
Regression-Based Multi-Model Prediction of
Data Reuse Signature

Xipeng Shen Yutao Zhong Chen Ding

Computer Science Department, University of Rochester
{xshen,ytzhong,cding}@cs.rochester.edu

Abstract

As a locality metric, the distance of data reuses has been used in designing compiler, architecture, and file systems.
Recently, Ding and Zhong described a method that predicts reuse distance histograms across all inputs of a program.
In this paper we extend their method in two ways. First, we consider more than two training inputs using regression
analysis. Second, we use a method called multi-model prediction to overcome the limitation due to small training inputs
or coarse-grain data collection. Compared to Ding and Zhong’s method, the new locality prediction can reduce about half
of the prediction error, remove 95% of space cost, and use much smaller inputs and faster data collection in training.

1 Introduction

As the speed gap between CPU and main memory widens, memory hierarchy has become increasingly important in de-
termining system performance, cost, and energy consumption. Cache performance depends on data locality in programs.
A measure of locality is LRU stack distance or reuse distance, which is the number of distinct elements accessed between
two consecutive uses of the same datum [17, 11]. Reuse distance information has been used in managing various layers
of the memory system including register allocation [15], cache optimization [2, 5, 6, 22], server caching [24], and file
caching [14]. Recently, Ding and Zhong shows that the reuse distance histogram, or reuse signature, of many programs
has a consistent pattern across different inputs [11]. The pattern is a parameterized formula that for a given program input,
it predicts the reuse signature for the corresponding execution. The pattern summarizes program locality and may have
many uses. Zhong et al. showed that a precise signature pattern can accurately predict cache miss rates across all program
inputs [23].

The pattern analysis method given by Ding and Zhong has two important limitations. First, it uses only two training
runs and therefore may be misled by noises from specific executions. Second, the accuracy is limited by the precision of
data collection. Accurate prediction requires using large size program inputs and fine-grained reuse distance histograms.
The space and time cost of the analysis is consequently high, which makes the analysis slower and prohibits simultaneous
analysis of different patterns, for example, patterns of individual data elements.

This paper presents a new set of techniques that overcome these limitations in two ways. First, we use regression to
extract signature pattern from more than two training runs. Second, we employ multiple models (defined later). Next we
describe the basic prediction method and the main factors affecting its accuracy.

1.1 Basic Prediction Method

Given an input of a program, we measure the locality of the execution by the histogram of the distance of all data reuses.
We call it interchangeably as reuse distance histogram or reuse signature of the program execution (see Section 2 for
formal definitions). The prediction method by Ding and Zhong uses a training step to construct a pattern by running two
different inputs of a program. Let s and ŝ be the sizes of the two input data. For each of the reuse distance histogram,
the analysis forms 1000 groups by assigning 0.1% of all memory accesses to each group, starting from the shortest reuse
distance to the largest. We denote the two sets of 1000 groups as 〈g1, g2, · · · , g1000〉 and 〈ĝ1, ĝ2, · · · , ĝ1000〉 and denote the
average reuse distances of gi and ĝi by rdi and r̂di respectively (i = 1, 2, · · · , 1000.) Based on rdi and r̂di, the analysis
classifies group i as a constant, linear, or sub-linear pattern. Group i has a constant pattern if its average reuse distance
stays the same in the two runs, i.e. rdi = r̂di. Group i has a linear pattern if the average distance changes linearly with the

1

change in program input size, i.e. rdi

r̂di

= c + k s
ŝ , where c and k are both constant parameters. Ding and Zhong measured

the size of input data through distance-based sampling [11]. We use the same sampling method in this work.
After the training step, the reuse signature for another input can be predicted by calculating the new distance for each

group according to its pattern. Interested reader can find a more detail discussion of this process in Ding and Zhong’s
paper [11]. Figure 1 shows the flow diagram of their prediction method. We will explain the different types of histograms
in Section 2.

