Compiler-Directed Run-Time Monitoring of Program Data Access

Chen Ding

Yutao Zhong

Computer Science Department
University of Rochester
Rochester, New York
U.S.A.
{cding,ytzhong}@cs.rochester.edu

ABSTRACT

Accurate run-time analysis has been expensive for complex
programs, in part because most methods perform on all
data. Some applications require only partial reorganization.
An example of this is off-loading infrequently used data from
a mobile device. Complete monitoring is not necessary be-
cause not all accesses can reach the displaced data. To sup-
port partial monitoring, this paper presents a framework
that includes a source-to-source C compiler and a run-time
monitor. The compiler inserts run-time calls, which invoke
the monitor during execution. To be selective, the compiler
needs to identify relevant data and their access. It needs to
analyze both the content and the location of monitored data.
To reduce run-time overhead, the system uses a source-level
interface, where the compiler transfers additional program
information to reduce the workload of the monitor. The pa-
per describes an implementation for general C programs. It
evaluates different levels of data monitoring and their appli-
cation on an SGI workstation and an Intel PC.

1. INTRODUCTION

An information system often needs to monitor its data usage
to provide better service, improve performance, and guaran-
tee correctness and reliability. Since checking all accesses to
all data is too costly, run-time monitoring has to be selective.
Till now, this has been the job of a programmer, who finds
all accesses that needs monitoring and inserts appropriate
code in appropriate places. The difficulty of programming
and probability of error increase proportionally with the size
of program and the complexity of data, especially in C pro-
grams that rely on efficient access through pointers. With
the exponential increase in storage and computing capacity,
today’s systems process data at unprecedented volume and
complexity. Manual data monitoring has become increas-
ingly cumbersome to write, change, and maintain.

In this paper, we describe a new framework of selective data

monitoring. It has two components: a source-to-source C
compiler and a run-time monitor. The compiler analyzes
a program and inserts run-time calls for the right data at
the right location. During program execution, the monitor
receives information from compiler-inserted calls and keeps
track of the layout of monitored data and their accesses. The
interface between the two components consists of source-
level function calls, which allow various information about
the program to be exchanged as parameters.

We use the compiler and the source-level interface for three
reasons. The first is compiler selection and optimization.
The compiler chooses what data to monitor and at which
points in a program, so the system incurs run-time cost for
only relevant parts of a program instead of its entirety. The
second reason is run-time use of compiler information. The
compiler deposits useful analysis results in calls to the mon-
itor. For example, with compiler-supplied information, the
monitor can view memory as a collection of data objects in-
stead of memory cells. The last goal is machine-independent
monitoring. All changes are made at the source level. The
transformed program can run on any machine that has a
C compiler. Furthermore, because of the run-time support,
the new system can handle all features of C language.

Selective monitoring is useful for data off-loading. Embed-
ded systems need to reduce the size of physical memory
to minimize manufacture cost. They also need to reduce
the size of active memory to minimize energy consumption.
Both tasks involve relocating certain program data either to
an off-device network or to an on-device but inactive (low-
power) memory module. Data off-loading must be selective
because it targets infrequently used data. It must be efficient
both in time and space, considering the limited resources an
embedded system has. Finally, it should be machine inde-
pendent because embedded processors are often not binary
compatible even between generations of the same product.

Our approach extends existing techniques in general-purpose
data analysis. One such technique is binary profiling, which
instruments object code to collect the target address at each
memory operation. Binary instrumentation does not need
program source, and it can access high-level program in-
formation if available. However, most techniques of binary
profiling perform blindly on all data. Its low-level interface
has limited latitude in collecting and representing program
information other than the target address. Binary instru-
mentation tools are also machine and compiler dependent.

Least precise

A Most efficient
Low
(whole structure
whole array) Access
g checking .
5 Medium Efficient
n":" (sub-structure Generalized selgcti\(e
§ sub-array) monitoring monitoring
o
S High Binary
(structure fields profiling
I ts)

array
Most precise

Least efficient

All data Partial data

Data Selection

Figure 1: Two dimensions of data monitoring

Another technique is memory-safety checking for C/C++
programs. It checks accesses to all data, so it is not selec-
tive. It determines whether an access is inside an object
but not its exact location inside the object. The problem of
imprecision is also shared by a third technique, conservative
garbage collection, which treats heap objects as indivisible.
Different from previous efforts, we explore a more sophis-
ticated compiler and a high-level interface supporting the
compiler. We aim at data monitoring that is selective, effi-
cient and flexible.

The diagram in Figure 1 shows the two dimensions of se-
lective monitoring, as well as the relation of different tech-
niques. The horizontal axis represents the selection of data
and the vertical axis the selection of precision. Our frame-
work provides generalized monitoring, which allows selection
in both directions. As we will see later, data monitoring can
be efficient if we target a subset of data instead of all data.
Partial monitoring is shown by the right-most circle in the
diagram. Both complete and partial monitoring have im-
portant applications, which will be discussed in Section 4.

The rest of the paper is organized as follows. Section 2 de-
scribes the monitoring system. The next two sections study
its overhead and describe its application in data off-loading.
The last two sections discuss related work and conclude.

2. THE MONITORING SYSTEM

The following description refers to program data as a col-
lection of data units, each is an independent and contiguous
memory section. No two data units overlap. Locations of
data units are not related, i.e. a program can not access one
data unit based on the address of another data unit. Data
units include instances of global, local, parameter variables
and dynamic allocation.

We will use C code as examples. As shown in the section on
run-time support (Section 2.3), the system can be extended
to handle all features of C language and to support library
code with no program source. However, compiler selection
and optimization are effective only if the program is in source
form and observes a simple notion of type safety, where all
data accesses are type correct, and type casting happens
only between pointer values. We follow the convention that
a single data item can be accessed as an array of one element.

Type safety can be ensured by static type checking plus run-
time range checking. We use conventional C compilers for
static type checking. We support run-time checks as a by-
product of our monitoring system. The generated code used
in this section was obtained by our actual implementation,
with minor syntax changes to make it more compact.

The following three sub-sections describe first the high-level
interface and then the components on the two sides of the
interface: the compiler and the monitor. The focus is on
the role of the compiler in enabling a high-level interface
and reducing monitoring overhead, both directly at compile
time and indirectly at run time.

2.1 High-Level Interface

The interface links the two components of the system by
transferring compiler-supplied information to the run-time
monitor. The interface is high-level because it describes pro-
gram data and their accesses through source-level function
calls. We first describe each part of the interface and then
discuss its benefits.

