each data element has a list of spans once it is
accessed. A node in the list is a span but only with two fields for
c1 and loc. The c2 equals to the c1 of the next span minus one. For
the last span, the c2 equals to∞. Only the spans with a finite value
for loc show up in a span list, which implies the corresponding data
element could not be contained in cache when the cache size is less
than the c1 of the first span node.

Function process one access() in Algorithm 1 is the top-
level function to compute a stack distance. It mainly consists of

Algorithm 1: process one access(): compute the priority
LRU stack distance for an access

Input: d is accessed with a priority p.
Output: returns the priority LRU stack distance of this access.

1 process one access(d,p)
2 begin
3 if There is no span list for d then
4 for Each current span list (list iter) do
5 Update the span list by calling

update one list(list iter,NULL,p)

6 end
7 Create a new list for d
8 Create a new span for the current access with

c1 = loc = p and insert it into the new list
9 Return an infinite stack distance

10 else
11 Set the list to the span list for d
12 for Each current span list (list iter) do
13 if list iter 6= the list then
14 Update the span list by calling

update one list(list iter,the list,p)
15 end
16 end
17 Save the c1 value of the first span in the list to a

temporary
18 Delete all the current spans in the list
19 Create a new span for the current access with

c1 = loc = p and insert it into the list

20 Return the saved temporary as the stack distance
21 end
22 end

two cases: one for first-time accesses (compulsory misses) and the
other for the other accesses. Both cases follow a similar proce-
dure: update all the spans except the ones for the accessed data
element; update the spans for the accessed data element; and re-
turn the stack distance. The first step is done by calling Function
update one list() in Algorithm 2.

Function update one list() has three arguments providing
sufficient information for span updates. The while loop traverses



Algorithm 2: update one list(): update the span list for a
data element for all cache sizes

Input: updated list is the span list for a data element to be updated;
accessed list is the span list for the accessed data element,
which has not been updated yet; new priority is the new
priority for the accessed data element.

1 update one list(updated list,accessed list,new priority)

2 begin
3 Set updated span to the last span of updated list

4 if accessed list 6= NULL then
5 Set accessed span to the last span of accessed list

6 else
7 Set accessed span to NULL

8 end
9 while updated span 6= NULL do

10 if accessed span = NULL then
11 Do updates for updated span including changing c1

and loc values and merging unnecessary adjacent
spans

12 Set updated span to its predecessor
13 else
14 if The c1 of updated span is no less than the c1 of

accessed span then
15 Do updates for updated span including

changing c1 and loc values and merging
unnecessary adjacent spans

16 if The c1 of accessed span equals to the c1 of
updated span then

17 Set accessed span to its predecessor
18 end
19 Set updated span to its predecessor
20 else
21 Create a new span and set its c1 to c1 of

accessed span and loc to loc of
updated span

22 Insert the new span as the successor of the
updated span

23 Set updated span to this new span
24 Do updates for updated span including

changing c1 and loc values and merging
unnecessary adjacent spans

25 Set accessed span to its predecessor
26 Set updated span to its predecessor
27 end
28 end
29 end
30 end

and updates the spans of a data element. The traversal is associated
with another traversal through the span list of the accessed data
element to make sure that span updates are done for the same cache
sizes. The two correlated traversals both are done in the reverse
order, from the last to the first, to make it easier to merge adjacent
spans. The span updates, done in line 11, 15, and 24, have been
demonstrated in the example in Figure 7.

In line 21 and 22, a span is split into two if neither the condition
in line 10 nor the one in line 14 is satisfied. An example is the
access at time 7 in Figure 7 when the span (A, 4, ∞, 4) is first
split into (A, 4, 5, 4) and (A, 6,∞, 4). The span splitting aligns the
spans to be updated with the spans of the accessed data element.
The updating operation becomes simpler since the current access
has the same impact for all cache sizes within the being updated
span. In this example, (A, 4, 5, 4) is updated to (A, 4, 5, 5) and (A,
6,∞, 4) remains unchanged.

The span splitting is not always necessary. However, an unnec-
essary span can be merged with its successor shortly. For example,
suppose we have only two spans (A, 5,∞, 5) and (B, 8,∞, 8), and
the next access is B-1. The span (A, 5,∞, 5) is first split into (A,
5, 7, 5) and (A, 8, ∞, 5). Then the new spans are updated to (A,
5, 7, 6) and (A, 8,∞, 6). The span (A, 5, 7, 6) is split into (A, 5,
5,∞) and (A, 6, 7, 6). The former span (A, 5, 5,∞) is abandoned
since we do not store a span with an infinite loc. The latter span
(A, 6, 7, 6) is merged with its successor (A, 8,∞, 6) into (A, 6,∞,
6). It is possible to remove unnecessary span splittings with a more
complex algorithm.