Sample Size 1

Sample Size 2

RF−Histogram 1

RF−Histogram 2

 Patterns

New SampSize

New RD−Histogram

New RF−Histogram

RD−Histogram 1

RD−Histogram 2

Figure 1: The flow diagram of Ding and Zhong’s prediction method, which uses only two training inputs. A RD-Histogram
is a reuse-distance histogram, and a RF-Histogram is a reference histogram. Sample size is the estimated input data size
by sampling.

Note that not all programs have a consistent pattern, and not all patterns are predictable. However, Ding and Zhong
showed that their method can find predictable patterns in a wide range of large, complex programs. The goal of this work
is to improve the analysis accuracy and efficiency for programs that have a predictable pattern.

1.2 Factors Affecting Prediction Accuracy

Three factors strongly affect the prediction accuracy: the number of training inputs, the precision of data collection, and
the complexity of patterns. The number of training inputs needs to be at least two, although using more inputs may allow
more precise recognition of common patterns. The precision of data collection is determined by the number of groups.
Since each group is represented by its average reuse distance, the more groups the analysis uses, the more precise the
reuse distance information is. However, using more groups leads to slower pattern recognition and prediction since the
space and time costs are proportional to the number of groups. The third factor is the complexity of patterns in each group.
If we assume that the entire group has a single pattern, the analysis is a single-model prediction. If we assume that the
group may consist of different subgroups that each may have a different pattern, the analysis is a multi-model prediction.

Single-model prediction has two limitations. First, the accuracy of the prediction is strictly limited by the precision
of data collection, i.e. the number of groups. A large group tends to include subgroups with different patterns, which
breaks the single-model assumption and causes low prediction accuracy. Second, training runs need to have a sufficient
size so that the range of reuse distances in different patterns can be well separated. The larger the input data size is,
the more likely different patterns is separated. If the distances of two patterns are similar, they fall into the same group,
and the prediction cannot tear them apart. Because of the need for large training inputs and number of groups, single-
model prediction usually incurs a large time and space cost. Multi-model prediction, however, may overcomes these two
limitations by allowing sub-portions of a group to have a different pattern.

The paper presents three extensions to the basic method. The first is single-model prediction using more than two
training runs. The next is a set of multi-model prediction methods using different types of reuse distance histograms. It

2

0 5 10 15 20 25
0

10

20

30

40

R
ef

er
en

ce
 p

er
ce

nt
ag

e

Reuse−distance range in log scale

(a)

0 20 40 60 80 100
0

5

10

15

20

Reference partitions

lo
g(

av
er

ag
e

re
us

e−
di

st
an

ce
)

(b)

Figure 2: Reuse-distance Histogram of SP with input of size 283. (a) distance histogram (b) reference histogram

reduces the space cost from O(M) to O(logM), where M is the size of program data. The last is a strategy for choosing
the appropriate histograms based on analytical and experimental results.

The rest of the paper is organized as follows. Section 2 describes the types of histograms used in our prediction.
Section 3 and 4 describe the new regression-based multi-model methods. Followed are the experiment results and
discussions. Section 6 discusses related work, and Section 7 summarizes our findings.

2 Terminology

This section explains the two types of histograms and related terms used in later discussions.

• A Reuse-distance Histogram (RD-Histogram): X-axis gives reuse-distance ranges, and Y-axis gives the percent-
age of data accesses in each distance range. The size of distance ranges can be in linear scale, e.g. [0k, 1k), [1k, 2k),
[2k, 3k), · · ·, or log scale, e.g. [0k, 1k), [1k, 2k), [2k, 4k), [4k, 8k), · · ·, or mixed linear and log scales. Figure 2(a)
shows the reuse-distance histogram of SP in log scale ranges.

• A Reference Histogram (RF-Histogram): X-axis is the groups of data accesses, sorted by the average reuse
distance. The Y-axis is the average reuse distance of each partition. Figure 2(b) is the reference histogram of SP for
a partition of 100 groups. A reference histogram can be viewed as a special type of reuse-distance histogram whose
distance ranges have non-uniform lengths so that each range holds the same number of program data accesses.

