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Abstract. To improve performance, data reorganization needs locality models
to identify groups of data that have reference affinity. Much past work is based
on access frequency and does not consider accessing time directly. In this paper,
we propose a new model of reference affinity. This model considers the distance
between data accesses in addition to the frequency. Affinity groups defined by
this model are consistent and have a hierarchical structure. The former property
ensures the profitability of data packing, while the latter supports data packing
for storage units of different sizes. We then present a statistical clustering method
that identifies affinity groups among structure fields and data arrays by analyzing
training runs of a program. When used by structure splitting and array regrouping,
the new method improves the performance of two test programs by up to 31%.
The new data layout is significantly better than that produced by the programmer
or by static compiler analysis.

1 Introduction

The widespread use of hierarchical memory on today’s PCs and workstations is based
on the assumption that programs have locality. At the early days of virtual memory
design, Denning defined locality as “a concept that a program favors a subset of its
segments during extended intervals (phases)” and locality set as “the set of segments
needed in a given program phase” [9]. Locality set measures the memory demand but
does not suggest how to improve it. Abu-Sufah, working with Kuck, used data depen-
dence information to estimate program locality and to reorder the program execution for
better locality [1]. Thabit, working with Kennedy, analyzed the access affinity among
data elements and used data placement to improve locality [32]. Subsequent research
has examined a great number of locality models and their use in computation reorder-
ing, data reordering, or their combination.

In this paper we restrict our attention to locality models that are used in data trans-
formation. Data placement improves memory performance by grouping useful data into
the same or adjacent cache blocks or memory pages. On today’s high-end machines
from IBM, SUN, and companies using Intel Itanium and AMD processors, the largest
cache in the hierarchy is composed of blocks of no smaller than 64 bytes. If only one
four-byte integer is useful in each cache block, 94% of cache space would be occupied
by useless data, and only 6% of cache is available for data reuse. A similar issue exists
for memory pages, except that the utilization problem can be much worse. By group-
ing useful data together, data placement can significantly improve cache and memory
utilization.



Data placement needs some model of reference affinity to tell which data are useful
and should be grouped together. The past models are based on the access frequency.
Thabit and many others used the frequency of data pairs called access affinity [32].
Chilimbi used the frequence of data “streams”, which are subsequences of data ac-
cess [4]. The frequency model does not consider time of the access. For example,
suppose that a program executes in three phases that frequently access three data pairs
x and y, y and z, and z and x respectively. If we use only frequency information, we
may group all three elements into the same cache block, although they are never used
together. The problem becomes worse in grouping for larger storage units such as a
memory page because the chance of grouping unrelated data is much greater. In 1999,
Ding and Kennedy used a model to find arrays that are always accessed together [11].
However, the compiler-based model does not address locality in programs with general
data and complex control flow.

In this paper, we describe a new model of reference affinity. A set of data have
reference affinity if they are always used together by a program. We say that they are in
the same affinity group. This reference affinity model has two unique properties that are
important for data placement. The first is consistency—the group of data elements are
always accessed together. Placing group data in the same cache block always guarantees
high space utilization. We will later define what we mean by “accessed together” and
show how the consistency requirement can be relaxed to consider partial utilization of
cache.

The second property is that the model has a hierarchical structure. The largest group
is the set of all program data, if we treat the entire execution as one unit of time. As we
change the granularity of time, we find a decomposition of program data into groups
of smaller sizes until the extreme case when each data element is a group. Hierarchical
groups allow us to fully utilize cache hierarchy. An affinity group used in cache-block
packing needs at most a dozen elements, while a group used for a memory page may
need over one thousand elements. These two properties distinguish this reference affin-
ity model from other existing models especially frequency-based models.

The rest of this paper is organized as follows. We first define reference affinity
and prove its consistency and hierarchical properties. We describe a new method for
analyzing reference affinity at the source level and use it to improve cache utilization.
This research is still in progress. We have not formulated all extensions of the basic
concepts, nor have we evaluated our method on a broad class of programs or against
alternative approaches. This is a preliminary report of our current findings.