3.3.4 The Space and Time Overhead
The space cost per data element is proportional to the number of
spans, which is bounded by the maximal priority M in a hint and
the data set size D. The number of spans for a data item equals
to the number of different priorities in all cache sizes. Because the
possibly maximal priority for a data item is M + D, the possibly
maximal number of spans is also M +D. The overall space cost is
O(D ·(M+D)). The bound is high in theory but not as formidable
in practice. In the following empirical evaluation, the number of
spans for a data element is only a few and much less than M +D.

The time cost consists primarily the operations involved in the
span updates at line 11, 15, and 24 in Algorithm 2. The number
of operations is proportional to the total number of spans of the
datum being updated. If the number of spans is bounded by M+D,
the time bound for each access is O(D · (M + D)). For LRU
cache, there is only one span for each data element, so the time
cost is O(D) per access and matches the cost of the original stack
algorithm [19].

An Experiment To give a sense of the number of spans in prac-
tice, we have implemented the stack distance algorithm for prior-
ity LRU and tested it on a random trace with randomly generated
accesses and priorities. The data size is set to 1024 and the trace
length is 10 million. For the number of priorities, we choose to
vary from 1 to 1 million in numbers that are powers of two. Instead
of measuring the physical time and space, we use two logical met-
rics. The space is measured by the number of spans being stored.
The time is measured by the number of span updates.

The columns in Table 5 shows 13 out of the 20 results on differ-
ent priority ranges. We omit the cost results of other priority ranges
because their measured costs are nearly equal to the computed
numbers obtained by interpolating using the costs of the neighbor-
ing ranges shown in the table.

When the priority number is always 1, priority LRU degenerates
into LRU. A priority list is enough to obtain the stack distance.
Each data element has only one span. The space overhead for all
data is 1024. For each access, the worst time cost is 2046, because
the algorithm needs to do 2 updates on the span list for each of the
remaining 1023 data elements. 2 The average is 1534.

In the other extreme when the maximal priority is 10 million,
much greater than the data size, the overall cost is on average 1026
for space and 1537 for time, nearly identical to the cost of LRU.
The highest average overall cost is 4317 for space and 6556 for
time, incurred when the range of the priority is up to 1024, the size
of data set. The costs in all other cases are at most half of the highest
costs. If the priority is up to 512, the average overall space and time
costs are 1024 and 1535, near identical to LRU.

From the results of the random access trace, we can make the
following observations on the number of spans in practice. First,
the number is mostly constant, close to the single span in LRU,
in most cases. Second, in the worst case, the maximal number of

2 Two updates are needed for a single-span list because of an unnecessary
span splitting.



max priority 1 16 64 256 512 1K 2K 4K 8K 16K 64K 256K 1M
(i.e. LRU)

space avg overall 1024 1024 1024 1024 1024 4317 2015 1472 1239 1129 1050 1030 1026
avg per 1.0 1.0 1.0 1.0 1.0 4.2 2.0 1.4 1.2 1.1 1.0 1.0 1.0

data element
overhead max overall 1024 1025 1026 1035 1058 11731 5391 2859 2038 1500 1145 1057 1040

max per 1 2 2 3 5 37 23 16 12 8 6 4 3
data element

time overall avg 1534 1534 1534 1534 1535 6556 3014 2203 1856 1692 1573 1544 1537
overhead overall max 2046 2046 2046 2050 2072 33660 18361 12155 9961 6640 5257 4256 3667

Table 5. The measured overhead of Algorithm 1 when computing the priority LRU stack distance over a random-access trace with 10 million
accesses to 1024 data elements with random priorities. The maximal priority number ranges from 1 to 1 million. The space is measured by
the number of being stored spans. The time is measured by the number of calls to a span update. In most columns, the time and space costs
are close to LRU stack simulation. The highest cost is incurred when the priority is up to 1024, but this worst cost is still far smaller than the
theoretical upperbound.

spans per data item is far smaller than the theoretical upperbound,
37 vs. 2048.

4. Optimal Size-oblivious Hint Insertion
4.1 Cache Size-dependent Hint Insertion
We previously proposed an optimal collaborative caching scheme
called Program-assisted Optimal Caching (P-OPT) for LRU-MRU
cache, in which an OPT cache simulation is used to decide the
access type, LRU or MRU, for each access [11]. The process is
the same as shown in the introduction in Figure 1. By default,
all accesses are initialized as LRU. During the OPT simulation,
an access is changed to MRU if the next access to the same data
element is a cache miss. In other words, an access is selected as
MRU if it does not lead to a data reuse in the OPT cache with the
given cache size. The new trace tagged with the single-bit cache
hints has the same minimal number of misses as OPT.