The purpose of a reference histogram is for the trade-off between information loss and computation/space efficiency.
For dense regions in the reuse distance histogram, where a large portion of memory accesses have similar reuse distances,
the reference histogram uses short range to increase accuracy. For sparse regions in the reuse distance histogram, the
reference histogram uses large ranges to reduce the total number of ranges.

3 Single-Model Multi-Input Prediction

Using more than two training inputs may produce a better prediction, because it reduces mainly two kinds of noises. One
is brought by the reuse distance measurement. Ding and Zhong used approximation to trade accuracy for efficiency [11].
The approximation brings errors to the reuse distance histogram. The second kind of noise is brought by the input size.
Although distance-based sampling [11] finds a size reflecting the size of a program input, the sampled size is not always
accurate. These noises reduce the accuracy of the prediction.

According to the regression theory, more data can reduce the effect of noises and reveal a pattern closer to the real pat-
tern [19]. Accordingly, we apply a regression method on more than two training inputs. The extension is straightforward.
For each input, we have an equation as follows.

3

di = ci + ei ∗ fi(s) (1)

where di is the average reuse distance of ith reference group when the input size is s, ci and ei are two parameters to be
determined by the prediction method, and fi is one of the following functions of s:

0; s; s1/2; s1/3; s2/3

Given the histograms of two training runs, Ding and Zhong could solve a linear equation, determine the two unknowns
for each group, and calculate the reuse distance histogram for a new input given its input size. Using two training inputs
is sufficient because there are only two unknowns in each model (Equation 1).

While the previous method has two equations, we have more than two equations because of more training inputs. We
use Least square regression [19] to determine the best values for the two unknowns. We use 3 to 6 training inputs in our
experiment. Although more training data can lead to better results, they also lengthen the profiling process. We will show
that a small number of training inputs is sufficient to gain high prediction accuracy.

4 Multi-Model Prediction

A multi-model method assumes that memory accesses in a group can have different models. For example in a histogram,
a bar (group) may contain both a constant model and a linear model.

Figure 3 gives a graphical illustration of the multi-model prediction. We arbitrarily pick one of the training inputs
as the standard input. In this example, s0 is the size of the standard input (the other training inputs are not showed
in the figure.) Its reuse distance histogram, called standard histogram, has 12 groups, and each group consists of two
models—constant and linear models. Together, they form the histogram of s0. Using regression technique on all training
histograms, the standard histogram in Figure 3(a) is decomposed into constant and linear models in Figure 3(b) and 3(c).
The decompose process is described below. During prediction process, the two histograms change to Figure 3(d) and
3(e) respectively according to the size of the new input 8 ∗ s0. Constant histogram keeps unchanged, and the distance of
each data in linear histogram increases to 8 times long. The X-axis is in log scale, so each bar in linear histogram moves
3 ranges right-toward. The reuse distance histogram for the new input is the combination of the new constant and linear
histograms, see Figure 3(f).

Formally, the reuse distance function of a group is as follows.

hi(s) = ϕm1
(s, i) + ϕm2

(s, i) + · · · + ϕmj
(s, i) (2)

where, s is the size of input data, hi(s) is the Y-axis value of the ith bar/group for input of size s, and ϕm1
...ϕmj

are the
functions corresponding to all possible models.

Each hi(s) can be represented as a linear combination of all the possible models of the standard histogram:

ϕm1
(s0, 1), ϕm1

(s0, 2), · · · , ϕm1
(s0, G), ϕm2

(s0, 1), ϕm2
(s0, 2), · · · , ϕm2

(s0, G),
· · · , ϕmj

(s0, 1), ϕmj
(s0, 2), · · · , ϕmj

(s0, G)

where, G is number of groups in standard histogram.
For example, a program has both constant and linear patterns. For easy description, we assume:

range 0: [0,1); range 1: [1,2); range 2: [2,4); range 3: [4,8), · · ·

For another input of size s1 = 3 ∗ s0, we calculate the Y-axis value of range [4, 8) as follows:

h3(s1) = ϕ0(s0, 3) + ϕ1(s0, r)

where, r is range [4
3
, 8

3
). This is because the constant model of range [4, 8) in the standard histogram gives entire con-

tribution, and the linear model of h3(s1) comes from the linear portions in range [4
3
, 8

3
) of standard histogram. ϕ1(s0, r)

can be calculated as follows:

ϕ1(s0, r) = ϕ1(s0, r1) + ϕ1(s0, r2)

where, r1 = [4
3
, 2) and r2 = [2, 8

3
).