2 Reference Affinity

This section first defines three preliminary concepts and gives two examples of our
reference affinity model. Then it presents its formal definition and proves its properties
including consistent affinity and hierarchical organization.

An address trace or reference string is a sequence of accesses to a set of data ele-
ments. If we assign a logical time to each access, the address trace is a vector indexed
by the logical time. We use letters such as x, y, z to represent data elements, subscripted



symbols such as ax, a′

x to represent accesses to a particular data element x, and array
index such as T [ax] to represent the logical time of an access ax on trace T .

The volume distance between two accesses, ax and ay (T [ax] < T [ay]), in a trace T

is the number of distinct data elements accessed in times T [ax], T [ax]+1, . . . , T [ay]−1.
We write it as dis(ax, ay). If T [ax] > T [ay], we let dis(ax, ay) = dis(ay, ax). If
T [ax] = T [ay], dis(ax, ay) = 0. The volume distance measures the volume of data
accessed between two points of a trace. It is in contrast with the time distance, which
is the difference between the logical time of two accesses. For example, the volume
distance between the accesses to a and c in trace abbbc is two because two distinct
element is accessed in abbb. Given any three accesses in time order, ax, ay , and az , we
have dis(ax, az) ≤ dis(ax, ay) + dis(ay, az), because the cardinality of the union of
two sets is no greater than the sum of the cardinality of each set.

Mattson defined the volume distance between a pair of data reuses as LRU stack
distance [23]. Volume distance can be measured in the same way as stack distance. Ding
and Zhong recently gave a fast analysis technique that can measure volume distance in
traces with tens of billions of memory accesses to hundreds millions of data [13]. We
use Ding and Zhong’s method in our experimental study, which will be presented in
Section 4.

Based on the volume distance, we define a linked path on a trace. There is a linked
path from ax to ay (x 6= y) if and only if there exist k accesses, ax1

, ax2
, . . . , axk

,
such that (1) dis(ax, ax1

) ≤ d ∧ dis(ax1
, ax2

) ≤ d ∧ . . . ∧ dis(axk
, ay) ≤ d and (2)

x1, x2, . . . , xk, and x and y are all different data elements. In other words, a linked
path is a sequence of accesses to different data elements, and each link (between two
consecutive members of the sequence) has a volume distance no greater than d. We call
d the link length. We will later restrict x1, x2, . . . , xk to be members of some set S. If
so, we say that there is a linked path from ax to ay with link length d for set S.

We now explain reference affinity with two example address traces in Fig. 1. The
“...” represents accesses to other data elements other than w, x, y, and z. In the first
example, accesses to x, y, and z are in three time ranges. They have consistent affinity
because they are always accessed together. They belong to the same affinity group. The
consistency is important for data placement. For example, x and w are not always used
together, then putting them into the same cache block would waste cache space when
only one of the two is accessed. The example shows that finding this consistency is not
trivial. The accesses to the three data elements appear in different orders, with different
frequency, and mixed with accesses to other data. However, one property holds in all
three time ranges—the accesses to the three elements are connected by a linked path
with a link length of at most 2.

As we will prove later, affinity groups are parameterized by the link length d and
for each d, they form a partition of program data. The second example in Fig. 1 shows
that group partition has a hierarchical structure for different link lengths. The affinity
group with the link length of 2 is {w, x, y, z}. If we reduce the link length to 1, the two
new groups will be {w, x} and {y, z}. The structure is hierarchical with respect to the
link length: groups at a smaller link length are subsets of groups at a greater link length.
The hierarchical structure is useful in data placement because it may find different-sized
affinity groups that match the capacity of the multi-level cache hierarchy.



xyz ... xwzzy ... yzvvvvvx ...

(1) The affinity group {x,y,z} with link length d = 2

wxwxuyzyz ... zyzyvwxwx ...

(2) The affinity group {w,x,y,z} at d=2 becomes two groups {w,x} and {y,z} at d=1

Fig. 1. Examples of reference affinity model and its properties

We now present the formal definition of reference affinity.