2.1.1 Data Definition

Data definition includes data allocation and its type defi-
nition. We use terms structure and type interchangeably:
they both mean source-level content of a data unit, which is
either a basic type or an aggregated type. The basic types
are primitive data types such as an integer or a pointer.
All pointers are considered as a single primitive type. Ag-
gregated types are defined as structure, union, or array of
other types. Data allocation includes static allocation of
global data, run-time allocation of heap data, and stack al-
location of local and parameter data.

The compiler inserts a run-time call for each type defini-
tion. For a structure or a union, it describes the name of
the structure, its fields, and their offsets. Multiple fields
of a union may have the same offset. For an array, it de-
scribes the size of the array and the type of its elements.
One problem is that the offset of a field and the size of an
array element are dependent on the back-end compiler. For
example, a byte field in a structure can occupy one byte on
one machine but two bytes on another. The solution is to
record symbolic values based on a sample data item. When
the program is compiled into machine code, symbolic values
become precise. The use of the sample item does not affect
the allocation of global or heap data: it is a local pointer
variable allocated on the call stack.

A run-time call is also inserted for each data allocation.
Global variables are recorded before the first executable
statement of a program (in the main function in a C pro-
gram). Dynamic memory allocation is recorded after each
call (e.g. malloc). Only those type definitions used by mon-
itored data are recorded. Memory recollection (i.e. free
or delete operation) is also recorded. Local variables are
recorded at the beginning of a function and recollected at
the end of the function. Parameters are recorded before a
function call and recollected after the call. Our implementa-
tion currently records allocation of only global and dynamic
data.

Figure 2 shows an example code segment, which defines a

struct s {
int a[5], *c;
} dat;

int _RecordGlobalData_() {
struct s* s_sample;

RecType(s_sample, "struct s", 2, "a", (&(*s_sample).a), 5, (&(*s_sample).a [1]), "int",

"c", (&(*s_sample).c), 1, sizeof(int*), "int *");

RecObj("dat", "global variable dat in demo.c at line 5", (&dat), 1, sizeof(struct s), "struct s");

Figure 2: Example Part 1: data definition. RecType records the content of type s, which includes the name,
size, and offset of each field. The dummy pointer is used to extract exact field offsets. RecObj records the
name and type of variable dat, as well as the source-level location of its declaration.

structure type s and a global variable dat of that type. The
compiler records the type and data definition in a function
RecordGlobalData. It has two monitor calls. The first, Rec-
Type, records the structure of type s, using a local pointer to
extract symbolic field offsets. The second, RecObj, records
the global variable dat and its type.

2.1.2 Data Access

Access monitoring has two basic requirements: to capture
each memory access and to pinpoint the accessed location.
A C program accesses a data element through a sequence of
structure, union, or array access operators. The sequence
is often called an access path. An access path may contain
multiple data references. For example, the path, a.b.c.d,
contains a single memory reference; but e - f - g — h
includes four memory references. A more interesting case is
J.k[i], which can be either one or two references depending
on whether the type of the k£ field is a static array or a
pointer. A compiler distinguishes the two cases by static
type analysis.

A compiler records each data reference with a call to RecAc-
cess. It has two parameters: the first is usually the starting
address of the accessed data unit, and the second is the ac-
tual address of the access. We call the first parameter the
base address of data access. The use of base address allows
the run-time system to recognize data units. For example for
an array reference A[10], the compiler inserts RecAccess(A,
&A[10]), where the first parameter is the base address that
identifies the data unit at run time. As a result, all ele-
ments of array A will be managed as a single data unit by
the monitor, making it efficient for large objects.

A compiler, however, cannot always determine the base ad-
dress of the accessed data unit, because an address can be
taken from the middle of a data unit and then used as a base
for later accesses. For example, a function call, bar(¢A[10]),
would pass a partial array to function bar. The solution is to
use another monitor call, RecLink, which informs the mon-
itor that an internal address is taken and may be used as
a basis in later execution. In this example, the compiler
inserts RecLink(A, &A[10]) before the function call. After
this point, any access to the parameter array in function bar
will be recognized as access to array A. Section 2.3 shows
how the run-time monitor uses RecAccess and RecLink.

The compiler needs to insert each monitor call at the correct
location. The placement becomes a problem in the pres-
ence of implicit assignment and control flow in C programs.
Consider the statement A[0][i==0? i+=1:1].afi]=0. The
value of i may be changed. We cannot insert RecAccess(A,
&A[i][i]), even if we know that ¢ is zero upon entering the
statement. The example also shows the problem of high-
level control flow. An index expression may include condi-
tionals and function calls. We need to insert RecAccess and
RecLink before and only before each data access. In this
example, we need to conditionally record the use of ¢ in the
two branches of the conditional expression.

The compiler solves the problem of implicit assignment and
high-level control flow by making them explicit. It trans-
forms implicit assignments into a sequence of single-assignment
statements, introducing new temporary variables when nec-
essary. It converts high-level control flows into low-level ones
using goto and if-goto statements. The transformations are
well understood as part of traditional compiler code gen-
eration. They can be made in different ways. The one in
our compiler is adapted from the implementation in the lcc
compiler [10].

A longer example is given in Figure 3, which uses the data
definitions in Figure 2. The initial version has implicit as-
signments and control flow, as well as array, structure, and
pointer accesses. The transformed version makes control
flow and data accesses explicit. It adds two temporary vari-
ables. It calls RecAccess before each data access and RecLink
before the last statement, which takes the internal address
from an array.

Another minor problem in code generation is that the C
language does not allow direct type declaration of array or
function pointers (for example, as the type of a return value).
The compiler uses typedef to circumvent the problem. An
example is shown at the beginning of the instrumented ver-
sion in Figure 3 for the array parameter.

The total number of RecAccess in the instrumented version
in Figure 3 is 28. The compiler section will show that com-
piler optimization can remove most of them without losing
monitoring accuracy.