We assume the reuse distance has uniform distribution in each range. Thus,

4

ϕ1(s0, r1) = (2−4/3

2−1
)ϕ1(s0, 1) = 2

3
ϕ1(s0, 1)

ϕ1(s0, r2) = (8/3−2

4−2
)ϕ1(s0, 2) = 2

3
ϕ1(s0, 2)

Finally, we calculate h3(s1) as follows:

h3(s1) = ϕ0(s0, 3) + 2

3
ϕ1(s0, 1) + 2

3
ϕ1(s0, 2)

After we represent each hi(s) of all training inputs in the above manner, we obtain an equation group. The unknown
variables are the models in the standard histogram. The equations correspond to the groups in all training histograms.
Regression techniques can solve the equation group. This completes the decomposition process and also completes the
construction of reuse distance predictor. During prediction process, for any input, each of its reuse distance group can be
calculated as a linear combination of standard histogram models in the same manner as in decomposition process. Then,
its reuse distance histogram can be obtained by the combination of all the groups.

One important assumption is that the percentage of memory accesses in each model remains unchanged for different
inputs. There is no guarantee that this is the case, although Ding and Zhong showed that it is an acceptable assumption
for a range of programs including those used in this paper.

A multi-model method does not depend on the type of histograms. It can use distance histograms with log or linear
size groups. It can also use reference histograms. The equations are constructed and solved in the same manner.

We now describe three methods of multi-model prediction. They differ by the type of reuse distance histograms. The
first two methods use reuse distance histograms with log and log-linear scale ranges respectively. The first 13 ranges
in the log-linear scale is in log scale (power-of-two) and the rest have length 2048. The purpose of the log part is to
distinguish groups with short reuse distances. The space and time cost of the second method is O(M), where M is the
size of program data in training runs. The space and time cost of the first method is O(logM), which saves significant
space and time because it has much fewer equations and variables. However, the linear scale has higher precision, which
can produce better results especially when using small size training runs.

The third multi-model method uses a reference histogram, for example, with 1000 groups. Unlike the first two
methods, in this method, the number of equations and variable is the same as the number of groups. We can choose an
arbitrary number. This provides freedom but also raises a problem: how to choose the best number of groups. In fact, the
last method represents as many methods as the maximal number of groups, which is O(N), where N is the number of
memory accesses in the smallest training run. We will see in the evaluation section that the prediction accuracy depends
heavily on the choice of groups.

5 Evaluation

5.1 Experimental Setup

We compare five prediction methods: the single-model two-input method given by Ding and Zhong, the single-model
multi-input regression described in Section 3, and the three multi-model methods described in Section 4. The multi-
input methods use 3 to 6 training inputs. We measure accuracy by comparing the predicted histogram with the measured
histogram for a test input. The definition of accuracy is the same as Ding and Zhong’s [11]. Let xi and yi be the size of
ith groups in the predicted and measured histograms. The cumulative difference, E, is the sum of | yi − xi | for all i. The
accuracy A is (1 − E/2), which intuitively is the overlap between the two histograms.

Table 1 lists the names of six test programs, their descriptions, and the sources. Table 2 and Figure 4 show the accuracy
of the five approaches on six benchmarks when training and testing inputs are large. In the table, Max. Inputs Num. is the
maximal number of inputs among all the five methods for each benchmark. In our experiment, for each benchmark, the
size of the biggest training input is the same for all five methods. This is to make the comparison fair.