Definition 1 Strict Reference Affinity. Given an address trace, a set G of data ele-
ments is a strict affinity group (i.e. they have reference affinity) with the link length d if
and only if

1. for any x ∈ G, all its accesses ax must have a linked path from ax to some ay for
each other member y ∈ G, that is, there exist different elements x1, x2, . . . , xk ∈ G

such that dis(ax, ax1
) ≤ d ∧ dis(ax1

, ax2
) ≤ d ∧ . . . ∧ dis(axk

, ay) ≤ d

2. adding any other element to G will make Condition (1) impossible to hold

The following theorem proves that strict affinity groups are consistent because they
form a partition of program data. In other words, each data element belongs to one and
only one affinity group.

Theorem 1 Given an address trace and a link length d, the affinity groups defined by
Definition 1 form a unique partition of program data.

Proof. We show that any element x of program data belongs to one and only one affinity
group at a link length d. For the “one” part, observe that Condition (1) in Definition 1
holds trivially when x is the only member of a group. Therefore any element must
belong to some affinity group.

We prove the “only-one” part by contradiction. Suppose x belongs to G1 and G2

(G1 6= G2). Then we can show that G3 = G1 ∪G2 satisfies Condition (1). For any two
elements y, z ∈ G3, if both belong to G1 and G2, then Condition (1) holds.

Without loss of generality, assume y ∈ G1∧y 6∈ G2 and z ∈ G2∧z 6∈ G1. Because
y, x ∈ G1, any ay , must have a linked path to an ax, that is, there exist y1, . . . , yk ∈ G1

and an access ax such that dis(ay, ay1
) ≤ d∧ . . .∧dis(ayk

, ax) ≤ d. Similarly, there is
a linked path for this ax to an az because x, z ∈ G2, that is, there exist z1, . . . , zm ∈ G2

and an access az such that dis(ax, az1
) ≤ d ∧ . . . ∧ dis(azm

, az) ≤ d.
If y1, . . . , yk 6∈ {z1, . . . , zm}, then there is a linked path from ay to some az . Sup-

pose y1, . . . , yi−1 6∈ {z1, . . . , zm} but yi = zt. Then we have a linked path from
ay to ayi

. Since yi = zt ∈ G2, there is a linked path from yi to z, that is, there
exist z′

1
, z′

2
, . . . , z′n ∈ G2 such that dis(ay, ay1

) ≤ d ∧ . . . ∧ dis(ayi1
, ayi

) ≤ d ∧
dis(ayi

, az′

1
) ∧ . . . ∧ dis(a′

zn
, az) ≤ d. Now yi belongs to G1 ∩ G2, just like x. We



have come back to the same situation except the linked path from ay to ayi
is shorter

than the path from ay to ax. We repeat this process. If y1, . . . , yi−1 6∈ {z′
1
, . . . , z′n},

then we have a linked path from ay to az . Otherwise, there must be yj ∈ {z′
1
, . . . , z′n}

for some j < i. The process cannot repeat for ever because each step shortens the path
from y to the next chosen access by this process. It must terminate in a finite number of
steps. We then have a linked path from ay to az in G3. Therefore, Condition (1) always
hold for G3. Since G1, G2 ⊂ G3, they are not the largest sets that satisfy Condition
(1). Therefore, Condition (2) does not hold for G1 or G2. A contradiction. Therefore, x

belongs to only one affinity group, and affinity groups form a partition.
For a fixed link length, the partition is unique. Suppose more than one types of

partition can result from Definition 1, then some x belongs to G1 in one partition and
G2 in another partition. As we have just seen, this is not possible because G3 = G1∪G2

satisfies Condition (1) and therefore neither G1 nor G2 is an affinity group.

As we just proved, reference affinity is consistent because all members will always
be accessed together. The consistency means that packing data in an affinity group will
always improve cache utilization. In addition, the group partition is unique because each
data element belongs to one and only one group for a fixed d. The uniqueness removes
any possible conflict, which would happen if a data element could appear in multiple
affinity groups.

