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Abstract
Speculative parallelization divides a sequential program into
possibly parallel tasks and permits these tasks to run in paral-
lel if and only if they show no dependences with each other.
The parallelization is safe in that a speculative execution al-
ways produces the same output as the sequential execution.

In this paper, we present the dependence hint, an interface
for a user to specify possible dependences between possibly
parallel tasks. Dependence hints may be incorrect or incom-
plete but they do not change the program output. The inter-
face extends Cytron’s do-across and recent OpenMP order-
ing primitives and makes them safe and safely composable.
We use it to express conditional and partial parallelism and
to parallelize large-size legacy code. The prototype system is
implemented as a software library. It is used to improve per-
formance by nearly 10 times on average on current multicore
machines for 8 programs including 5 SPEC benchmarks.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming

General Terms Languages, Performance

Keywords do-across parallelism, post-wait, speculative
parallelization, safe parallel programming

1. Introduction
Speculative parallelization divides a sequential program into
possibly parallel tasks—for example as safe futures [33],
ordered transactions [32] or PPRs [12]—and uses a run-
time system to ensure sequential equivalence. Speculation
is useful in addressing the problems of uncertain parallelism
due to either implementation or program input. It enables
safe parallelization of programs that use legacy code and
programs that have frequent but not definite parallelism.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

Most previous systems allow speculation to succeed only
if program tasks are completely independent (also called do-
all parallelism or embarrassingly parallel). Two tasks are
serialized if they have a conflict. However, in many cases
tasks are partially parallel (called do-across parallelism). An
example is result collection, where a set of tasks compute on
different data and then combine their results into a shared
counter. Another one is pipelined parallelism, where each
task is divided into stages, and parallelism exists between
stages rather than tasks as a whole.

To safely express partial parallelism, we present the de-
pendence hint, an interface for a user to suggest post-wait
dependences between possibly parallel tasks. It enables tasks
to speculatively synchronize with each other. For example, a
user can parallelize a compression utility by dividing the in-
put into chunks and then use dependence hints to assemble
the compressed chunks after parallel compression.

Dependence annotations have been studied in the past,
including post-wait by Cytron for static parallelization [10],
signal-wait by Zhai et al. for thread-level speculation
(TLS) [35], and flow by von Praun et al. for ordered trans-
actions [32]. In these systems, parallel tasks shared data
directly. In the latter two, speculation required special hard-
ware.

Speculation support may be implemented on conven-
tional hardware, using a two-step strategy. The first is copy-
on-write in speculative tasks to isolate them from each other.
The second is serial commit to merge concurrent changes
and resolve conflicts.

This software-only strategy is used by BOP [12, 17, 36]
and Cord [30] for speculative parallelization, Grace [7] for
race-free threaded execution, isolation and revision types in
C# [8] and implicit copying and explicit commit in C [13]
for safe parallel programming, DoublePlay [31] for deter-
ministic replay, CoreDet [6] and Determinator [3] for deter-
ministic parallel execution.

While these systems eliminate the interaction between
parallel tasks to ensure safety, these tasks cannot coordinate
with each other during execution. Any interaction, e.g. en-
forcing a dependence, would require explicit communica-
tion.



The dependence hint uses a channel to express communi-
cation between copy-on-write tasks. The channel abstraction
has three benefits. First, a channel communicates dynami-
cally allocated data, i.e. a task can receive new data from a
peer task without knowing the address. Second, a channel
communicates aggregate data, which allows staged execu-
tion such as pipelining. Finally, channels may be chained to
handle conditional dependences.

We design the dependence hint with the following goals:

• Safety. Dependence hints are added to a sequential pro-
gram. The program with hints always produces the iden-
tical result as the program without hints (hence no need
for parallel debugging). When the hints are wrong, the
program should not run slower than the sequential ver-
sion.

• Expressiveness. The hint can express regular and condi-
tional dependences, on data allocated before or during
parallel execution.

• Concision. Not all dependences need hints. The needed
ones can be combined in a few hints or expressed through
high-level constructs.

These properties by themselves do not imply that depen-
dence hints can be effectively used by average programmers.
There are inherent difficulties in reasoning about concurrent
value flows on replicated data. Our focus is the safe imple-
mentation that ensures correct program output against all
possible errors. A system may help a user to correct erro-
neous hints or insert hints automatically, although these ex-
tensions are outside the scope of this paper.

Because of the cost of software implementation, we fo-
cus on coarse-grained task parallelism in sequential code.
We target small-scale parallelism to utilize spare cores on
today’s workstations rather than for scalable performance on
massively parallel machines.

The rest of the paper is organized as follows. Section 2 in-
troduces software speculative parallelization. Section 3 de-
scribes the dependence hint: the interface, the safe imple-
mentation, the conditional and high-level hints. Section 4
demonstrates their use on four examples. Section 5 shows
the performance. Finally, the last two sections discuss re-
lated work and summarize.

2. Background on The Parallelism Hint
Software speculative parallelization is pioneered by Rauch-
werger and Padua [24]. Our work is based on behavior-based
parallelization (BOP), which provided a manual interface to
suggest possibly parallel regions (PPR) [12]:

• bop ppr{ PPR code } marks a block of code and sug-
gests task parallelism—the code in the PPR block may be
parallel with the code after the PPR block.

BOP uses a process to implement a PPR task. A process
is heavy weight, but it is flexible and fully protected. A

PPR task can be forked anywhere in a program and can be
aborted by simply killing it. More interesting is the effect
on data sharing. When a process writes to a page for the
first time, it makes a copy of the page. This is known as
copy-on-write. Data copying insulates a PPR task against
changes happening in other tasks. More importantly, data
copying removes all false dependences—write-after-read,
write-after-write conflicts—between PPR tasks.

When PPR tasks finish, BOP checks their data access
for true dependences (read-after-write) and if none found,
merges the data changes. Since a PPR task may be wrong,
an understudy process re-executes speculative work non-
speculatively. The understudy is always correct because it
is the same as sequential execution.

Listing 1 shows a simple program with two PPR tasks.