5.2 Results on Large Inputs

Using a large input has two benefits. First, different models stay separated from each other. For example, suppose constant
and linear models co-exist in a range r when the input size is s0. For a larger input whose size is 1024 ∗ s0, the linear
model will move far out of range r, but constant model remains unchanged. Thus, there will not be an overlap of models.
The separation of models is important for the two single-model methods since they assume that only one model exists in
each range. The second benefit is that the percentage of individual models is more likely to remain constant when the
input size is large. This is required by both single-model and multi-model based methods.

5

Input Size 8*S0

Combine

Input Size S0

Decompose

Input Size Change Input Size Change

(a)

(b) (c)

(d) (e)

(f)

Training
Process

Prediction
Process

0
5

10
15
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

ef
er

en
ce

s Constant Pattern

0
5

10
15
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

ef
er

en
ce

s Constant Pattern

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

ef
er

en
ce

s Linear Pattern

Constant Pattern

0
5

10

15
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

ef
er

en
ce

Linear Pattern

Constant Pattern

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No.(log)

%
 R

ef
er

en
ce

s

Linear Pattern

0
5

10
15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reuse Distance Range No. (log)

%
 R

ef
er

en
ce

s Linear Pattern

Figure 3: An example for multi-model reuse signature prediction. Figure (a) is the reuse distance histogram of the
execution on standard input s0. By using regression technique on all training histograms, the standard histogram is
decomposed into two histograms—constant and linear histograms in Figure (b) and (c). During prediction process, the
two histograms change to Figure (d) and (e) respectively according to the size of the new input 8 ∗ s0. Constant histogram
keeps unchanged, and the distance of each data in linear histogram increases to 8 times long. The X-axis is in log scale, so
each bar in linear pattern moves 3 ranges right-toward. The reuse distance histogram for the new input is the combination
of the new constant and linear histograms, showed in Figure (f).

Table 1: Six benchmark programs
Benchmark Description Suite

Applu solution of five coupled nonlinear PDE’s Spec2K
SP computational fluid dynamics (CFD) simulation NAS

FFT fast Fourier transformation
Tomcatv vectorized mesh generation Spec95

GCC based on the GNU C compiler version 2.5.3 Spec95
Swim finite difference approximations for shallow water equation Spec95

6

Table 2: Comparison of prediction accuracy by five methods
Bench- Single Model Multi-model Max.
mark 2 inputs >2 inputs Log log-Linear Fixed Inputs

RF-Hist. RF-Hist. RD-Hist. RD-Hist. RF-Hist. Num.∗
Applu 70.49 97.40 93.65 93.90 90.83 6
SP 91.08 96.69 94.20 94.37 90.02 5
FFT 73.28 93.30 93.22 93.34 95.26 3
Tomcatv 92.32 94.38 94.70 96.69 88.89 5
GCC 98.50 97.95 98.83 98.91 93.34 4
SWIM 93.89 94.05 84.67 92.20 72.84 5
Average 86.59 95.63 93.21 94.90 88.53 4.7

50

55

60

65

70

75

80

85

90

95

100

Applu SP FFT Tomcatv GCC SWIM Average

Benchmarks

A
c

c
u

ra
c

y
(%

)

SM-2

SM-m

MMLg

MMLn

MMRF

Figure 4: Prediction accuracy shown as a bar graph.

7

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

Reuse Distance Number in Linear Scale

R
ef

er
en

ce
 P

er
ce

nt
ag

e
Figure 5: The reuse distance histogram curve of SWIM

The first column of Table 2 gives results obtained by Ding and Zhong’s original method. Other columns show the
accuracy of the new methods. All methods are based on histograms given by the same reuse-distance analyzer and the
input sizes given by the same distance-based sampler. The numbers of the first column is slightly different from Ding and
Zhong’s paper [11], because they used a different reuse-distance analyzer than we do. Different analyzers lose precision
in slightly different ways. The sampled input size is also slightly different because of this. From Table 2, we make the
following observations:

• For most programs, all four new approaches produce better results than Ding and Zhong’s method. Therefore,
regression on multiple inputs indeed improves prediction accuracy.