Next we prove that strict reference affinity has a hierarchical structure— an affinity
group with a shorter link length is a subset of an affinity group with a greater link length.

Theorem 2 Given an address trace and two distances d and d′ (d < d′), the affinity
groups at d form a finer partition of affinity groups at d′.

Proof. We show that any affinity group at d is a subset of some affinity group at d′.
Let G be an affinity group at d and G′ be the affinity group at d′ that overlaps with G

(G ∩ G′ 6= ∅). Since any x, y ∈ G are connected by a linked path with link length d,
they are connected by a linked path with a larger link length d′. According to the proof
of Theorem 1, G∪G′ is an affinity group at d′. G must be a subset of G′; otherwise G′

is not an affinity group because it can be expanded while still guaranteeing Condition
(1).

Finally, we show that elements of the same affinity group is always accessed to-
gether. When one element is accessed, all other elements will be accessed within a time
range with a bounded volume distance.

Theorem 3 Given an address trace with an affinity group G at link length d, any time
an element x of G is accessed at ax, there exists a time range that includes ax and at
least one access to all other members of G, and the volume distance of the time range
is no greater than 2d|G| + 1, where |G| is the number of elements in the affinity group.

Proof. According to Definition 1, for any y in G, there is a linked path from ax to
some ay . Sort these accesses in time order. Let aw be the earliest and av be the latest in
the trace. There is a linked path from aw to ax. Let the sequence be ax1

, ax2
, . . . , axk

.
The volume distance from aw to ax is dis(aw, ax). It is no greater than dis(aw, ax1

) +



dis(ax1
, ax2

)+ . . .+dis(axk
, ax), which is (k+1)d ≤ |G|d. The bound of the volume

distance from ax to av is the same. Considering that av needs to be included in the time
range, the total volume distance is at most 2d|G| + 1.

The strict affinity requires that members of an affinity group are always accessed
together. In many cases, a group of data may often be accessed together but not always.
We can relaxed the first condition to require a group member to be accessed with other
members k% of the time instead of all the time. The formal definition is below. The
only change is the first condition.

Definition 2 Partial Reference Affinity Given an address trace, a set G of data ele-
ments is a partial (k%) affinity group with the link length d if and only if

1. for any x ∈ G, at least k% accesses ax has a linked path from ax to some ay for
each other member y in G

2. adding any other element to G will make Condition (1) impossible to hold

Partial affinity groups do not produce unique partition of program data. The struc-
ture is not strictly hierarchical. The loss in consistency and organization depends on k.
As on-going work, we are currently quantifying the bound of this loss as a function of
k.

3 Clustering Analysis

The purpose of clustering analysis is to identify affinity groups. Data elements that tend
to be accessed simultaneously should be clustered into the same group. We use k-means
and its extension, x-means, to statistically measure the similarity of the reuse behavior
of individual data elements and do the clustering.

K-means is a popular statistical clustering algorithm. It was first proposed by Mac-
Queen [22] in 1967. The optimization criterion implied in k-means is sum-of-squares
criterion [16]. The aim is to minimize the total within-group sum of squares. The ba-
sic idea of the algorithm is an iterative regrouping of objects until a local minimum is
reached[18]. A sketch of the algorithm is as the follows:

1. Initialize with arbitrarily selected k centroids for k groups;
2. Assign each object to the closest centroids;
3. For each group, adjust the centroid to be the point denoted by the means of all

objects assigned to that group;
4. If there are any changes in step 2 or 3, go to step 2; otherwise, stop.

One problem of k-means is that the value of k need to be specified at the beginning.
For our affinity analysis, we may not know the optimal number of groups at the first
place. Therefore, we also apply the extension of k-means, x-means [27] in our analysis.
X-means relies on BIC (Bayesian Information Criterion) to compare different cluster-
ings formed for different k’s. Based on BIC calculation, it approximately measures the



probability of each clustering given the original data set. Then the one with the highest
probability is chosen.