Listing 1: Two PPR tasks

# t r y s e t t i n g g [ x ] and u s i n g g [ y ]
# i n p a r a l l e l
bop ppr {

g [ x ] = foo ( x )
}
bop ppr {

b a r ( g [ y ] )
}

Listing 2: Implementation using 3 processes

t 1 = fork {
# copy−on−w r i t e g [ x ]
g [ x ] = foo ( x )

# u n d e r s t u d y f o r e r r o r r e c o v e r y
t2 undy = fork {

b a r ( g [ y ] ) # s a f e re−e x e c u t i o n
k i l l t 2 # a b o r t s p e c u l a t i o n

}
}
t 2 = fork {

b a r ( g [ y ] ) # s p e c u l a t i o n

# w a i t f o r t 1
join(t1)
# check c o r r e c t n e s s o f t 2
i f g[x] and g[y] are the same array cell

e x i t # a b o r t s p e c u l a t i o n
e l s e

copy g [ x ] from t 1 t o t 2 # commit
k i l l t2 undy # a b o r t u n d e r s t u d y

end
}
# e i t h e r t 2 o r t 2 u n d y s u c c e e d s / c o n t i n u e s



Listing 2 shows the BOP implementation with three pro-
cesses: the first and the third fork operations are for the two
PPRs and the second fork starts the understudy. The imple-
mentation is simplified for the purpose of illustration and
does not represent the complete design [12].

Safe parallelization relies on the following:

• fork-without-join. A PPR task commits when it finishes.
A user does not specify when a task should finish.

• copy-on-write data replication. PPR tasks are isolated
from each other. All false dependences are eliminated.

• access monitoring. A PPR task uses virtual memory sup-
port to monitor access (to global and heap data) at page
granularity. The first read and write access to each page
is recorded. The read and write sets are compared after
the parallel execution to check for dependences.

• recovery via understudy. The understudy process runs the
original code and aborts PPR tasks if they are wrong or
too slow.

BOP supports only iterative parallelism with no nesting.
A PPR is ignored if it is encountered in a PPR execution.
Nesting can be supported using established techniques in
race checking [5, 20].

In addition to BOP, a number of speculation systems are
based on Unix processes, including Grace [7], SMTX [23]
and recently DoublePlay [31]. Process-based speculation has
been extended to support speculative memory allocation in
Grace [7], irregular task sizes and adaptive speculation in
BOP [36? ].

As an interface, the parallelism hint has a major
limitation—PPR tasks cannot collaborate with each other
while they are executing. Dependences between active PPR
tasks have to be enforced by rollbacks and sequential re-
execution. We next show the dependence hint to allow tasks
to utilize partial parallelism and avert rollbacks.

3. The Dependence Hint
This section presents the interface, the safe implementation,
and improvements in efficiency and expressiveness. If the
basic interface in Section 3.1 feels too low-level for manual
use, treat it as the implementation interface for building
high-level hints in Section 3.4.

3.1 The Interface
The dependent hint has three primitives, which are matched
at run time by a unique channel identifier. The identifier is
either a number or a string.

• bop fill(channel id, addr, size) is called by a sender task
to register an address range with a channel. The data is
copied when the channel is posted.

• bop post(channel id [, ALL]) is called to post the chan-
nel and its data. An optional ALL, if specified, means to

post all modified data.1 A channel is single post — post-
ing to a posted channel has no effect (a no-op).

• bop wait(channel id) stalls the receiver task until the
channel is posted. The received data is placed in the
receiver task in the same address as in the sender. If a
task waits for the same channel multiple times, later waits
have no effect (no-ops). Multiple tasks may wait for the
same channel and receive data from the same sender.

A sender task fills a channel with data and then posts the
channel. A receiver task waits for a channel and then copies
the channel data. The hint represents both synchronization
and communication: the post is a non-blocking send, and the
wait is a blocking receive.

An example Listing 3 shows a processing loop that com-
putes on each input from a queue and inserts the result to
an output queue. The processing step may be parallel, but
the queuing step is not—each iteration adds a new node to
the output queue. Speculation in Listing 3 would always fail
because of the dependence.2

The solution in Listing 4 serializes the queuing step using
a dependence hint. Each (non-first) iteration calls bop wait
to wait until the previous iteration posts the result. Then it re-
ceives the queue tail, appends a new node, and calls bop fill
and bop post to send the new tail to the next iteration. The
variable cid is used to create a new channel id at each it-
eration, so there is no reuse of channels and no cross-talk
between non-adjacent iterations.

Listing 4 uses three primitives. To make the coding sim-
pler, we can replaced them by a high-level hint, bop ordered,
which we show in Listing 5 and will describe in Section 3.4.

Next we explain the three features of the dependence hint
necessary for this example to be parallelized correctly.

Sender-side addressing As a sender fills a channel, it
records both the data and its address. A receiver does not say
what data to receive or where to place the received data—the
data from the channel is placed in the same address as the
sender specified. Sender-side addressing has three benefits.

First, it simplifies the receiver interface and avoids the
problems of mismatch. An example mismatch, as can hap-
pen in MPI, is when a task sends a message of size n, but the
receiver expects a message of size 2n. Sender-side address-
ing removes all possible sender-receiver disagreements.

Second, sender-side addressing allows a task to commu-
nicate dynamically allocated data (of a dynamic size). This
is necessary for the solution in Listing 4. The output queue
grows node by node. The next iteration can receive the new
tail, even though it did not have the node in its address space
and had no knowledge of its allocation in the previous iter-

1 which means all data modified since the last fill/post/wait call or if there
is none, all data modified since the start of the task.
2 Note that the speculation would still fail if the queue insertion is moved
outside the PPR block, since the insertion needs the datum computed inside
the PPR.



Listing 3: A possibly partially parallel loop

whi le ( has more ( i n p u t s ) ) begin
w = g e t n e x t ( i n p u t s )
# t r y comput ing w i n p a r a l l e l
bop ppr {

t = compute (w)
# a l l o c a t e a new node n
n = new qnode ( t )
# make n t h e new t a i l
append ( o u t p u t s , n )

}
end

Listing 4: Safe parallelization using basic primitives

c i d = 0 # c h a n n e l i d
whi le ( has more ( i n p u t s ) ) begin

w = g e t n e x t ( i n p u t s )
bop ppr {

t = compute (w)
n = new qnode ( t )
# w a i t f o r t h e l a s t t a i l
bop wait ( c i d − 1 ) i f c id >0
append ( o u t p u t s , n )
# send t h e new t a i l
bop fill ( c id , n , s i z e o f ( qnode ) )
bop post ( c i d )

}
c i d ++

end

Listing 5: An equivalent solution using a high-level hint

whi le ( has more ( i n p u t s ) ) begin
w = g e t n e x t ( i n p u t s )
bop ppr {

t = compute (w)
bop ordered {

n = new qnode ( t )
append ( o u t p u t s , n )

}
}

end

ation. Communicating dynamic data is as simple to code as
communicating static data.

Third, the run-time system can dynamically change the
content of communication. This feature is critical in the safe
implementation which we will describe in Section 3.2.

Selective dependence marking Enumerating all depen-
dences is impracticable because there may be n2 depen-
dences in an n-statement program. The dependence hint is

for selective marking, i.e. for only dependences from a PPR
task to its continuation. We call these PPR dependences.
Other dependences do not require hints, including depen-
dences within a PPR task, dependences within inter-PPR
code and from inter-PPR to PPR code.