• Except for SWIM, multi-model logarithmic scale method is comparable to the best predictors, although it uses 95%
less storage space in most analysis. It is the most efficient among all methods.

• The performance of multi-model log-linear scale method is slightly better than multi-model logarithmic scale
method for the first four benchmarks and much better for SWIM. However, log-linear scale costs more than 20
times in space and computations than logarithmic scale for most programs.

• The multi-model method based on reference histograms outperforms single-model two-input method for two out of
six programs. It gives the highest accuracy for FFT . As we explained in Section 4, this approach is very flexible
and its performance depends heavily on the number of groups. In our experiment, we tried 7 different numbers of
groups for each benchmark and presented the highest accuracy, but finding the maximal accuracy requires trying
thousands of choices. The result for FFT shows the potential of this method, but the overhead of finding the best
result is prohibitively high.

SWIM is a special program. The multi-model logarithmic scale has poor result for SWIM, but multi-model log-linear
scale and single-model methods give very accurate predictions. Figure 5 shows the reuse distance histogram of SWIM.
Note it has a high peak in a very small reuse distance range. Multi-model logarithmic scale uses log scale ranges. It
assumes that the reuse distance is evenly distributed in each range, which brings significant noise for the analysis of
SWIM. Log-linear scale methods alleviate the problem because their histograms are much more precise.

5.3 Results on Small Inputs

As we explained at the beginning of Section 5.2, different patterns may overlap with each other when the input size is
small. In this case, single-model methods are not expected to perform well, while multi-model methods should work
as well as in large input sizes. But these methods still require that the percentage of each model keeps unchanged
for different input for each reuse distance range. Table 3 shows the performance of the four methods on small size
inputs of SP benchmark (We do not show the results of the multi-model method using reference histograms because
it is difficult to tune). The results show that multi-model log-linear scale method is significantly more accurate than
other methods. The good accuracy shows that the percentage of each model remains unchanged even for small inputs.

8

The performance of multi-model logarithmic scale method is worse than the log-linear scale method because of the low
precision in logarithmic scale histograms. Although multi-model log-linear scale method needs more computation and
more space than the logarithmic scale method, this cost is less an issue for small-size inputs.

Table 3: Accuracy for SP with small-size inputs
largest training testing input single-model single-model multi-model multi-model
input size size 2 inputs >2 inputs log scale log-linear scale
83 103 79.61 79.61 85.92 89.5

123 79.72 75.93 79.35 82.84
143 69.62 71.12 74.12 85.14
283 64.38 68.03 76.46 80.3

103 123 91.25 87.09 84.58 90.44
143 81.91 83.20 78.52 87.23
163 77.28 77.64 76.01 84.61

163 283 75.93 74.11 77.86 83.50

5.4 Comparison

We compare the five methods in Table 4, which uses the following notations:

SM-2: Ding and Zhong’s original method

SM-m: Extended version of SM-2 on multiple inputs

MMLg: Multi-model log scale method

MMLn: Multi-model log-linear scale method

MMRF: Multi-model on reference histogram

Table 4: Features of Various Reuse Distance Prediction Methods
Approach SM-2 SM-m MMLg MMLn MMRF
Input No. 2 >2 >2 >2 >2
Model No.
per Range 1 1 ≥1 ≥1 ≥1
Histogram Ref. Ref. Dist. Dist. Ref.
Granularity log-linear log-linear log log-linear log-linear

A comparison of the four new approaches is as follows.

• SM-m and MMRF are based on reference histograms while MMLg and MMLn are based on reuse distance his-
tograms. Thus, MMLg and MMLn do not need to transform between the two histograms as SM-m and MMRF
do.

• MMLg saves 20 times in space and computation compared to SM-m and MMLn. MMRF can also save cost because
it can freely select the number of groups, but it is hard to pick the right number.

• MMLg loses information because it assumes a uniform distribution in large ranges. It affects the prediction accuracy
for programs like SWIM , which has a high peak in a very small range. In that case, SM-m and MMLn produce
much better results because they use shorter ranges.