According to the definition given in Section 2, an accurate way to identify affinity
groups would be recording and comparing the reference trace of each data element.
However, the time and space overhead of this approach would be high. Therefore, we
propose an approximate estimation of affinity groups according to the reuse distance
distribution of individual data elements. Reuse distance is equivalent to volume dis-
tance between two adjacent reuses to the same datum. We use the efficient measurement
described in [13] to collect reuse distance information. For an array, we do not distin-
guish references to different array elements but view the whole array as a single data
element. For a structure, we consider the accumulated reuse distance distributions of
the accesses to each structure field of all instances of the structure. For example, a tree
structure composed of two fields left and right will be considered two data elements.
No matter how many objects of this structure type will be dynamically allocated, the
references to the first field of these objects will always be counted as the accesses to
the first data element. The same rule is applied to the references to the second field of
allocated objects.

For any datum, the whole reuse distance scope for one execution is from zero to
the maximal reuse distance that occurs in the execution. We divide this scope into a
set of ranges, each in the form of [d1, d2), where d1, d2 are two reuse distance values
(d1 ≤ d2). Then for each range, we count the number of references whose reuse dis-
tance falls into that range and calculate the average distance of these reuses. The set
composed of the number of references within each range forms a counter vector. The
set of the average distance calculated for each range forms a distance vector. These two
vectors are collected for every data element that we target to be grouped. They each
describes the reuse behavior of the corresponding data element by locating them in an
N dimensional space, while N is the number of reuse distance ranges considered. Since
references with a long reuse distance have more significant effect on performance, we
emphasize on such references in clustering analysis. For all experiments reported in
this paper, only references with a reuse distance longer than 2048 are used in clustering
and the reuse distance ranges are divided linearly with a constant length of 2048. In
another word, the reuse distance ranges we considered in clustering analysis begin with
[2048, 4096) and go on with [4096, 6144), [6144, 8192), ..., and so forth.

An example with the above setting is given in Table 1. Suppose there are 10 reuses
to the left field of the instances of a tree structure. Their reuse distances are (sorted in-
crementally): {2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000}. We will
construct 3 reuse distance ranges for this field and Table 1 describes the statistics col-
lected for each range. The last two columns of the table list the two vectors to be clus-
tered as (4, 4, 2) and (3250, 5250, 6750) respectively.

Our overall algorithm is shown in Fig. 2.

4 Evaluation

In this section, we measure the effect of the affinity group clustering by reorganizing
data layout according to clustering results and comparing performance changes.



Table 1. Example of statistics collected for each data element and used in clustering

Range No. Range scope Reuse distance set No. reuses Avg. reuse distance
1 [2048, 4096) {2500, 3000, 3500, 4000} 4 3250
2 [4096, 6144) {4500, 5000, 5500, 6000} 4 5250
3 [6144, 8192) {6500, 7000} 2 6750

algorithm ClusteringAnalysis
input: V Data: reuse distance distribution vectors for each data elements
output: optimal data grouping
begin

Apply x-means on V Data, K = No. of clusters recommended by x-means;
for (i = K-1 ; i<K+1;i++)

Apply k-means on V Data with i as the specified No. of clusters;
end for
Try training runs with all groupings found by x-means and k-means;
Compare performance of training runs and find the optimal data grouping;

end
end algorithm

Fig. 2. Clustering analysis for data grouping

Two Test Programs We test on two different programs: Cheetah and Swim. Cheetah

is a cache simulator written in C included in SimpleScalar suite 3.0. It constructs a splay
tree to store and maintain the cache content. The tree structure of Cheetah is composed
of seven fields. In our experiments, we check the reuse behavior of each individual field
within the tree structure and cluster them into groups. According to different clustering,
we implement different versions of structure splitting on the source file and compare
their performance. Swim from Spec95 calculates finite difference approximations for
shallow water equation. The reuse distance distributions of the fourteen arrays of real
type in this Fortran program are collected and used in clustering. Then, the source file
is changed by merging arrays clustered in the same group into a single array. Again, the
performance of different versions are compared. These experiments also explore the
potential uses and benefits of data clustering based on locality behaviors.