PPR dependences do not need hints if they are too infre-
quent to affect performance. The rest, more regularly occur-
ring dependences can be divided into two types: short range
and long range. Short-range dependences happen between
nearby PPR tasks, which are likely to require hints for coor-
dination. Long-range dependences happen between distant
PPR tasks, which are most likely already serial and do not
need hints. For example when parallelizing a loop, hints are
needed for short-range dependences between consecutive it-
erations but not for long-range dependences, e.g. between
the loop and the subsequent code.

Furthermore, multiple dependences can share a single
channel and be marked by a single hint. For example, in
pipelining, each stage needs just one post and one wait. An-
other example of enforcement en masse is to suggest a join
point to serialize two PPR tasks and satisfy all dependences
between them. For these reasons, the number of hints can be
few even though the dependences may be many.

A careful reader may note that long-range dependences,
although they do not need synchronization, still need com-
munication. Such communication is done at the commit time
when a PPR task finishes and its modified data copied into
later tasks. Data commits and dependence hints are the two
ways by which PPR tasks share data. Data commits move
data asynchronously and do not block an active task. Depen-
dence hints are synchronous and may stall the receiver task.
Dependence hints require an explicit hint, while data com-
mits do not.

Now we can explain a subtlety in the solutions in List-
ing 4 and Listing 5. The last PPR task, the one to create the
last node, is supposed to have the full queue, but it does not.
From the dependence hint, it has only the node it creates
and the one before it—just the two nodes, not the full queue.
How and when is the entire queue assembled? The rest of
the queue is pieced together by data commits. As tasks fin-
ish, their data is copied out and merged. The construction
happens asynchronously as the loop progresses.

Selective dependence marking benefits both programma-
bility and performance. In the example, parallelization is
simple since only the tail node requires a hint. It is also effi-
cient and more scalable since the communication is constant
size rather than linear size. Each node is copied just once.

Safety and determinism Unlike in non-speculative sys-
tems where communication primitives must be perfectly
paired, dependence-hint primitives are suggestions and may
mismatch.

To ensure determinism, a channel accepts at most one
post. If we were to allow multiple posts, we would be un-
certain how many of the posts had happened at the time of



a bop wait. In addition, the restriction means that a channel
cannot be filled by multiple tasks. If two PPR tasks could fill
the same channel, we would be uncertain which task finished
first placing data in the channel. A third benefit is efficiency
— bop fill is a task-local operation since a channel is never
used by more than one writer.

A programmer may not know completely about the code
she is parallelizing. For example the loop shown in Listing 3
may have abnormal entries and early exits in the compute
call. The call may have hidden dependences including ac-
cess to the output queue. Next we describe the safe imple-
mentation to guard against potential errors.

3.2 Safe Implementation
Incomplete knowledge of a program can cause three types
of errors in hint specification: under-specification, where an
actual dependence is not hinted; over-specification, where a
hinted dependence does not happen in execution; or incor-
rect specification, where the location or the cause of a de-
pendence is wrong. Some errors (e.g. a missed dependence)
may cause the speculation to fail, some (e.g. a widow wait)
may delay a task unnecessarily, and some (e.g. a widow post
and intra-task post-wait in our example) may add unneces-
sary overhead but do not otherwise harm parallel execution.

To present our implementation and show its correctness,
we first define a conflict, which happens when a task in a
parallel execution reads a value different from the would-be
value in a sequential execution. It follows that a parallel ex-
ecution produces the sequential result if there is no conflict.

The absence of conflicts are ensured by filtering and three
checks as follows:

• filtered posting — At bop post, only modified data in
the channel is posted. The filtering avoids useless data
transfer and simplifies correctness checking.

• the sender conflict —The conflict happens when a task
modifies the data it has already posted. The check detects
the transmission of stale data.

• the receiver conflict — There is a conflict if a task ac-
cesses (reads or modifies) some data and then later re-
ceives it by a wait. The check detects premature use of
dependent data.

• the last-writer check — For every piece of data received
by a task p, its sender must be the last writer before p in
the sequential program order.

The filtering and the first two checks are task local and
performed during speculation. The last-writer check in-
volves potentially all speculation tasks. It is performed dur-
ing the commit process.

Consider an example in Figure 1. There are 3 tasks: T1
and T2 write x, and T3 reads x. The correct post-wait is to
pass x from T1 to T2 and then from T2 to T3. In the example,
however, T1 sends x to T2 and T3.

task 2task 1 task 3

A pairing conflict.  Task k is aborted because it 
uses a stale version of data x.

write x
fill(1, x)

post(1)

wait(1)

write x

wait(1)

read x

Figure 1: A misuse of post-wait: task 3 reads incorrect x.

The three checks detect the error as follows. The sender-
conflict check ensures that T1 send last modified version of
x. The receiver-conflict check ensures that T2 and T3 do
not use x before getting its new value. The last-writer check
ensures the right pairing of communication. In T2, the last
writer and the sender of x are both T1, so the check passes.
In Task 3, the sender is T1, but the last writer is T2, so the
check fails. As a result, the system aborts and re-executes
T3. Consider an extension of this example in which T2 sends
correct x to T3, but T3 does not wait for it. The last-writer
check still fails since T3 consumed the wrong version of x.

Next we show the correctness formally using a proof
similar to that of the Fundamental Theorem of Dependence
(Sec. 2.2.3 in [2]) and the one in [12].

Theorem 3.1. The three checks, if all passed, rule out all
possible conflicts in a parallel execution.

Proof We assume that PPR tasks are numbered by their
sequential order, all inter-task dependences are marked by
hints, and all tasks have passed the three checks. We show
that the parallel execution has no conflict. We prove by
contradiction.

Let task tq be the first task to have a conflict—it reads
location x but the value is different from reading x in the
sequential execution. Since all values seen by tq before this
read were correct, the incorrect value must come from out-
side tq. Let’s assume that in the sequential execution, task tp
is the last to write x before tq. Since tq is the first to have a
conflict, tp must be correct and write x correctly. The ques-
tion is whether tp communicates to tq properly and whether
other tasks may interfere by interjecting some other x to tq.

Because all three checks are passed, tp and tq must com-
municate properly. First, tp sends x after its last write, tq
receives x from tp before its first read. Second, tasks after tp
do not post x because tp is the last writer. Third, a task be-
fore tp may send x to tq. However, tq must read the version
of x from tp (to pass the last-writer check). Therefore, there
is no way for tq to receive an incorrect x, which contradicts
the assumption that x is incorrect.