• MMLn predicts with higher accuracy than SM-m does if multiple models overlap. Overlapping often happens for
inputs of small size, for which MMLg cannot perform well because of its loss of information.

9

Summary The experiments show that regression on more than two training inputs give significant improvement than the
method using two inputs. Single-model multi-input, and multi-model logarithmic and log-linear scale methods produce
comparable results for most programs when the input size is large. Their overall performance is the best among all five
approaches. The multi-model method using reference histograms method is flexible but hard to control. Multi-model
log-linear scale method can produce better results than multi-model logarithmic scale method. But the former needs over
20 times of more space and time than the latter, and the performance is not significantly different in most programs when
the input size is large. For input of small size, the log-linear scale method is clearly the best among all methods.

6 Related Work

Data reuse analysis can be performed mainly in three ways: by a compiler, by profiling or by run-time sampling. Compiler
analysis can model data reuse behavior for basic blocks and loop nests. An important tool is dependence analysis. Allen
and Kennedy’s recent book [1] contains a comprehensive discussion on this topic. Various types of array sections can
measure data locality in loops and procedures. Such analysis includes linearization for high-dimensional arrays by Burke
and Cytron [7], linear inequalities for convex sections by Triolet et al. [20], regular sections by Callahan and Kennedy [8],
and reference list by Li et al. [16]. Havlak and Kennedy studied the effect of array section analysis on a wide range of
programs [12]. Cascaval extended dependence analysis to estimate the distance of data reuses [9]. Other locality analysis
includes the matrix model by Wolfe and Lam [21], the memory order by McKinley et al. [18], and a number of recent
studies based on more advanced models.

Balasundaram et al. presented a performance estimator for parallel programs [4]. A set of kernel routines include
primitive computations and common communication patterns are used to train the estimator. While their method trains
for different machines, our scheme trains for different data inputs. Compiler analysis is not always accurate for programs
with input-dependent control flow and dynamic data indirection. Many types of profiling analysis have been used to study
data access patterns. However, most past work is limited to using a single inputs or measuring correlation among a few
executions. The focus in this paper is to predict changes for new data inputs.

Run-time analysis often uses sampling to reduce the overhead. Ding and Kennedy sampled program data [10], while
Arnold and Ryder sampled program execution [3]. Run-time analysis can identify patterns that are unique to a program
input, while training-based prediction cannot. On the other hand, profiling analysis can analyze all accesses to all data.

Finally we discuss previous work in using the reuse distance. Reuse distance has been used by architecture and
compiler researchers because it gives more information about program locality than a miss rate. For example, Huang
and Shen used time distance between reuses to composite value reuse profile and study the bandwidth requirement of
programs [13]. Li et al. defined reuse distance on values to study the limit of register reuse [15]. Beyls and D’Hollander
used profiling to collect reuse distance information and generate placement hints for data [6]. They reported a performance
improvement of 7% on an Itanium processor. Reuse distance prediction would extend these studies to all program inputs,
not just the profiled ones.

For software managed cache, Jiang and Zhang developed an efficient buffer cache replacement policy, LIRS, based on
the assumption that the reuse distance of cache blocks is stable over certain time [14]. Zhou et al. divided the second-level
server cache into multiple buffers dedicated to blocks of different reuse intervals [24]. Both studies showed that reuse
distance based management outperforms single LRU cache. Reuse distance prediction may be used in this context to
classify file access traces based on their access patterns.

7 Conclusions

We draw the following conclusions.

1. Regression significantly improves the accuracy of reuse distance prediction, even with only a few training inputs.

2. The multi-model method using logarithmic histograms can save 95% space and computations and still keep the best
accuracy in most programs, although it is not as consistent as those methods using log-linear histograms. Space
efficiency is necessary for our future work to analyze individual patterns of different program data.

It is a good choice when efficiency is important.

3. The multi-model method using log-linear scale histograms is the best for small input sizes, where different models
tend to overlap each other. It is also efficient because the input size is small.

10

4. The single-model multi-input method has the highest accuracy, but it cannot accurately model small-size inputs. It
is the best choice when one can tolerate a high profiling cost.