// Initial version

void foo(struct s A[1[5], int *ip, int i) {
int j, k;
A[0] [i==07i+=1:i].a[i] = 0;
j = *ip;
A[0][j+1].c = ip;
k = 1+*ip;
A[01[k].c[0] = 1;
bar(A[1]);
}

// Instrumented version with no optimization

typedef struct s struct_s_A_5_[5];
void foo(struct_s_A_5_% A, int* ip, int i) {
{
int j, k, tmpl, tmp2;
RecAccess((&i), (&i));
if ((1 !'= 0)) goto L4;
RecAccess ((&tmp2), (&tmp2));
RecAccess((&i), (&i));
tmp2 = (i + 1);
RecAccess((&i), (&i));
RecAccess ((&tmp2), (&tmp2));
i = tmp2;
RecAccess((&tmpl), (&tmpl));
RecAccess ((&tmp2), (&tmp2));
tmpl = tmp2;
goto L5;
L4:;
RecAccess((&tmpl), (&tmpl));
RecAccess((&i), (&i));
tmpl = i;
L5:;
RecAccess((&A), (&A));
RecAccess((&tmpl), (&tmpl));
RecAccess((&i), (&i));
RecAccess(A, (&A[0] [tmpl] .a [i]));
A[0] [tmp1] .a [i]l = 0;
RecAccess((&]), (&j));
RecAccess ((&ip), (&ip));
RecAccess(ip, ip);
j = (*ip);
RecAccess ((&A), (&A));
RecAccess((&]), (&j));
RecAccess(A, (ZA[OIL(j + 1)1 .c));
RecAccess ((&ip), (&ip));
ATOI[(j + 1)] .c = ip;
RecAccess ((&k), (&k));
RecAccess ((&ip), (&ip));
RecAccess(ip, ip);
k = ((*ip) + 1);
RecAccess ((&A), (&A));
RecAccess((&k), (&k));
RecAccess(A, (&A[0][k] .c));
RecAccess(A[0] [k] .c , (&A[OI[k] .c [0]));
A0l [k] .c [0] = 1;
RecAccess ((&A), (&A));
RecLink (A, A[1]);
bar(A[1]);
}
L3:;

Figure 3: Example Part 2: program function foo.
Implicit control and assignment are made explicit.
For each data access, RecAccess records the base and
the address of the access. RecLink records the ex-
traction of an internal address from array A.

2.1.3 Benefits of High-Level Interface

The source-level interface, consisting of various function calls,
has three important benefits: it is independent of the com-
piler or the target machine; it is expandable; and more im-
portantly, it is efficient because it can be jointly optimized
with the rest of the program by a machine compiler. This
section discusses the expandability and efficiency aspects.

The interface is expandable because monitor calls can con-
tain any number of parameters. In the current system, Re-
cAccess contains not only the address of the access but also
the base address of the data unit being accessed, as shown in
Figure 3. The base address saves the monitor from the work
of finding the accessed data unit. The interface can contain
other information for other types of program analysis. For
example, it can pass the access type (i.e. read or write)
if the monitor wants to track data modification. Another
example is to monitor program statements instead of access
traces. To do so, a monitor call needs to include all accesses
in each statement. Since a statement may have any number
of data references, a monitor call may contain any number
of parameters.

The interface code is mixed with the program source, so
it is generated and optimized by a machine compiler. The
parameters of monitor calls will be converted into machine
code with optimization such as register allocation. It is im-
portant that the interface code and the program code are
generated together. For example, when recording an access
to A[10], the base address of the array is needed by both the
access and the preceding monitor call. A machine compiler
would easily save the base address in a register and reuse
it in both places. If, however, the interface code is not in-
serted at source level and not seen by a machine compiler,
the extraction of base address is not as easy and may lead
to repeated computation and register loading.

Machine-level code generation such as register allocation is
different on different machines, especially embedded proces-
sors that have unconventional CPU and register architecture
(e.g. multimedia instructions and partitioned register files).
Generating interface code without using a machine compiler
would be a daunting task. Source-level interface allows ar-
bitrary data passing and ensures correctness. Moreover, the
interface code is jointly optimized with the program and
they can share each other’s results. The joint optimiza-
tion is made possible when programs are compiled together,
which means that the monitoring code has to be inserted in
program source.

The high-level interface we use is different from past work
in binary instrumentation, which inserts monitor code for
load and store instructions at the binary level. Binary-level
interface does not need program source. The address of data
access is readily available in a register. However, if it needs
other information such as the base address or the type of ac-
cess, binary instrumentation will encounter the dilemma of
either storing the additional information in memory, which
is not efficient, or using registers, which means modifying
program register allocation. In addition, code generation
for monitor code is compiler and machine dependent. Given
significant difference among special-purpose architectures,
binary instrumentation is not easily portable.

The high-level interface may increase run-time overhead and
register pressure in the instrumented program. It is a trade-
off between storing information in an interface and recom-
puting the same information at run time. The balance may
be different for different problems. The best option is often
a mixture of storing and computing. The goal of the frame-
work is to provide these options. As we will see later, the
use of base address in RecAccess results in significant space
saving at run time.

2.2 Compiler Control of Access Monitoring
Not all accesses need to be monitored. The job of the com-
piler is to select a minimal set of data accesses for moni-
toring. The selection consists of two orthogonal tasks. The
first selects distinct accesses and removes repeated monitor-
ing of the same data. The second selects targeted program
segments and removes monitoring in unrelated parts. The
following two sections describe these two types of compiler
selection. We assume that a program is type correct, as
defined at the beginning of Section 2.

2.2.1 Removing Redundant Monitoring

Our base scheme monitors every data access. However, if
a variable is accessed repeatedly in a short code sequence,
we can record the first access and omit the rest. The prob-
lem is as follows. Given two data references, we remove
RecAccess for the latter if and only if two conditions hold.
First, the two data references always access the same data
element. Second, they are always executed in a bounded-
length sequence. We call the second requirement bounded-
distance guarantee, since it ensures that any unmonitored
access must follow a monitored access to the same location
by a bounded distance.

We can maintain bounded-distance guarantee by not opti-
mizing across function calls and back edges in a control flow
graph. Hence the guaranteed distance is the maximal length
of an intra-procedural path that does not include any call
site and any loop structure. Our current implementation is
more limited and does not optimize across basic code blocks.
The general problem is similar to global redundancy elimi-
nation [7, 1], except that we need to bound the distance of
all paths between an available expression and a redundant
expression.

To detect repeated references to the same data, we expand
a version of local value numbering [1]. Our technique has
three novel aspects. First, it unifies analysis for both data
content and reference location. For example for a reference
a.b, the analysis gives two value numbers: the first is the
value or the content of a.b, and the second is its address, &
a.b. The content and the location information complement
each other. For example, immediately after an assignment
i=j, afj].b accesses the same location as afi].b. Here, the
content of ¢ partially determines the location of afi].b.

In order to compare locations of data references, the com-
piler standardizes address expressions. It represents expres-
sions as a sequence of operations with an operator and a
varied number of operands. For example, a reference afi/[j].b
has two operations. The first is an array reference, whose
three operands include the base and two subscripts. The sec-
ond is a field access, whose two operands are the structure

base and the field name. The compiler represents operations
in the prefix form and uses ’#’ as a separator. Pointer deref-
erence is considered as a dereference plus an array access to
the first element. This allows us to detect the equivalence,
for example, between *a and af0].