Progress guarantee Usually a blocking receive such as
bop wait may entangle a set of tasks into a deadlock. As
a dependence primitive, BOP communication flows in one
direction in the increasing order of the task index. In addi-
tion, BOP uses an understudy process to execute speculative



tasks non-speculatively. Understudy does not speculate and
ignores all hints. If there is a wait with no matching post, the
unmatched wait is dropped when the understudy finishes the
re-execution of the waiting PPR.

Dependence hints are free of concurrency errors such as
deadlocks, live locks, and data races. The implementation is
wait free, which means that all tasks finish within bounded
time—the time taken by the sequential execution.

Conflict handling If PPR i incurs a sender conflict, we
abort and re-start all PPR j for j > i. With sufficient book-
keeping, we can identify and rollback only those tasks that
are affected by the offending send. In addition, a sender can
remove and update data in a posted channel if it has not been
received, or if it is received but not consumed. To avoid re-
curring conflicts, the BOP runtime can ignore a post opera-
tion if it caused a sender conflict before, leveraging the learn-
ing strategies studied by Jiang and Shen [? ].

At a receiver conflict, the faulting task is aborted. A
special case is when a task receives the same data, say x,
from different senders (note that it cannot receive multiple
x from the same sender because of the modification and
sender-conflict checks). We rank the recency of received
values by the task index of their sender. A larger index means
a later sender and a newer value. There are three cases. First,
x is first accessed before the first receive, which means a
receiver conflict. Second, x is first accessed between two
receives. If the value from the first receive is less recent than
that of the second receive, a receiver conflict is triggered. If
the value from the first receive is newer, the second receive
can be silently dropped without raising a conflict. In the third
case, x is first accessed after two or more receives. We keep
the newest value of x and continue. We call the last two
extensions silent drop and reordered receive.

Inter-PPR post-wait A post in an inter-PPR gap is unneces-
sary since its writes are visible to all later execution. bop fill
is ignored, and bop post marks the channel as posted with-
out communicating any data. Consider for example a depen-
dence between two inter-PPR gaps. The dependence is al-
ways satisfied since the gaps run sequentially. There is no
need to send any data, and there will be none sent. We call it
inter-PPR hint override. Finally, a wait in an inter-PPR gap is
treated normally since it may be the target of a PPR depen-
dence.

Outdated post and channel de-allocation If a post-wait
pair spans many PPR tasks, it is possible that the receiver
already has the sent data. The channel data is freed when
the sender commits and all active tasks have the data. The
system still stores the identifier of posted channels in case a
task later waits for one of these channels. When it happens,
the task does not block and does not receive the data again.
We call it distant-PPR hint override. The storage cost is small
since the system stores only channel identifiers not channel
data.

It is worth noting that most techniques in this section—
filtered posting, silent drop, reordered receive, the inter-PPR
and the distant-PPR override—dynamically change the con-
tent of a channel. As mentioned before, they are possible be-
cause of sender-side addressing. The feature benefits both
programming and performance. For example with filtered
posting, a task may change sub-parts of an array, and the
programmer can simply post the whole array without incur-
ring unneeded communication.

3.3 Conditional Dependence by Channel Chaining
If every task modifies shared data, we enforce in-order ac-
cess by all of them. Sometimes however, there may be non-
contributing tasks that decide not to write the shared data.
Assuming the decision is dynamic, how should the next task
know whether to wait for its predecessor? There are two sim-
ple solutions: the next task waits until the previous task fin-
ishes, or the previous task tells the next task not to wait. The
first loses parallelism. The second requires a communica-
tion. Neither does any better whether there is a dependence
or not. We note that this problem does not exist in concur-
rency constructs such as transactions and atomic sections. It
is unique with dependence annotations because of their ad-
herence to sequential semantics.

An efficient solution is to dynamically chain multiple
channels to bypass non-contributing tasks. We call it channel
chaining. The primitive is bop cc:

• bop cc(channel 1, channel 2) is called by a task to chain
two channels. After chaining, a receiver of either channel
waits for both channels, and a sender of either channel
posts to both channels. The two channels are effectively
aliases.

We revise the previous example. In Figure 2, an iteration
outputs to the queue only conditionally in some cases; oth-
erwise, it calls bop cc to chain cid minus 1 with cid, so the
next iteration waits for the post by the previous iteration. If
only a few iterations generate output, most channels will be
chained, and only the generating tasks will synchronize and
communicate queue data.

Channel chaining has four benefits. First, any number of
tasks may decide not to contribute. More than two channels
may be chained. Second, a task may decide at any time not
to contribute, regardless whether the peer tasks have posted
or waited. Third, no data is transferred to non-contributing
tasks. Last, incorrect chaining will be detected, for example,
when a task mistakenly connects two channels. The imple-
mentation in Section 3.2 is safe against all misuses of chan-
nel chaining.

3.4 The Ordered Hint
Dependence, although fundamental, may be too low level for
a programmer. In this section, we build a high-level hint as
follows:



Listing 6: A loop with a conditional dependence

whi le ( has more ( i n p u t s ) ) begin
w = g e t n e x t ( i n p u t s )
# t r y comput ing w i n p a r a l l e l
bop ppr {

t = compute (w)
# c o n d i t i o n a l queue i n s e r t i o n
i f t 6= n i l begin

n = new qnode ( t )
append ( o u t p u t s , n )

end
}

end

Listing 7: Parallelization with channel chaining

c i d = 0 # c h a n n e l i d
whi le ( has more ( i n p u t s ) ) begin

w = g e t n e x t ( i n p u t s )
bop ppr {

t = compute (w)
n = new qnode ( t )
i f t 6= n i l begin

. . . # same as Listing 4
e l s e

# by pa s s t h e sync / comm
bop cc ( c id −1, c i d )

end
}
c i d ++

end

Figure 2: Channel chaining to handle a conditional depen-
dence. Communication happens only between iterations that
perform queue insertion.

• bop ordered{ code } marks a block of code and sug-
gests an ordered execution—PPR tasks running the code
should execute one at a time and in their sequential order.

Figure 3(a) shows an ordered block in a function called
foo, and the function is called in a while-loop. Figure 3(b,c)
show two implementations of bop ordered depending on
whether the number of foo calls is known. When the last
call is known, we post after the last call; otherwise, we post
at the end of the task. A special case is when foo is not called
at all. bop cc is used.

OpenMP provides ordered as a directive for loop paral-
lelization [21]. Gossamer introduced it as a general directive
for task parallelism [26]. The examples in these papers show
a single ordered call in each task or loop iteration. In fact,
the OpenMP standard requires that ordered be used exactly
once in each iteration—“a conforming example ... each iter-

ation will execute only one ordered region.” [21] It is unclear
how errors are handled, e.g. dependence between ordered
and unordered code, and how they may affect other parallel
primitives in the language.