Clustering Methods We use the k-means and x-means analyzing tool implemented by
Pelleg and Moore at Carnegie Mellon University [27]. Each data object to be clustered
is represented by a set of feature values, each collected for a given reuse distance range.
Two types of feature are considered: the number of reuses and the average reuse dis-
tance. The reuse distance ranges have a fixed length of 2048, as described in Section 3.

Platforms The experiments are performed on three different machines, including a
250MHz MIPS R10K processor with SGI MISPro compiler, a Sun Sparc U4500/336
processor and a 2GHz Intel PentiumIV processor with Linux gcc compiler. All pro-
grams are compiled with optimization flag -n32 -Ofast or -O3 respectively.



Structure Splitting Table 2 lists the clustering results for the tree structure in Cheetah.
The input to Cheetah simulator is an access trace from JPEG encoding images sizing
from dozens to tens of thousands bytes.

Table 2. Clustering for tree structure of Cheetah. K-means gives results for 2 to 4 clusters, we
show only 2 and 3

Input image size Clustering data Clustering method No. clusters Clustering
43 bytes No. reuses k-means 3 (addr) (inum rt) (lft rtwt)

2 (addr) (inum lft rt rtwt)
x-means 3 (addr inum rt) (lft) (rtwt)

Avg. reuse k-means 3 (addr) (inum lft rtwt) (rt)
distance 2 (addr) (inum lft rt rtwt)

x-means 3 (addr) (inum lft rtwt) (rt)
2.58K bytes No. reuses k-means 3 (addr) (inum lft rtwt) (rt)

2 (addr) (inum lft rt rtwt)
x-means 3 (addr) (inum lft rtwt) (rt)

Avg. reuse k-means 3 (addr) (inum) (lft rt rtwt)
distance 2 (addr inum) (lft rt rtwt)

x-means 3 (addr) (inum) (lft rt rtwt)
21.8K bytes No. reuses k-means 3 (addr) (inum lft rtwt) (rt)

2 (addr) (inum lft rt rtwt)
x-means 3 (addr) (inum lft rtwt) (rt)

Avg. reuse k-means 3 (addr) (inum lft rtwt) (rt)
distance 2 (addr) (inum lft rt rtwt)

x-means 3 (addr) (inum lft rtwt) (rt)

Although the tree structure consists of seven fields: rtwt, rt, lft, inum, addr, grpno
and prty, the table only list the first five of them. The reason is the simulator for fully
associative LRU cache only accesses the first five fields and we apply clustering only
on them. Clustering the other two is trivial. The first column of the table gives the size
of the encoded image. Column 2 and 3 describe how the the clustering is applied. The
fourth column contains the number of clusters identified while the last column lists the
clustering result. While k-means gives results for two to four clusters, we only show
groupings with two and three clusters here.

The clustering results shown in Table 2 have two important features. First, the clus-
tering on the five fields varies across different inputs or different clustering algorithms.
Second, although there is no single winner, the clustering indicates a strong affinity
among rtwt, rt , lft and inum. Therefore, we choose to reorganize the tree structure by
grouping these four fields in different ways. Table 3 lists the structure splittings we
tested.

Each row of Table 3 describes a grouping of the seven fields of the tree structure.
Version orig is an array-based version of the original Cheetah. In orig, the tree nodes
are contained in a big pre-allocated array instead of dynamically allocated at run time.
This array-based Cheetah simulator is faster than the original Cheetah (over 10%