Finally, our technique is performed at the source level. The
basic scheme follows the framework used by Halvak, who an-
alyzed source-level values in Fortran programs [12]. We ex-
tend it to deal with complex data structures in C. Our tech-
nique handles arbitrarily long expressions such as a.b.c.d.
The source-level information also allows the compiler to un-
derstand nested logical structures, information of which would
be lost at the assembly level. Source-level analysis is re-
quired for high-level transformation to work. Since monitor
calls are inserted at the source level, we must perform value
numbering analysis in program source. In addition, source-
level analysis does not lose precision as assembly-level anal-
ysis does. At the assembly level, code generation may in-
troduce (untyped) temporary variables and lose source-level
information. For example, a reuse of a register-spilling loca-
tion may merge two values that are initially separate at the
source level.

Figure 4 gives an outline of our value-numbering algorithm.
It handles one basic block (single-entry, single-exit code se-
quence) at a time. The algorithm flushes the value number
table at the beginning of each code block and after each
function call. After each assignment statement, the left-
hand side takes the value number of the right-hand side. It
also resets the value number of all possible aliases. In the
absence of global alias analysis, we assume all data of the
same type are aliases. All pointers are in the same alias set.
The only exception are local and parameter variables whose
address is never taken in its local function. In that case,
their name is their unique identifier.

The example program in Figure 3 tests the strength of our

algorithm. Consider the assignment to A[0][k].c[0] at the

second to last statement. It represents three data references—
k, A[0][k].c, and A[0][k].c[0]. Our algorithm can discover

that all three have been accessed in the same code block.

The detection of the last two is only possible because the

algorithm analyzes both the content and location of data

references. Figure 5 shows the instrumented program after

value numbering and compiler selection (discussed in the

next section).

The compiler also removes RecLink calls when an internal
address cannot escape to the outside. A common example
is array traversal through incrementing a pointer. Although
the address of each element is taken, it is immediately over-
written and cannot be seen by the remaining execution. In
general, compiler liveness analysis can be used to determine
the propagation of pointer values. We do not yet handle this
general case.

2.2.2 Selection Based on Data and Access Type

A compiler selects monitored data by data location, data
type, access location, and access type. This section discusses
these four types of selection. They are orthogonal to each
other and can be freely combined. The result is a wide range
of choices from complete monitoring to partial monitoring.

Input: A basic block of C code, all nested code blocks have been flattened
by renaming block-local variables.
Output: Two value numbers associated with each memory reference:
one for the value of its address and the other for its content.
Two expressions are equal if they have the same value number.
Data and data structures:
variable valTable: a map from a string to a value number.
variable aliasTable: a map from data type name to expression names
that have that type.
structure ValInfo: represent an access path in five fields. The first
is expression string (exprStr), the second is expression
value number (exprVal), the third and fourth are
string and value number of the address expression
(addrStr and addrVal), and the last field is the data
type of the expression (exprType).
structure AstNode: a node in the abstract syntax tree.

Algorithm:
procedure CodeBlockValNum(BasicBlock cb) {
for each statement s in cb
if (s is an assignment statement)
ValInfo rhs = ExprAnalysis(s.rhs)
ValInfo lhs = ExprAnalysis(s.lhs)
valTable.UpdateValNumber (1hs.exprStr, rhs.exprVal)
lhs.exprVal = rhs.exprVal
aliasTable.DeleteAliasValues(lhs.exprType)
else
ExprAnalysis(s)
end if
end for
end CodeBlockValNum

procedure ExprAnalysis(AstNode expr) {
if (expr is an arithmetic operation or a function call)
apply ExprAnalysis to operands/parameters
if (expr is a function call)
aliasTable.DeleteAllAliasValues ()
info.exprVal = valTable.GetNewValNumber ()
else
// For associative operators, order operands in canonical order
// exprStr is a prefix form of the expression, using ’#’ as separator.
info.exprVal = valTable.GetValNumber (exprStr)
end if
info.addrStr = info.addrVal = empty // no address information
else // expr is an access path
if (expr is a variable name)
info.exprStr = name of the variable
info.exprVal = valTable.GetValNumber (exprStr)
info.addrStr = ’<addr>#’+exprStr
info.addrVal = valTable.GetValNumber (addrStr)
else
// Apply ExprAnalysis to the closest base of the access path
e.g. the base of a.b.c is a, but the base of a->b->c is *(a->b)
// Construct exprStr and addrStr in four cases:
// taking address, dereference, array access, and structure access.
// The deference case is considered as accessing the first element
// of an array. Taking address and dereference operators cancel
// each other.
info.exprVal = valTable.GetValNumber (exprStr)
info.addrVal = valTable.GetValNumber (addrStr)
end if
info.exprType = type of the expression
if (expr is not a local/parameter variable OR expr has address taken)
aliasTable.AddToAliasSet (exprType, exprStr)
end if
end if
return info
end procedure

Figure 4: Source-level value numbering algorithm. For an access path, both its value and its address receive
a value number. Address expressions are represented in a canonical form.

void foo(struct_s_A_5_% A, int* ip, int i) {
{
int j, k, tmpl, tmp2;
if ((i != 0)) goto L4;
tmp2 = (i + 1);
i = tmp2;
tmpl = tmp2;
goto L5;

L4:;

tmpl = i;

L5:;
RecAccess(A, (&A[0] [tmpl]l .a [i]));
A[0] [tmpl] .a [i] = O;
RecAccess(ip, ip);
j = (*ip);
RecAccess(A, (&A[OI[(j + 1)1 .c));
A[OIL(; + DI .c = ip;
k = ((*ip) + 1);
A[0][k] .c [0] = 1;
RecLink (A, A[1]);
bar(A[1]);
}

L3:;
}

Figure 5: Example Part 3: optimized instrumenta-
tion after compiler selection of global and dynamic
data and after redundancy removal by value num-
bering.

We consider data location to fall into one of the three cate-
gories: global data, dynamic or heap data, and local or stack
data. For each data reference, the compiler uses its symbol
table and value-numbering analysis to determine the loca-
tion of data. At the absence of global pointer analysis, it
assumes that any pointer dereference can reference any data
except when the content of the pointer is statically known
by the compiler. An important use of this feature is to limit
monitoring to only global and dynamic data. The differ-
ence is shown by the treatment of parameter ip in statement
j=%ip in Figure 5. Its assignment is not recorded because
the value resides on the call stack, but its subsequent de-
reference is recorded because it may point to global or heap
data.

After selecting only global and dynamic data and monitoring
only distinct data accesses, the number of RecAccess state-
ments is reduced from 28 (in Figure 3) to 3 (in Figure 5), a
reduction by a factor of 9.

We can monitor different access types, including read, write,
and both. The selection is straightforward since each state-
ment modifies at most one data item. The direct left-hand
side is the location of a write access, and the rest are read
accesses.