Like Gossamer ordered, bop ordered is a general primi-
tive and can be used to serialize code in different functions.
Unlike in OpenMP and Gossamer, however, bop ordered is
a safe hint and can be used amidst uncertain control flow.
For example a program may branch into or out of an or-
dered block, which would be illegal in OpenMP. This shows
the dependence hint as a firm foundation for the high-level
hints. A user can define high-level hints using BOP post-wait
to define desirable semantics especially with conditional ex-
ecutions (as we have done in Figure 3). The high-level hints
are safe in composite uses and against misuse.

4. Programming with Dependence Hints
We show four examples of parallelization. Because of hid-
den or unpredictable dependences, the first two are difficult
to express, and the second two are difficult to implement
safely, if we were to use conventional methods.

4.1 String Substitution
Consider the task of sequentially replacing all occurrences
of the 3-letter pattern “aba” with “bab”. The process may
be parallel, e.g. when the input has no “aba”. But it may be
completely sequential, e.g. when the string is “abaa...a” and
should become “bb...bab” after conversion. For safe paral-
lelization, we mark the inner loop a possibly parallel task. To
count the number of substitutions, we use an ordering hint to
add per PPR task counts into a global counter num. The pro-
gram in Listing 8 processes the input in m-letter blocks. The
code uses the range syntax. For example, str[lo...hi]
refers to the series of letters starting from str[lo] and end-
ing at (and including) str[hi].

4.2 Time skewing
Iterative solvers are widely used to compute fixed-point or
equilibrium solutions. Listing 9 shows the structure of a typi-
cal solver as a two-level loop. An outer iteration, often called
a time step, computes on domain data first and then checks
for convergence. There is no static or dynamic parallelism
between time steps: the convergence cannot be checked un-
til all computations finish, and the next step cannot start
until the convergence check is done. But there is specula-
tive parallelism—the computations do not converge until the
last iteration, so time steps may overlap before then. The
transformation is known as time skewing [34]. Previous lit-
erature shows large performance benefits for both sequen-
tial [27, 34] and parallel [18] executions.

Parallelization hints can express time skewing with two
PPRs and two ordering hints. The first PPR (safely) paral-
lelizes the inner loop. The second PPR makes the conver-
gence check asynchronous, so the program can skip the con-
vergence check and start the next time step, allowing two



while not done
  bop_ppr {

    // parallel work
    ...
    call foo
    ...
  }
end while

func foo 
  bop_ordered {
     // serial work
  }
end func

(a) an example 
parallel loop and 

ordered block

while not done 
  bop_ppr {

   if (no foo call)
      bop_cc( ppr_id ,
                    ppr_id+1)
   ...
   call foo
   ...
 }
end while

func foo 

 bop_wait( ppr_id)
 // serial work
 if (last foo call)
   bop_post(ppr_id+1, 
                    ALL)
end func

(b) implementation by 
post-wait if the number 

of foo calls is known

while not done 

 bop_ppr {

   ...
   call foo
   ...

   bop_post(ppr_id+1, 

                   ALL)
 }
end while

func foo 
  bop_wait( ppr_id)
  // serial work

end func

(c) implementation if 
the number of foo 
calls is not known.

Figure 3: Using post-wait to implement the bop ordered region hint.

Listing 8: string scanning and pattern conversion

s t r [ 0 . . . n ] , s r c = ‘ ‘ aba ’ ’ , t a r g e t = ‘ ‘ bab ’ ’
num = 0 # number o f s u b s t i t u t i o n s

f o r i i in 2 . . . n wi th s t e p b do
# t r y a s t r i n g b l o c k i n p a r a l l e l
bop ppr {

f o r i = i i . . . min ( i i +b−1, n )
c n t = 0
i f matches ( s t r [ i−2 . . . i ] , s r c )

s t r [ i−2 . . . i ] = t a r g e t
c n t ++

end
end
# u p d a t e num s e q u e n t i a l l y
bop ordered {

num += c n t
}

}
end

time steps to overlap. The convergence check must wait for
the computations to finish. This is done by two ordering
hints: the results of the domain computation is combined in
the first ordered region, and the convergence check is then
made in the second ordered region. In the last iteration, the
write to the converged variable triggers a (true-dependence)
conflict with the speculative execution of the next time step.
The speculation is then rolled back, and the loop finishes
normally as if by a sequential execution.

Listing 9: Time skewing to overlap consecutive time-step
executions

conve rged = f a l s e
whi l e not conve rged

f o r i in 1 . . . n
# t r y i n n e r loop i n p a r a l l e l
bop ppr {

r = compute ( d a t a [ i ] )
bop ordered {

s = s . a d d r e s u l t ( r )
}

}
end

# t r y n e x t t ime s t e p i n p a r a l l e l
bop ppr {

bop ordered {
i f good enough ? ( s )

conve rged = t rue
end

}
}

end

4.3 TCA Pipelining
Thies, Chandrasekhar, and Amarasinghe defined an interface
for expressing pipeline parallelism in a loop [29]. We refer
to the interface as TCA pipeline after the initials of the
authors. The original version is not speculative, and a recent



system called SMTX added the speculation support [23].
The body of a pipeline loop is divided into stages. Each stage
is separated from the preceding stage by a pipeline label. By
default, a stage is sequential and its label takes no parameter.
A parallel stage has a parameter p to indicate the number of
parallel processors to use for the stage.

Figure 4 (a) shows an example TCA pipeline with 3
stages: stages 1 and 3 are sequential, and stage 2 is parallel.
The implementation uses one process running each sequen-
tial stage and p processes running the parallel stage. Thies
et al. developed profiling support to identify and transfer
shared data and to divide the stages evenly so that all pro-
cesses are fully utilized in the steady state.

for i in 1 ... n 
  bop_ppr {
     bop_wait( <my_ppr-1, s1> )
      // serial stage 1
     bop_post( <my_ppr, s1> )

     bop_wait( <my_ppr-1, s1> )
     // parallel stage 2
     bop_post( <my_ppr, s2> )

     bop_wait( <my_ppr-1, s3> )
     // serial stage 3
     bop_post( <my_ppr, s3> )
  }
end for

for i in 1 ... n 
  begin_pipelined_loop
  // serial stage 1

  pipeline( p ) 
  // parallel stage 2

  pipeline
  // serial stage 3
  end_pipelined_loop
end for

(a) 3-stage TCA pipeline (b) implementation by 
dependence hints

Figure 4: Using post-wait to safely implement the pipeline
loop construct of Thies et al. [29]

The pipeline parallelism can be implemented by post-
wait, as shown in Figure 4 (b). Each stage starts with a
wait and ends with a post. The channel identifiers are set
up to wait for the same stage in the previous task, if the
stage is sequential. A parallel stage has two cases. If it is
the first stage, it should not wait for anyone; otherwise, it
waits for the previous stage in the previous task. Note that
the implementation can be encapsulated so the programmer
is provided with the same interface as the TCA pipeline, e.g.
through a bop pipeline hint.