Table 3. Different structure splitting for Cheetah

Version No. Grouping
orig (addr inum grpno lft prty rt rtwt)
v1 (addr) (inum) (grpno) (lft) (prty) (rt) (rtwt)
v2 (addr) (inum) (grpno) (lft rtwt) (prty) (rt)
v3 (addr) (inum) (grpno) (lft) (prty) (rt rtwt)
v4 (addr) (inum lft rt rtwt) (grpno) (prty)

faster when tested on an SGI processor). All other versions modify version orig to im-
plement structure splitting. V 1 divides the structure into seven groups, each containing
a single field. The other three versions group in different ways according to the simi-
larity measured by the clustering analysis. We change the source files by hand to get
different versions. The access trace of JPEG encoding a testing image size of 272 KB
is used as the testing input. Different versions of Cheetah are compiled and run on
the three platforms described above and the running times are collected by the standard
time utility. Table 4 summaries the experiment results.

Table 4. Performance of different structure splittings for Cheetah

Version No. 2GHz Intel PentiumIV 250MHz MIPS R10K 336MHz UltraSparc II
orig 23.4s 59.7s 93.7s
v1 23.7s 71.9s 91.7s
v2 20.7s 59.2s 91.2s
v3 20.1s 58.2s 92.5s
v4 19.3s 56.0s 89.1s

Best improvement
over orig(%) 17.5 6.20 4.93

Best improvement
over v1(%) 18.6 22.1 2.84

For each version listed, Table 4 gives the execution time on the three platforms. The
user time reported by time command is used as the execution time. The comparison
between the first and second rows of the table shows there is no clear benefit by simply
dividing the original structure into individual fields. Version v1 runs slower than orig

on both MIPS and Pentium machines. However, by grouping the fields with similar
reuse behavior together, there is almost always a performance gain from other versions.
Version v4 is consistently the best among all the groupings. It is up to 17.5% faster
than the original version. This shows the clustering analysis based on reuse distance
distribution is effective in identifying affinity groups.

Array Grouping Swim has fourteen arrays with the same size. We apply clustering
analysis on these arrays and merge arrays in the same cluster. Table 5 describes a subset



of the clustering results. We tested the performance of these groupings. The training
data for clustering analysis was collected by running Swim with an input matrix of
size 32 × 32.

Table 5. Clustering for arrays of Swim. K-means gives results for 2 to 13 clusters, we show only
7 and 8

Clustering Clustering No. of Clustering Version
data method clusters No.

No. of k-means 8 (cu h)(cv z)(p u v)(pold uold)(pnew unew)(psi)(vnew)(vold) v1
reuses 7 (cu cv h z)(p)(pnew unew vnew)(pold uold vold)(psi)(u)(v) v2

x-means 8 (cu cv h z)(p u v)(pnew)(pold uold)(psi)(unew)(vnew)(vold) v3
Avg. reuse k-means 7 (cu cv h z)(p)(pnew unew vnew)(pold uold vold)(psi)(u)(v) v2
distance x-means 8 (cu cv h z)(p)(pnew unew vnew)(pold uold)(psi)(u)(v)(vold) v4

static analysis (cu cv)(h z)(p)(pnew unew vnew)(pold uold vold)(psi)(u v) static

The last row of Table 5 includes an array grouping based on static analysis. It was
obtained by compiler analysis [11]. One restriction of array merging is the original ar-
rays must have exactly the same size in all dimensions. This can be checked manually or
by a compiler. The transformation process to get different grouping versions at source-
level is semi-automatic. We tested Swim for an input matrix of size 512× 512. Table 6
gives the execution time for the original Swim and all the five grouping versions.

Table 6. Performance of different array groupings for Swim

Version No. 2GHz Intel PentiumIV 250MHz MIPS R10K 336MHz UltraSparc II
orig 72.7s 156.7s 268.1s

static 57.5s 155.3s 239.6s
v1 59.8s 153.9s 232.5s
v2 50.1s 156.0s 226.7s
v3 54.1s 155.3s 221.4s
v4 50.1s 145.8s 226.7s

Best improvement
over orig(%) 31.1 6.96 22.5

Best improvement
over static (%) 12.9 6.12 13.2

Table 6 shows that the array groupings identified by clustering analysis outperforms
the grouping based on static analysis most of the time. Version v4, identified as the
optimal clustering by x-means method, is the best one on all machines. It reduces the
execution time by up to 31.1% compared to the original version and up to 13.2% com-
pared to the static analysis version.