We can monitor individual variables or their elements. Two
examples are a global variable and the set of data units al-
located at a malloc call. The compiler analysis needs to
determine whether a data reference can refer to targeted
data. For programs where all accesses are type correct, our
compiler uses symbol and type information to infer the pos-
sible locations of a data reference. Different global variable
names represent different data. They are also disjoint from
local, parameter, and heap data. Under the assumption of
type safety, two accesses of two different types cannot refer

to the same location, except when they are pointers. For
sub-structures, if base structures are of different types, ac-
cessed locations are different even if the accessed elements
have the same type. For example, two accesses in a.b.c =
g.f must refer to distinct locations if a and ¢ are variable
names.

Pointer de-references need careful treatment because it may
change the content of aliased variables. For example, deref-
erencing an integer pointer may access any integer element
in any data. Except in three cases, all pointer de-references
are monitored. The first is when the de-referenced type is
different from the monitored type (and it is not a pointer
type). The second is when a compiler recognizes the exact
content of a pointer, for example, pointer A[0/[k].c in Fig-
ure 5. The third case is when an internal address is never
taken from an array or from fields of a structure. In that
case, no pointer de-reference can reach those internal data.
Our experience shows that these three cases cover many re-
movable de-reference monitoring in practice.

2.3 TheRun-Time Monitor

A transformed program invokes the run-time monitor through
the high-level interface consisting mainly of four types of
function calls: RecType for a type definition; RecObj for a
data allocation; RecAccess for a data access; and RecLink
for an extraction of an internal address.

For each structure definition that appears in RecType, the
monitor records all its fields including those in nested struc-
tures. For each field, it records the name and offset. The
field offset may differ depending on the machine compiler.
However, at run time, the offset is fixed and is recorded
precisely. The monitor stores all structure definitions in a
type table. For each data unit in a RecObj call, the monitor
creates a record we call shadow, which contains its memory
address and a pointer to its structure definition in the type
table. For fast retrieval of shadow data, we store them in
a hash table indexed by the starting address of data units.
The size of the hash table does not depend on the amount
of data inside structures or arrays. For example, an array
may contain a million elements, but it needs only a single
entry in the hash table.

Access recording in RecAccess has two steps: hash-table
search to find the shadow data, and type-table search to
locate the accessed element. The first parameter of RecAc-
cess is used in hash-table search. It is either the starting
address of a data unit or an internal address. The hash en-
try is initialized by RecObj in the first case and by RecLink
in the second case. Recall that RecLink happens before a
program takes an internal address from a data unit. At Re-
cLink, the monitor inserts the extracted address into the
hash table and links it to the shadow record of its data unit.
In the worst case, a program stores the address of every
data element, and the hash table has one entry for each
data element. However, our experience shows that a pro-
gram usually takes at most a constant number of internal
addresses from any data unit. In exceptional cases, a com-
piler can choose not to monitor certain data to avoid the
run-time explosion of the hash table. Compile-time analysis
can conservatively identify these cases.

The monitoring is precise. There is no unknown pointer at
run time. In addition, pointer dereferencing is no different
from accessing the first element of an array variable. For
example, af0] and (*a) are identical from the view of the
monitor.

With an additional cost, the monitor can support unsafe C
programs or binary code with no program source by using
the same approach of binary instrumentation. The compiler
inserts RecAccess before each memory operation. The moni-
tor organizes the address range of all data units in a tree and
search for any address in logarithmic time, as often used in
profiling analysis. In our scheme, the search is only needed
when the base address of an access is not in the hash table.
However, the cost is still significant because every access
may need this search in the worst case. In addition, the cost
of redundant RecAccess becomes more expensive. In type-
safe programs, we can abort the monitoring upon failing the
hash-table search. For unsafe programs, however, we must
then search through all data units. In our current work, we
consider only type-type programs. However, the framework
can be extended to support unsafe programs.

The run-time monitor is adjustable. It supports compiler
selection from monitoring every data at every access to mon-
itoring a single element at a single program point. It sup-
ports three levels of precision: collecting memory addresses
without hash-table and type-table search, recognizing data
units with hash-table search, and locating data elements
with both hash-table and type-table search. It may use dif-
ferent precision for different data at the instruction of the
compiler.

3. PRELIMINARY EVALUATION

This section measures the efficiency of data monitoring for
two test programs, which use standard data structures in-
cluding an array, a tree and a hash table.

3.1 Implementation

We have implemented the monitoring system as described
before. The compiler uses the lcc compiler as front-end [10].
We modified lcc to generate source code. We adapted its
code generation to make assignment and control flow ex-
plicit. The generated code is fed into our compiler, which im-
plements value numbering and supports selective monitoring
as described in Section 2.2. Our compiler generates instru-
mented code in C. The run-time monitor is implemented as
described in Section 2.3.

3.2 Two Test Programs

The first program is quicksort. It is a well-known program
that has irregular access to regular data. The primary data
unit is a dynamically allocated array. The access is input
dependent: at each step, it partitions a sub-array based on
a seed element. We used the program written by Xiao et al.,
which has 107 lines of C code [18]. The input to quicksort
is a randomly generated array containing 100K numbers of
type long long.

The second program is Cheetah simulator, which measures
capacity misses of fully-associative cache of all sizes for an
access trace [17]. It uses a balanced binary tree (splay tree)

and a hash table to sort and locate past accesses. The pro-
gram uses arrays, structures, pointers, and dynamic mem-
ory allocation. At the abstract level, their implementation is
similar to our monitor system. In a sense, we are monitor-
ing the monitor. We could analyze our own monitor code,
but we choose Cheetah because it is familiar to other peo-
ple and readily available on the Internet. The program has
718 lines in its main program file and 2287 lines counting all
user-written header files. The input to Cheetah simulator is
an access trace from JPEG encoding of a 2.5KB test image.

Our monitoring system has been applied to a number of
other C programs including small test cases from lcc distri-
bution, an image-processing benchmark from DoD, and a
N-body simulation program. The largest instrumented pro-
gram for which we recently completed a correct code gen-
eration is a 20-thousand-line JPEG program from Media-
bench. We do not report these programs because we have
not carefully analyzed them. We use a version of instru-
mented JPEG to collect access trace and then feed it into
Cheetah.

3.3 Cost of Monitoring

As reported by our compiler, quicksort has no global vari-
ables but a dynamically allocated array, and Cheetah has 32
global variables and 8 dynamic allocation sites. No inter-
nal address is taken in quicksort but Cheetah has eight such
operations.