The details to obtain the optimal cache hints is shown in Fig-
ure 8. We run an offline OPT simulation on a trace from a1 to an

with a given cache size. At aj , we find out that the data element X
is evicted. Then ai, the most recent access to X , is selected to use
MRU.

a1, a2, ..., ai, ......, aj, ..., an

X is accessed X is evicted

no access to X 

in betweenselected MRU

Figure 8. ai is selected to use MRU for a given cache size during
an OPT cache simulation

Compared with OPT, P-OPT encodes the future information by
passing hints to the collaborative LRU-MRU cache. From the point
view of hardware implementation, an LRU-MRU cache is much
simpler than an OPT cache. In P-OPT, the access type for an access
may change for different cache sizes in order to stay optimal. The
hint insertion requires running another OPT cache simulation when
the cache size is changed.

4.2 The Size-oblivious Hint Insertion
In P-OPT, cache hints may change with the cache size. However,
the change is single directional similar to the inclusion property, as
stated in the following Lemma 1.

LEMMA 1. In P-OPT, an access is selected to use MRU in a
smaller cache if it is selected to use MRU in a larger cache.

Proof Assume we have two caches C1 and C2 (|C1| > |C2|) and
an access trace. An access ai to the data element X is selected to
use MRU in C1 in P-OPT, which means that the next access to X
is a miss in an OPT cache with size |C1|. Because of the inclusion
property of OPT, the next access to X is also a miss in |C2|. So ai

is selected as an MRU access in C2 since ai does not bring a cache
reuse in OPT with size |C2|. The lemma is proved.

Lemma 1 indicates that a minimal cache size C exists for every
access, which makes an access be selected to use MRU with the
cache size no greater than C. Theorem 2 shows that the critical
cache size is tightly correlated with the forward OPT stack distance,
which is the minimal cache size to make the next reuse a cache hit
in OPT.

THEOREM 2. In P-OPT, an access is selected to use MRU if and
only if the given cache size is less than its forward OPT stack
distance.

Proof Given an access ai to a data element X , assume ai has
forward OPT stack distance d and the next access to X is aj . From
the definition of forward OPT stack distance, X is evicted between
ai and aj if and only if the OPT cache size is less than d. Hence ai

is selected as MRU if and only if the cache size is less than d. The
theorem is proved.

A special case for Theorem 2 is the last accesses to data, which
have infinite forward OPT stack distances. We use infinity as the
critical cache size to select MRU for these last data accesses since
none of them brings a cache reuse in any cache size.

The critical cache size serves well for all cache sizes to achieve
optimal caching. We may encode forward OPT stack distances
into priority hints for a dynamic cache control scheme, as shown
in Figure 9. Like priority LRU, each access is associated with a
priority hint. The cache logic in hardware dynamically compares
the priority with the cache size and then chooses either the LRU
or the MRU position for placing the accessed data element. As
a result, a program is optimized for all cache sizes instead of a
specific one. We need not know the cache size beforehand and the
optimal hints are oblivious to the cache size.

5. Related Work
Cache hints and replacement policies The ISA of Intel Itanium
extends the interface of the memory instruction to provide source
and target hints [1]. The source hint suggests where data is ex-
pected, and the target hint suggests which level cache the data
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Figure 9. The dynamic cache control applies the optimal priority
hint for a specific cache size.

should be kept. The target hint changes the cache replacement deci-
sions in hardware. IBM Power processors support bypass memory
access that do not keep the accessed data in cache [25]. Wang et al.
proposed an interface to tag cache data with evict-me bits [29]. Our
previous LRU-MRU studies considered single-bit hints for LRU
and MRU [11, 12]. Recently, Ding et al. developed ULCC which
uses page coloring to partition cache to separately store high local-
ity and low locality data [8]. It may be used to approximate LRU-
MRU cache management in software on existing machines. In this
paper, a priority hint may place the accessed data element at an
arbitrary position in cache, which is more general.

Mattson et al. established the property of inclusion and the
metrics of stack distance [19]. The miss ratio of inclusive cache is
monotonically non-increasing as the cache gets larger (whereas the
Belady anomaly, more misses in larger cache, is impossible) [2].
Stack distance can be used to compute the miss ratio for cache
of all sizes. They presented a collection of algorithms based on a
priority list. The LRU stack distance, i.e. reuse distance in short,
can be computed asymptotically faster (in near linear time for a
guaranteed precision) using a (compression) tree [37]. The cost can
be further reduced by sampling [36]. Recent work has developed
multicore reuse distance to model the locality of multi-threaded
programs [24] and the LRU-MRU stack distance to measure the
performance of collaborative caching [12].