The BOP pipeline exploits the same parallelism as TCA
pipeline and its safe version SMTX [23], but the implemen-
tation is different. In BOP, the same task uses the same pro-
cess, which simplifies error recovery. In TCA and SMTX,
the same stage uses the same process(es), which reuses pro-
cesses. The TCA and SMTX pipelines are likely more effi-
cient when computations are regular and regularly chunked
into stages. On the other hand, the fixed stage partition has
trouble handling variable length iterations or dependence be-
tween non-consecutive tasks. In implementation, TCA and
SMTX have the advantage of process reuse over the original
BOP [12]. The current BOP also reuses processes, which we
will discuss in Section 5.1.

4.4 Hmmer from SPEC 2006
Hmmer is a genetic search program developed at Washing-
ton University with nearly 36,000 lines of C code. Most of
the execution happens in two steps: calibration and search.
The calibration loop is shown below. Most of the time is
spent in the function P7Viterbi. The loop traverses through
a series of genetic sequences. It is parallel as far as we know
except in the call to AddToHistogram zc, which adds the
result computed in each iteration to a histogram. It can be
parallelized by a bop ppr and a bop ordered hint as shown
below. The entire histogram data (2 memory pages in the
test) is marked for posting in every task.

for (i = 0; i < parallelism; i++) {

bop_ppr { // begin possibly parallel region (PPR)

mx = CreatePlan7Matrix(1, hmm->M, 25, 0);
for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {

dsq = DigitizeSequence(seq[idx], sqlen[idx]);

if (P7ViterbiSize(sqlen[idx], hmm->M) <= RAMLIMIT)
score = P7Viterbi(dsq, sqlen[idx], hmm, mx, NULL);

else
score = P7SmallViterbi(dsq, sqlen[idx], hmm, mx, NULL);

hhu[idx%temp] = score;
free(dsq); free(seq[idx]);

}
FreePlan7Matrix(mx);

bop_ordered { // implemented by post-wait

for (idx=i*temp; idx<(i+1)*temp && idx<nsample; idx++) {
length_zc = AddToHistogram_zc(&(post_zc.a), hhu[idx%temp]);
if (hhu[idx%temp] > post_zc.b) post_zc.b = hhu[idx%temp];

}
} // end bop_ordered

} // end bop_ppr
}

The search loop has more dependent operations at the
end of each iteration to perform a significance test and add
significant matches to a result list. The serial block is several
times longer in code and transfers 40 times more data (about
79 pages in the test run) than in the calibration loop. The
matched genes are inserted into the result list in the same
order as they were read from the input file.

5. Evaluation
5.1 Experimental Setup
BOP implementation BOP hints are implemented as run-
time library calls. We have completely re-designed and
re-implemented the system three times to improve its ef-
ficiency. The current design has three important features:

• Process reuse. Instead of forking a process for each PPR,
we fork a set of processes at the first PPR. Each one is
assigned the next unexecuted PPR and returns for a new
assignment after finishing. We designate a main process
to serve as the understudy and always maintain a correct
state. In case of a speculation error, the offending pro-



Table 1: The 8 test programs
code lines/changes num. seq.

test source orig bop omp PPRs time
str-sub Section 4.1 80 9 - 279 4.4s

k-means textbook 260 8 3 200 110s
qt-cluster [15] & Section 4.2 303 11 4 1,600 438s

art SPEC 2k 1,270 29 707 2,480 1211s
bzip2 SPEC 2k 4,649 19 - 373 115s

hmmer SPEC 06 & Section 4.4 33,992 22 62 85,000* 93s
parser SPEC 2k 11,391 4 - 7,756 140s
sjeng SPEC 06 13,847 15 - 15 500s

str.sub k.means qt.cluster hmmer art bzip2 parser sjeng mean
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Figure 5: Summary of BOP performance. On average, the reduction on end-to-end, wall-clock execution time is a factor of 2.1
on 2 processors, 3.6 on 4 processors, 6.1 on 8 processors, and 9.1 on 15 processors.

cesses are killed, and new ones are forked (from the main
process) in their place. In case of unrecoverable opera-
tions such as system calls (e.g. mmap), only the main
process survives. It starts a new pool at the start of the
next PPR.

• Dynamic load balancing. PPR tasks have unpredictable
sizes. For load balancing, we use delegated correctness
checking. When a process finishes a PPR task, it submits
the changes and then returns to run the next PPR task.
Correctness checking is delegated to the main process
and by doing so, all processes are busy working as long
as there is enough parallelism.

• Byte-granularity checking. BOP provides an annotation
interface for recording data access at byte granular-

ity [11]. If a programmer or a compiler knows all the
places a variable is accessed, the data can be moni-
tored precisely, which avoids false sharing and the page-
protection overhead. Otherwise, page-level protection is
used as in the base BOP. We use the byte-granularity in-
terface to evaluate the cost of page-level protection and
to implement fine-grained PPR tasks.

The use of a main process complicates task counting.
Most of the times the main process does not contribute
to actually executing a program. Therefore we count only
speculative processes as tasks.

Test Machines We test two machine platforms. One has
four 2.5GHz quad-core AMD Opteron (8380) processors
with 512KB cache per core. The other has two 2.3GHz



quad-core Intel Xeon (E5520) processors with 8MB second-
level cache per processor. The Intel processors are hyper-
threaded, so we run our tests up to 15 tasks. The test pro-
grams and the BOP code are compiled by GCC 4.1 with “-
O3” on the AMD machine and (due to errors when compiled
with “-O3”) by GCC 4.4 with “-g3” on the Intel machine.
The two machines have 32GB and 8GB of physical mem-
ory respectively. Both run Linux, Red Hat 4.1.2 and Linux
2.6.30. We run each version of a test on each task count from
1 to 15 for three times (for a total of 45 runs per test) and re-
port the average result.

Test programs Table 1 shows the eight test programs, in-
cluding the three examples in Section 4 and five full-size
SPEC benchmarks. The programs have between 80 and 34-
thousand lines of C code. Except for the two clustering tests,
all make heavy use of pointer data. To parallelize them, BOP
adds between 4 and 29 lines of hints and access annotations.
Most tests use dependence hints except for parser and sjeng,
which are included to compare with the previous BOP [12].
The number of PPRs in these programs ranges from 186 to
85 thousand. We test two PPR counts for hmmer, marked by
a star in the table. The average length of a parallel task is as
small as 1 millisecond and as large as half second.