Table 1 lists the performance of different monitoring configu-
rations. The first column lists different levels of monitoring.
The second column measures the number of RecAccess calls
inserted in program source. The other columns measure the
run-time cost in terms of slowdown factors. A slowdown of
two means that the monitored program runs twice as long
as the original version. Because of the source-level instru-
mentation, we can measure programs on any machine with
a C compiler. Here we collect the timing result on two plat-
forms. The first is a 250MHz MIPS R10K processor, using
SGI MIPSpro compiler with full optimization (-n32 -Ofast).
The second is a 1.7 GHz Pentium 4 processor, using gcc
compiler with -03.

The upper and lower parts of Table 1 list data for quick-
sort and Cheetah respectively. The rows in each part rep-
resent different monitoring coverage while the the columns
stand for different monitoring accuracy. The monitoring
coverage includes monitoring all data, global and dynamic
data, global and dynamic data with redundancy elimina-
tion, modification of global and dynamic data with redun-
dancy elimination, no data, and for Cheetah, the nzt field of
its hash table. The monitoring accuracy includes collecting
only memory address (marked by v1), recognizing the data
object (v2), and locating the accessed element in its source-
level form (v3). The first one is equivalent to source-level
trace profiling, except that we do not store the trace. The
second one is equivalent to safety checking. The last version
is the most precise, where we know exactly the location of
access in its source form.

For quicksort, the compiler inserts 0 to 108 RecAccess calls
for different coverage of monitoring. On 250 MHz MIPS
R10K, the cost ranges from 4% in no monitoring to 19.7

Versions of number of || MIPS R10K, 250MHz || Intel Pentium 4, 1.7 GHz
selective instrumentation RecAccess || vl | v2 v3 vi | v2] v3
Quicksort, sorting 102,400 random integers
All data 108 1.08 | 7.46 19.7 6.00 | 19.5 26.5
Global + dynamic 13 1.08 | 2.13 5.73 1.75 | 3.75 8.75
Global + dynamic, optimized 11 1.08 | 1.93 4.88 1.75 | 3.50 7.25
Data writes only, optimized 5 1.08 | 1.35 2.08 1.25 | 1.75 3.25
No monitoring 0 1.04 1.00
Cheetah, simulating JPEG encoding of a 2.5KB image

All data 691 1.42 | 11.0 39.9 11.2 | 411 83.4
Global + dynamic 349 1.41 | 4.72 16.3 4.59 | 13.7 51.0
Global + dynamic, optimized 269 1.40 | 4.12 13.3 3.78 | 11.2 44.7
Data writes only, optimized 94 1.40 | 2.55 5.57 2.10 | 4.76 16.9
nzt field in hash_table 12 1.09 | 1.10 1.11 0.98 | 1.05 1.05
No monitoring 0 1.09 1.02

v1: collecting address trace, v2: finding data unit, v3: finding data element

Table 1: Cost of selective monitoring in two programs on SGI and Intel machines. The numbers are slowdown

factors.

in precise monitoring of all data. At v3, the program runs
five times slower if monitoring global and dynamic data and
2 times slower if monitoring just their modifications. At a
less precision, v2, the slowdown is less than two for monitor-
ing global and dynamic data. The cost of collecting address
trace in vl is 8% for all cases. Without any monitor calls
inserted, the program runs 4% slower because of the trans-
formation to explicit assignment and control flow. The same
transformation does not increase running time when com-
piled with gcc and running on 1.7GHz Pentium 4. However,
the slowdown is larger when any monitor call is inserted,
suggesting that gcc does not optimize the inserted code as
well as the SGI compiler. The slowdown factors range from
1.25 to 6 at v1, 1.75 to 19.5 at v2, and 3.25 to 26.5 at v3.

Cheetah is more difficult to monitor because of its complex
data structures. The number of RecAccess calls ranges from
0 to 691 in different versions. Programs run 40% to 42%
slower when collecting memory address on the MIPS pro-
cessor. The slowdown factors range from 10% to a factor
of 11.0 at v2 and from 11% to a factor of 40 at v3. The
slowdown is two to four times larger on the Intel processor
in most cases. Again, we suspect that the reason is due pri-
marily to the different strength of optimization in SGI and
gce compilers.

Monitoring the nazt field in hash table data in Cheetah, how-
ever, has consistently low cost. As the second to last row
shows, the cost of most precise monitoring is 11% on MIPS
and 5% on Pentium. They suggest that run-time analysis for
this subset of data is practical for actual use if a user is will-
ing to tolerate 10% performance loss. When collecting only
memory address, the instrumented version runs faster than
the original version by 2% or 0.01 second on the Pentium
4 processor. It is possible that the inserted code triggered
faster optimization in the gcc compiler.

3.3.0.1 Bengfit of High-Level Interface

A key feature of our system is the source-level interface, as
discussed in Section 2.1. It makes our system both machine
and compiler independent and allows us to experiment with

two different machines and two different compilers. In addi-
tion, we now show the space saving enabled by this interface.
In RecAccess, the compiler supplies the base address of refer-
enced data in addition to the actual address of the reference.
The use of a base address allows for a smaller look-up table
at run time. The table is indexed by the base address instead
of the actual memory address. Hence the size of the look-
up table is determined by the number of data units (and
number of exposed internal addresses), not by the number
of data elements. A smaller table occupies less space and
makes table search more efficient. In this experiment, we
measure the size of the look-up table in the two test pro-
grams. Quicksort has an array of 102,400 elements being
monitored. As expected, the look-up table in the monitor
contains only one entry. Cheetah has a total of 1,171,157
elements being monitored in its tree and hash-table data.
Most data are allocated dynamically. Internal data address
is taken in eight places in the program. Throughout the
execution, the look-up table contains a maximum of 17,730
entries. The size of the look-up table is smaller than the
size of data by a factor of 66. In both programs, the high-
level interface enables dramatic reduction in terms of the
run-time space overhead. We do not measure the impact in
execution time, but we expect it to be significant given the
large reduction in space cost. Optimizing hash-table search
is critical in data monitoring because it accounts for 50% to
75% of monitoring time, as reported in Table 1.

3.3.0.2 Summary

The experimental results of two programs on two machines
show a wide range of choices between monitoring coverage,
precision and cost. The difference is up to a factor of 49
by static count and a factor of over 80 by running time.
The base cost for enabling data monitoring is 4% in quick-
sort and 9% in Cheetah. The lowest monitoring cost is no
more than 25% in quicksort and 11% in Cheetah. In addi-
tion, the high-level interface reduces the space cost of the
monitor by orders of magnitude. Next, we describe two ap-
plications: one uses complete monitoring at profiling time,
and the other uses partial monitoring at run time.

4. APPLICATIONIN DATA OFF-LOADING

This section discusses the use of selective monitoring in data
off-loading. Embedded systems need to reduce the size of
physical memory to minimize manufacture cost. They also
need to reduce the size of active memory to minimize en-
ergy consumption. Both tasks involve relocating certain pro-
gram data either to a off-device network or to a on-device
but sleeping memory module. This section first uses pro-
filing analysis to find infrequently used data and then uses
run-time monitoring to support off-loading of those data.
Both use our afore-described monitoring system. We use
the Cheetah program as an example.