In this paper, we generalize the concept of inclusive cache
and establish the new category of non-uniform inclusion. Previous
algorithms cannot handle non-uniform inclusion. We give a new
algorithm based on the notion of spans instead of the priority list or
tree.

Collaborative caching Collaborative caching was pioneered by
Wang et al. [29] and Beyls and D’Hollander [3, 4]. The studies
were based on a common idea, which is to evict data whose for-
ward reuse distance is larger than the cache size. Wang et al. used
compiler analysis to identify self and group reuse in loops [20, 29,
30] and select array references to tag with the evict-me bit. They
showed that collaborative caching can be combined with prefetch-
ing to further improve performance.

Beyls and D’Hollander used profiling analysis to measure the
reuse distance distribution for each program reference. They added
cache hint specifiers on Intel Itanium and improved average perfor-
mance by 10% for scientific code and 4% for integer code [3]. Pro-
filing analysis is input specific. Fang et al. showed a technique that
accurately predicts how the reuse distances of a memory reference
change across inputs [9]. Beyls and D’Hollander later developed a
static analysis called reuse-distance equations and obtained similar
improvements without profiling [4]. Compiler analysis of reuse dis-
tance was also studied by Cascaval and Padua for scientific code [5]
and Chauhan and Shei for Matlab programs [6].

The prior methods used heuristics to identify data in small-size
working sets for caching. It is unclear whether cache utilization
could be further improved. We showed the theoretical potential of
LRU-MRU collaborative caching to achieve optimal cache perfor-
mance [12]. Our approach used the OPT replacement policy to gain
insights into program behavior, as shown in Figure 8. The advan-

tage is that we can partition a large working set and partially cache
it to fully utilize the available cache space.

Two recent papers show the benefits of collaborative caching
on current x86 processors. Yang et al. used non-temporal writes
for zero initialization in JVM to reduce cache pollution [33]. Rus
et al. used non-temporal prefetches and writes to specialize string
operations like memcpy(), based on the data reuse information in
certain static program contexts [23].

Virtual machine, operating system and hardware memory man-
agement Garbage collectors may benefit from the knowledge of
application working set size and the affinity between memory ob-
jects. For LRU cache, reuse distance has been used by virtual ma-
chine systems to estimate the working set size [32] and to group
simultaneously used objects [35]. There have been much research
in operating systems to improve beyond LRU. A number of tech-
niques used last reuse distance instead of last access time in vir-
tual memory management [14, 26, 38] and file caching [15]. The
idea of evicting dead data or least reused data early has been ex-
tensively studied in hardware cache design, including deadblock
predictor [18], forward time distance predictor [10], adaptive cache
insertion [22], less reuse filter [31], virtual victim cache [17], and
globalized placement [34].

These techniques do not require program changes but they could
only collect program information by passive observation. They
were evaluated for specific cache sizes. Our work complements
them in two ways. First in theory, we show the conditions for
these techniques to maintain the inclusion property, for either LRU-
MRU [12] or the general priority in this work. Second in practice,
we show that program information can be used to obtain optimal
caching for caches of all sizes.

Optimal caching Optimal caching is difficult purely at the pro-
gram level. Kennedy and McKinley [16] and Ding and Kennedy [7]
showed that optimal loop fusion is NP hard. Petrank and Rawitz
showed that given the order of data access and cache management,
the problem of optimal data layout is intractable unless P=NP [21].
We showed that collaborative caching, in particular, bypass LRU
and trespass LRU [11], LRU-MRU [12], and now priority LRU can
be used to obtain optimal cache management. Sugumar and Abra-
ham gave an efficient algorithm for simulating OPT [28]. We used
their algorithm in off-line training to select optimal LRU-MRU
hints [12]. With priority LRU, we can now encode optimal hints
for caches of all sizes.

6. Summary
In this paper, we have presented priority LRU and generalized the
theory of collaborative caching. We proved the inclusion property
by a careful consideration of all possible effects of priorities on
cache management. More interestingly, through the theorem (and
an example), we show non-uniform inclusion, which is a new cat-
egory of inclusive cache that has not been explored in the previous
literature. We give an algorithm to compute the priority LRU stack
distance. The algorithm is radically different from previous solu-
tions and can solve the problem of non-uniform inclusion. Finally,
we show that the same priority hints can obtain optimal caching for
all cache sizes, without having to know the cache size beforehand.
This removes a limitation in the previous work and provides new
ways for dealing with the remaining difficulties in practice.
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