Not all code is included in the source form. The test bzip2
is a block-sorting data compressor. Through binary instru-
mentation we found that up to 25% of executed instructions
are inside the glibc library. We use full address space pro-
tection for correctness.

OpenMP parallelization For comparison, we test the
OpenMP version for half of the tests. The OpenMP code of
Art comes from SPEC OMP 2001. A “diff” between SPEC
2K and SPEC OMP 2001 shows 707 lines of difference.
Much of the code changes in the OpenMP version are due to
new data structures needed to implement reduction. The two
clustering tests have a regular loop structure and are easy
to parallelize using OpenMP. We also created an OpenMP
version for hmmer. OpenMP cannot parallelize string substi-
tution, which has input-dependent parallelism. The remain-
ing three programs would require significant changes to the
source code to use OpenMP (e.g. some loops have early
exits), which we did not endeavor to perform.

5.2 BOP Performance
Figure 5 shows an overview of BOP performance. On aver-
age, BOP parallelization reduces the end-to-end, wall-clock
program run time by a factor of 2.1 on 2 processors, 3.6 on
4 processors, 6.1 on 8 processors, and 9.1 on 15 processors.
We next discuss the programs, the cost of dependence hints,
and the comparison with OpenMP.

String substitution The test program finds and replaces a
pattern in 558MB of text, with a block size of 2MB per
PPR and a total of 279 PPRs. We test the program with
5 different levels of conflicts: no conflict, 1%, 5%, 10%,

and 50% conflicts. The sequential run time ranges from 4.4
seconds with no conflict to 4.7 seconds with 50% conflicts.

The ordering hint is used to measure the total number of
substitutions. When there is no match, the program is sped
up by 1.9 to 5.1 times with 2 to 8 processors, as shown in
Figure 6. The execution time is reduced from 4.4 seconds to
0.9 second. The improvement decreases when there are con-
flicts, as the four other curves show. The maximal speedup
drops to 4.6 for 1% (3) conflicts, to 2.4 for 5% (14) conflicts,
and to 1.6 for 10% (28) conflicts. With 50% conflicts, every
other PPR fails and requires a rollback. The program runs
7% to 14% slower.
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Figure 6: The speedup of parallel string substitution with and
without the ordering hint.

K-means The program has regular loop parallelism and
dependence inside each clustering step when it updates the
centroids data. The ordering hint is used with the addi-
tional benefit of maintaining the same numerical precision
for the centroid coordinates as in the sequential execution.
For this test, the program divides 8 million points in a 20-
dimensional space into 10 clusters in 10 steps.

BOP protects 15627 pages or 64MB data. It uses depen-
dence hints at page granularity to serialize the centroid data
updates. During commit and post-wait, it copies and trans-
fers 168740 pages or 691MB data. As shown in Figure 5 and
in more detail later in Figure 9, the performance increases
linearly to a factor of 4 with five processors and then slowly
by anther 20% to 15 processors.

Bzip2 We parallelized two versions of bzip2, . The original
code is revision 0.1p12, dated 1997. In this version, post-
wait calls are inserted in two separate functions in the code.



This cannot be done with any of the ordered hint. A newer
version, 1.0.3, is included in SPEC 2K, which we use to
report performance. In this version, the serialized code is
placed in a single function and bracketed by bop ordered.

The input to bzip2 is a 300MB file (Intel Fortran com-
piler). The speedups are 1.8 by 2 tasks, 2.8 by 4, 4.1 by 8, and
5.3 by 15 tasks. The compression time was reduced from 85
seconds to 18 seconds, a significant reduction. Compared to
others, however, the speedup is low. The reason is the large
amount of disk reads. BOP runs a pool of processes, each of
which has to read the file separately. The total amount of
file reads multiply. 15 tasks would read 15 times 300MB
(4.5GB). The problem may be solved by using copy-on-
write in the file system, as advocated by the Determinator
OS [3].

Art and Hmmer The program art is used to train a neural
network for image recognition using the adaptive resonance
theory. The training process is parallelized, and the results
are combined using an ordering hint. As shown in Figure 5
and in more detail later in Figure 10, the performance of art
increases linearly but at two different rates: a faster rate from
2 to 8 processors and then a slower rate from 8 to 15. The
speedup is 6.2 at 8 processors and 7.4 at 15 processors.

For hmmer, we test the smallest and the largest granu-
larity. The smallest is 85 thousand PPRs in 93 seconds or
on average 1 millisecond per PPR. To support tasks at this
granularity, we use the byte-granularity interface instead of
page-based monitoring. The dependence hint is too costly
so we move the serial code out of the parallel region. On the
other extreme, we divide the loop into p PPRs when running
with p tasks and use the dependence hint. Hmmer has near
perfect scaling with 14 times performance on 15 processors.

QT-clustering Quality threshold (QT) clustering is an it-
erative algorithm proposed in 1999 for grouping related
genes [15]. In each step, the algorithm finds the cluster
around every node (unclustered neighbors within a distance)
and picks the largest cluster. The next step repeats the pro-
cess for the remaining nodes until all nodes are clustered. QT
clustering overcomes two shortcomings of k-means cluster-
ing. It needs no a priori knowledge of the number of clusters.
The result is deterministic and does not depend on the ini-
tial choices of cluster centroids. The drawback is that QT
clustering is more computationally intensive.

We implemented the QT algorithm in C and tested both
intra-time step parallelism (shown in Figure 5) and time
skewing (see Section 5.5). There is sufficient parallelism,
400 PPRs, in each time step. BOP shows highly scalable
performance, with speedups of 2.0, 3.8, 7.0, and 14 times
for 2, 4, 8, and 15 parallel tasks, as shown in Figure 5.

Sjeng and parser Sjeng is a computer-chess program. The
input is based on a chess-board file in the set of reference in-
puts provided as part of the SPEC 2006 benchmark package.
We increased the number of tasks in the input. The improve-

ment is a factor of 2.0 by 2 tasks, 3.8 by 4 tasks, 7.4 by 8
tasks, and 13 by 15 tasks. Parser obtains a speedup of 2.0
by 2 tasks, 3.8 by 4, 7.0 by 8, and 10.6 by 15 tasks. The two
programs have do-all loops. They do not need dependence
hints but show the benefits of the current BOP design espe-
cially process reuse. The average task size in parser is 0.02
second, which cannot be parallelized efficiently if a process
is created for every task.