4.1 Profiling Analysis of Data Access Pattern
Our system can collect data accesses for each element of
global and dynamic data. To analyze the access pattern, we
link the monitor to an analyzer [19], which measures reuse
distance along with access frequency. The analyzer gener-
ates results for each global and dynamic variable. Dynamic
data are grouped by their allocation site. Table 2 shows
part of the output. For brevity, it omits the majority of the
output including reuse-distance information.

The analysis captures all global and dynamic data. As
shown by the table, the program allocates hash-table en-
tries in two places. The first is in global array slot, and the
second is through a dynamic allocation site. The analysis
also finds difference in access pattern. The [ft field of tree
nodes accounts for 13% of all accesses, but the nzt field of
hash-table entries accounts for only 0.11% in static entries
and an additional 0.01% in dynamic entries. Other fields
such as grpno of tree nodes and grptime of hash-table en-
tries are not used at all by the program. The results suggest
that we can reduce memory size by off-loading unused or
infrequently used data.

4.2 Run-TimeMonitoring

Data monitoring enables data off-loading at fine granular-
ity. The hash table of Cheetah initially consists of an array
slot. Each array element contains five fields. Two of them,
grptime and prty, are never used. The nzt field is accessed
only 0.11% of the time. Suppose a programmer wants to
off-load these three fields. To maintain correctness, the pro-
gram must monitor all accesses to these three fields. When
an off-loaded element is needed by the program, the system
must locate the element and re-load it from secondary stor-
age. Precise monitoring allows precise re-loading: given an
access to a nzt field, the system calculates the index in slot
array from its shadow record in the hash table.

The additional space cost for the entire array is only a sin-
gle entry in the hash table in the monitor. The time cost,
as described in Section 3, is 11% on an SGI workstation
and 5% on a PC. Therefore, off-loading saves 60% of space
for slot array with no more than 11% of run-time overhead.
Data off-loading can also reduce space requirement for dy-
namically allocated hash-table entries. Although it requires
a larger hash table, the overall memory requirement can still
be smaller if the size of shadow data is smaller than the size
of off-loaded data.

Three properties of the monitoring system are critical for
this application. The first is bounded-distance guarantee.

It ensures that a program always finishes using a re-loaded
element in a bounded code sequence, so that it needs not
to store re-loaded elements for a long time. The second
property is selectivity. Since only partial data are off-loaded,
the monitor needs to look only at program accesses that may
reference displaced data. All other memory accesses proceed
as before with no run-time overhead. The last important
feature is high-level interface. The use of a base address
makes hash table efficient, which in turn allows for fast and
precise monitoring for each data access.

Our estimate of 60% space saving at 11% time cost is only
an estimate. We have made several simplistic assumptions.
We did not include the cost of changing data definition and
data access to hash table entries and the cost of communi-
cation between the program and the remote data storage.
However, we show that selective monitoring supports auto-
matic data control with possibly little run-time overhead. In
fact, the cost of monitoring is proportional to the usage of
monitored data. The less frequently used are the off-loaded
data, the less run-time overhead is the run-time monitoring.
Therefore, selective data monitoring fits well with the need
of data off-loading.

5. RELATED WORK

Program instrumentation and data analysis have been an
active area of research as well as commercial development.
Most widely used are instrumentation at the binary level.
Binary instrumentation does not require program source,
but it is machine and compiler dependent. For data anal-
ysis, it collects the content of the address register in each
memory load and store operation. It often uses a search
tree to locate data accesses. Our system uses source-level
instrumentation. It does not need to instrument all data
references and it can be selective based on data identity and
access type. It uses a high-level interface, which allows the
exchange of non-trivial program information and the use of
hash-table search at run time. The source-level instrumen-
tation is portable across machines and compilers, although
it analyzes only source-level data and their accesses.

Source-level instrumentation has been used in studying For-
tran programs. Early examples include source-level profil-
ing to examine maximal parallelism by Chen et. al. [6] and
program locality by Callahan et. al. [5] and recently by
Mellor-Crummey et. al [15]. They analyze array data with-
out user-defined types and explicit pointers. Their goal was
profiling, so they needed not to trade coverage for efficiency.
To support run-time optimization, our earlier work used se-
lective analysis in Fortran and simple C programs [8].

Selective analysis has been used at the assembly level. Most
widely used is a technique called abstract execution devel-
oped by Larus [14]. For data monitoring, it instruments
only statically unknown addresses and control flow. After
execution, it regenerates the full trace from the abbreviated
run-time trace. The instrumentation happens on an inter-
mediate form after most compiler optimizations but before
peephole optimization. For a set of four test programs on
a MIPS R2K processor, profiling overhead was 0.8 to 4.8
times of the cost of program execution (up to 80% was writ-
ing files to disk), and the succeeding regeneration step was
19 to 60 times slower than the original. The abbreviated

Source-level data name

| Access frequency |

All accesses 100% (178 million)

Dynamic allocation of type tree_node in faclru.c at line 661 40%
structure field tree_node.addr 1.5%
structure field tree_node.lft 13%
structure field tree_node.rt 7.4%
structure field tree_node.grpno no access
other fields omitted

Global array slot of type hash_table in faclru.c at line 41 2.6%
structure field hash_table.nxt 0.11%
structure field hash_table.grptime no access
structure field hash_table.prty no access
other fields omitted

Dynamic allocation of type hash_table in faclru.c at line 404 0.31%
structure field hash_table.nxt 0.01%
other fields omitted

Global variable md_amode_str in ./machine.h at line 477 no access

Other variables and allocation sites omitted

Table 2: Partial results from data-reuse analyzer

trace was a facotr of 10 to 40 smaller than the full address
trace. In comparison, the time overhead of our system is 8%
and 42% when collecting a full address trace (without writ-
ing out to files) of two different programs on a much faster
MIPS processor. We do not need a regeneration step. Larus
also selected data references based on whether the data are
in registers or program stack. We support more fine-grained
selections at the source level such as those based on data
identity and data type. Larus’ method can trace events
other than data access. We focus on only data monitoring.

Orthogonal to data selection is control selection. A recent
scheme used by Arnold and Ryder [2] and by Hirzel and
Chilimbi [13] makes two versions of the program and let exe-
cution switch between lightly unmonitored version and heav-
ily monitored version at selected times. Our work comple-
ments control-selection schemes by allowing selection based
on data, not just on control.