Reuse distance prediction allows locality analysis and optimization to consider program inputs other than profiled
ones. we have presented an extensive study and a careful comparison of major prediction methods. The techniques
discussed in this work may also help to solve other prediction problems, especially in program analysis and transformation.

References

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, October 2001.

[2] G. Almasi, C. Cascaval, and D. Padua. Calculating stack distances efficiently. In Proceedings of the first ACM
SIGPLAN Workshop on Memory System Performance, Berlin, Germany, June 2002.

[3] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented code. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation, Snowbird, Utah, June 2001.

[4] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator to guide data partitioning
decisions. In Proceedings of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, Williamsburg, VA, April 1991.

[5] K. Beyls and E.H. D’Hollander. Reuse distance as a metric for cache behavior. In Proceedings of the IASTED
Conference on Parallel and Distributed Computing and Systems, August 2001.

[6] K. Beyls and E.H. D’Hollander. Reuse distance-based cache hint selection. In Proceedings of the 8th International
Euro-Par Conference, Paderborn, Germany, August 2002.

[7] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In Proceedings of the SIGPLAN
’86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.

[8] D. Callahan, J. Cocke, and K. Kennedy. Analysis of interprocedural side effects in a parallel programming environ-
ment. Journal of Parallel and Distributed Computing, 5(5):517–550, October 1988.

[9] G. C. Cascaval. Compile-time Performance Prediction of Scientific Programs. PhD thesis, University of Illinois at
Urbana-Champaign, 2000.

[10] C. Ding and K. Kennedy. Improving cache performance in dynamic applications through data and computation
reorganization at run time. In Proceedings of the SIGPLAN ’99 Conference on Programming Language Design and
Implementation, Atlanta, GA, May 1999.

[11] C. Ding and Y. Zhong. Predicting whole-program locality with reuse distance analysis. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation, San Diego, CA, June 2003.

[12] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. IEEE Transac-
tions on Parallel and Distributed Systems, 2(3):350–360, July 1991.

[13] S. A. Huang and J. P. Shen. The intrinsic bandwidth requirements of ordinary programs. In Proceedings of the 7th In-
ternational Conferences on Architectural Support for Programming Languages and Operating Systems, Cambridge,
MA, October 1996.

[14] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference recency set replacement to improve buffer cache per-
formance. In Proceedings of ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
Marina Del Rey, California, June 2002.

[15] Z. Li, J. Gu, and G. Lee. An evaluation of the potential benefits of register allocation for array references. In
Workshop on Interaction between Compilers and Computer Architectures in conjuction with the HPCA-2, San Jose,
California, February 1996.

11

[16] Z. Li, P. Yew, and C. Zhu. An efficient data dependence analysis for parallelizing compilers. IEEE Transactions on
Parallel and Distributed Systems, 1(1):26–34, January 1990.

[17] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation techniques for storage hierarchies. IBM System
Journal, 9(2):78–117, 1970.

[18] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop transformations. ACM Transactions
on Programming Languages and Systems, 18(4):424–453, July 1996.

[19] J. O. Rawlings. Applied Regression Analysis: A Research Tool. Wadsworth and Brooks, 1988.

[20] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALL statements. In Proceedings of the SIGPLAN
’86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.

[21] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the SIGPLAN ’91 Conference on
Programming Language Design and Implementation, Toronto, Canada, June 1991.

[22] Y. Zhong, C. Ding, and K. Kennedy. Reuse distance analysis for scientific programs. In Proceedings of Workshop
on Languages, Compilers, and Run-time Systems for Scalable Computers, Washington DC, March 2002.

[23] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate preidiction across all program inputs. In Proceedings of the
12th International Conference on Parallel Architectures and Compilation Techniques, New Orleans, Louisiana,
September 2003.

[24] Y. Zhou, P. M. Chen, and K. Li. The multi-queue replacement algorithm for second level buffer caches. In Proceed-
ings of USENIX Technical Conference, June 2001.

12