5 Related Work

An effective method for fully utilizing cache is to make data access contiguous. In-
stead of rearranging data, the early studies reordered loops so that the innermost loop
traverses data contiguously within each array. Various loop permutation schemes were
studied for perfect loop nests or loops that can be made perfect, including those by
Abu-Sufah et al. [2], Gannon et al. [15], Wolf and Lam [33], and Ferrante et al. [14].
McKinley et al. developed an effective heuristic that permutes loops into memory order
for both perfect or non-perfect nested loops [24]. Loop reordering, however, cannot al-
ways achieve contiguous data traversal because of data dependences. This observation
led Cierniak and Li to combine data transformation with loop reordering [6]. Kremer
developed a general formulation for finding the optimal data layout that is either static
or dynamic for a program at the expense of being an NP-hard problem and showed that
it is practical to use integer programming to find an optimal solution [20]. Computa-
tion reordering is powerful when applicable. However, in many programs, not all data
accesses in all programs can be made contiguous.

Alternatively, we can pack data that are used together. Early studies used the fre-
quency of data access, measured by sample- and counter-based profiling by Knuth [21]
and static probability analysis by Cocke and Kennedy [7] and by Sarkar [29]. Frequency
information is frequently used in data placement, as we reviewed in the introduction. In
addition, Chilimbi et al. split Java classes based on the access frequency of class mem-
bers [5]. In addition to packing for cache blocks, Seidel and Zorn packed dynamically
allocated data in memory pages [30]. Access frequency does not distinguish the time of
access: that a pair or a group of data are frequently accessed does not mean that they are
frequently accessed together, and that a group of data are accessed together more often
than other data does not mean the data group are accessed together always or most of
the time. In a recent paper, Petrank and Rawitz formalized this observation and proved a
harsh bound: with only pair-wise information, no algorithm can find a static data layout
that is always within a factor of k−3 from the optimal solution, where k is proportional
to the size of cache [28]. Unlike reference affinity, the frequency-based models do not
find data groups that are always accessed together. Neither do they partition data in a
hierarchy based on their access pattern.

Eggers and Jeremiassen grouped data fields that were accessed by a parallel thread
to reduce false sharing [19]. Ding and Kennedy regrouped Fortran arrays that are always
accessed together to improve cache utilization [11]. Ding and Kennedy later extended it
to group high-dimensional data at multiple granularity [12]. While the previous studies
used compiler analysis, this work generalizes the concept of reference affinity to address
traces. It also proposes a new profiling-based method for finding affinity groups among
source-level data. Preliminary results show that the new method out-performs the data
layout given by either the compiler or the programmer.

The above data packing methods are static and therefore cannot fully optimize dy-
namic programs whose data access pattern changes during execution. Dynamic data
placement was first studied under an inspector-executor framework [8]. Al-Furaih and
Ranka examined graph-based clustering of irregular data for cache[3]. Other models
include consecutive packing by Ding and Kennedy [10], space-filling curve by Mellor-
Crummey et al. [25], graph partitioning by Han and Tseng [17], and bucket sorting by



Michell et al [26]. Several studies found that consecutive packing compared favorably
with other models [25, 31].

6 Summary

We have defined a new reference affinity model and proved its three basic properties:
consistent groups, hierarchical organization, and bounded reference distance. We have
described a clustering method to identify affinity groups among source-level structure
fields and data arrays. The method uses data reuse statistics collected from training runs.
It uses k-means and x-means clustering algorithms as a sub-procedure and explores a
smaller number of choices before determining the reference affinity. When used by
structure splitting and array grouping, the new method reduces execution time by up to
31%. It outperforms previous compiler analysis by up to 13%. As on-going work, we are
formulating partial reference affinity, studying more accurate ways of reference affinity
analysis, and exploring other uses of this locality model in program optimization.
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