Our compiler algorithms are adapted from classic code gen-
eration and local value numbering [1]. Our compiler oper-
ates at the source level similar to the framework used by
Halvak for Fortran programs [12]. We handle complex data
structures in C. Our value numbering algorithm analyzes
both the content and location of data references. It guar-
antees bounded distance when removing monitoring for re-
peated accesses. It preserves and utilizes the full semantics
of source-level data definition and data access. For type-safe
programs, we use type-based disambiguation similar to Di-
wan et. al. [9]. We assume that locations are different for
data of different types except for pointer values.

Access monitoring has also been used in program safety
checking. Steffen [16] and Austin et. al. [3] augmented each
pointer with the size and location of the targeted object. At
each pointer de-reference, a simple run-time system checks
whether the access is within the allowed range. The scheme
adds significant space overhead (15 bytes per pointer). For
a set of large C programs, Austin et. al. reported time
overhead up to 540% and space overhead up to 330% [3].

In comparison, the time overhead of our system is 93% and
312% on MIPS for the same monitoring accuracy. Our space
overhead is mostly proportional to the number of data ob-
jects instead of the number of pointers. Our system is more
precise because it keeps complete data information includ-
ing type definitions. Austin et al. implemented a system
that monitored every memory access to every source-level
data. They used run-time optimization, which did not have
bounded-distance guarantee. We use selective analysis and
have more control over the trade-off between coverage and
cost.

Another approach to access checking is through a run-time
system that keeps track of all live memory objects, as in
conservative garbage collectors by Boehm [4] and in com-
mercial software such as Purify [11]. These methods do not
use source-level compiler support. Although applicable to
any binary code, they cannot have the benefit of source-
level selection and high-level compiler optimization. Both
on purpose and by design, access-checking methods do not
support partial checking.

The last class of related work we compare with is optimiza-
tion for Java programs. Java language enforces stricter con-
straints on the shape of data and the type of their access. It
cannot have nested structures and indirect pointers (point-
ers that point to pointers). Java byte code is also much
heavier than typical program binary because the byte code
needs to store type and symbol information for each class. In
contrast, our system supports a wider range of data struc-
tures and allows for analysis and instrumentation of only
parts of a program instead of its entirety.

6. SUMMARY

We have presented a selective data-monitoring framework
that consists of a compiler and a run-time monitor. The
compiler selects monitoring points based on data identity,
data type, and access type. The monitor examines compiler-
selected data accesses in different precisions. Three tech-
niques are vital. The first is combined compiler analysis of

both content and location of data accesses. The second is
the use of a high-level interface. Enabled by the compiler
and the high-level interface, the last technique is the use
of base address and hash-table search by the monitor. An
important application of selective monitoring is automatic
data off-loading on memory-limited devices.

Preliminary experiments on both an array-intensive and a
pointer-intensive program on a workstation and a PC shows
that selective monitoring provides a wide range of choices
in terms of coverage and precision. The cost differs up to a
factor of 49 by static count and a factor of over 80 by running
time. The lowest monitoring cost is no more than 25% in
quicksort and 11% in Cheetah. In addition, the high-level
interface reduces the space cost of the monitor by orders of
magnitude. These results suggest that selective monitoring
can be efficient for practical use in applications such as data
off-loading. We hope that this research will provide a new
tool for managing complex and dynamic data in general-
purpose programs.

Acknowledgment

We thank the students of Spring 2001 class of CS573, who
used an earlier version of the monitoring system and pro-
vided valuable feedback. We also thank James Larus, whose
comments helped us to significantly improve the presenta-
tion of this work. The SGI machine used in this work was
purchased from an NSF infrastructure grant. The Pentium
PC was donated by Intel.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, MA, second edition, 1986.

[2] M. Arnold and B. G. Ryder. A framework for reducing
the cost of instrumented code. In Proceedings of ACM
SIGPLAN Conference on Programming Language
Design and Implementation, Snowbird, Utah, 2001.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation,
Orlando, Florida, 1994.

[4] H. J. Boehm. Space efficient conservative garbage
collection. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, Albuquerque, NM, June 1993.

[5] D. Callahan, K. Kennedy, and A. Porterfield.
Analyzing and visualizing performance of memory
hierarchies. In Performance Instrumentation and
Visualization, pages 1-26. ACM Press, 1990.

[6] D.K. Chen, H.H. Su, and P.C. Yew. The impact of
synchronization and granularity in parallel systems. In
Proceedings of the 17th Annual International
Symposium on Computer Architecture, 1990.

[7] J. Cocke. Global common subexpression elimination.
ACM SIGPLAN Notices, 5(7):20-24, 1970.

(8]

C. Ding and K. Kennedy. Improving cache
performance in dynamic applications through data
and computation reorganization at run time. In
Proceedings of the SIGPLAN 99 Conference on
Programming Language Design and Implementation,
Atlanta, GA, May 1999.

A. Diwan, K. McKinley, and E. Moss. Type-based
alias analysis. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, Montreal, Canada, 1998.

C. Fraser and D. Hanson. A retargetable C' compiler:
design and implementation. Benjamin/Cummings,
1995.

R. Hastings and B. Joyce. Purify: fast detection of
memory leaks and access errors. In Proceedings of the
Winter Useniz Conference, 1992.

Paul Havlak. Interprocedural Symbolic Analysis. PhD
thesis, Dept. of Computer Science, Rice University,
May 1994. Also available as CRPC-TR94451 from the
Center for Research on Parallel Computation and
CS-TR94-228 from the Rice Department of Computer
Science.

M. Hirzel and T. M. Chilimbi. Bursty tracing: A
framework for low-overhead temporal profiling. In
Proceedings of ACM Workshop on Feedback-Directed
and Dynamic Optimization, Dallas, Texas, 2001.

J. R. Larus. Abstract execution: A technique for
efficiently tracing programs. Software - Practice and
Ezperience (SPE), 20(12), 1990.

J. Mellor-Crummey, R. Fowler, and D. B. Whalley.
Tools for application-oriented performance tuning. In
Proceedings of the 15th ACM International Conference
on Supercomputing, Sorrento, Italy, 2001.

J. L. Steffen. Adding run-time checking to the
portable C compiler. Software Practice and
Ezperience, 22(4), 1992.

R. A. Sugumar and S. G. Abraham.
Multi-configuration simulation algorithms for the
evaluation of computer architecture designs. Technical
report, University of Michigan, 1993.

L. Xjao, X. Zhang, and S. A. Kubricht. Improving
memory performance of sorting algorithms. ACM
Journal on Ezperimental Algorithmics, 5:1-23, 2000.

Y. Zhong, C. Ding, and K. Kennedy. Reuse distance
analysis for scientific programs. In Proceedings of
Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, Washington DC,
March 2002.