5.3 The Dependence-hint Overhead
K-means The dependence hint requires serialization of
PPR tasks. It is implemented using a series of locks, one be-
tween each pair of tasks. To quantify the serialization cost,
we measure the difference between the time when the last
process in a group ends and the time when the whole group
finishes. We call the time difference the serial pause. We
collect the data from the test runs of k-means. We show in
Figure 7 the min, mean, and max serial pauses for two ver-
sions: BOP and skim BOP. BOP communicates data, a total of
690MB, but skim BOP does not (and is incorrect as a result).
The figure shows the mean pause using a solid bar, and the
range from the min to the max pause using a vertical line.
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Figure 7: The time takes to serialize BOP parallel tasks, with
and without data copying.

Without data copying, the average serial pause increases
from 0.004 second when there is no parallel execution to
0.04 seconds when 15 tasks are running. With data copying,
the average cost is within 3% of that without data copying,
showing that data communication has a negligible effect on
the length of a serial pause. The cost in a sequential run
comes mostly from re-locking the memory pages accessed
during the preceding task. The cost in parallel runs is due
entirely to synchronization.

On average, the serialization takes up to 0.02 seconds for
up to 6 tasks, 0.03 seconds for 7 to 9 task, and 0.04 seconds
for 10 to 15 tasks. The pause time dictates the minimal task
granularity when dependence hints are used. If a PPR takes
half a second or more, the serialization overhead will be
insignificant.



String substitution The k-means analysis does not con-
sider the effect of process reuse, which can hide the cost of
serialization. In string substitution, the average PPR size is
0.016 second, but BOP shows scalable improvements up to 8
tasks. To quantify the cost of the ordering hint, we removed it
and measured the performance, which is shown in Figure 6.
Without the ordering hint, the program runs 3.5% faster on
average overall and 6-7% faster on average for tests with 0%,
5%, and 10% conflicts.

5.4 Comparison with Original BOP
The original BOP does not support dependence hints. As
a result, it can parallelize 2 of the 8 programs (it can run
the other programs correctly but not in parallel). In addi-
tion, there are significant differences in the implementation.
The original BOP creates a process for each PPR and uses
only OS page-protection for access monitoring. It was im-
plemented for only the 32-bit address space. The current
version has process reuse and byte-granularity interface for
access monitoring and supports the 64-bit address space.

Next we evaluate the overhead of page protection in two
tests. They are short programs. We compare the automatic
page-granularity monitoring with manually inserted byte-
granularity monitoring.

String substitution In this test, the average length of a PPR
task is 0.016 second. The cost of page protection is sig-
nificant. Figure 8 shows that byte-granularity monitoring is
30% to 50% faster than page-granularity monitoring. For
easy viewing, the graph does not show 1% and 10% con-
flict curves. Byte-granularity monitoring with 1% conflicts,
shown previously in Figure 6, is about 25% faster than page-
granularity monitoring with no conflict.

K-means In this test, the average length of a PPR task is
0.55 second. The cost of page protection is negligible. We
have tested a version, skim BOP, which does not protect data
and does not use dependence hints. It is incorrect paralleliza-
tion. We use it for performance evaluation since skim BOP is
free of most of the speculation overheads. Because of coarse
granularity, we found that the overheads from data monitor-
ing, commit, and post-wait costed no more than 2% of the
overall performance.

5.5 Comparison with OpenMP
K-means We test two OpenMP versions. OpenMP ordered
uses an ordered region to perform the reduction on the cen-
troid data. OpenMP atomic uses a critical section instead.
Figure 9 shows their difference, 1% to 4% at p = 10–15 ex-
cept -2% at p = 12 and 11% at p = 14. There is a slight
performance benefit from out of order access to shared data.

For BOP, however, its large arrays and large amounts of
data writes make it challenging for copy-on-write to obtain
good performance, especially in comparison with OpenMP
which modifies data in place. In Figure 9, safe paralleliza-
tion by BOP and unsafe parallelization by OpenMP ordered
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Figure 8: String substitution (without the ordering hint) with
and without the page protection overhead.
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Figure 9: Comparison of BOP with OpenMP using ordered
and critical sections.

have less than 3% difference when running with 5 or fewer
processors. Then OpenMP is faster on average by 7% for
p = 7–12. BOP becomes faster by 1% to 2% for p = 13–15.
The two have the same peak speedup of 4.7X.

Art and Hmmer Figure 10 shows that BOP has a similar
performance as OpenMP. In art, as the number of tasks is
increased from 1 to 15, the performance of both the BOP and
the OpenMP versions increases almost identically to a factor



of over 7. The execution time is reduced from 1,211 seconds
to 164 seconds by BOP and 172 seconds by OpenMP.
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Figure 10: BOP reduces hmmer time from 93 seconds to 6.7
seconds and art time from 1,211 seconds to 164 seconds.
Both improvements are similar to OpenMP.

The figure shows three versions of hmmer: coarse-grained
BOP with dependence hints, fine-grained BOP without de-
pendence hints, and fine-grained OpenMP without the criti-
cal section (moved out of the compute loop). All three ver-
sions show almost identical linear speedups. The running
time is reduced from 93 seconds to 6.7 seconds by both BOP
versions and 6.3 seconds by OpenMP.

QT-clustering The OpenMP version parallelizes within
each time step, using a critical section to combine results
and an implicit barrier to separate time steps. When there
is sufficient parallelism, 400 PPRs, in each time step, both
BOP and OpenMP obtain a highly scalable performance. The
speedup by BOP is 2.0, 3.8, 7.0, and 14 times for 2, 4, 8, and
15 parallel tasks. The speedup by OpenMP is 2.0, 4.0, 7.9,
and 15.6. When there is an insufficient number of PPR tasks
in time steps, time skewing can help. We set the inner loop to
have 15 iterations and run it on a machine with 8 processors.
In OpenMP, the 15 iterations are divided into 3 groups when
p = 5, 6, 7. As a result, OpenMP has less than 5% improve-
ment from p = 5 to p = 7. With time skewing, however,
different time steps may overlap, so time skewing is 7% and
18% faster when using 6 and 7 parallel tasks than OpenMP.

6. Related Work
Dependence in speculative parallelization Software spec-
ulative loop parallelization was pioneered by Rawchwerger
and Padua in the LRPD test [24]. Java safe future and BOP
PPR provided an interface for expressing possible paral-
lelism but not dependence [12, 33]. In hardware thread-

level speculation (TLS), a dependence can be specified us-
ing signal-wait [35]. Like Cytron’s post-wait [10], signal and
wait are paired by an identifier, which is usually a data ad-
dress. Another construct is flow in an ordered transaction. It
specifies that a variable read should wait until a new value is
produced by the previous transaction [32]. In these systems,
memory is shared, so a construct can implicitly synchronize
dependences on other data as well. The correctness in guar-
anteed by the user or special hardware support.

The flow construct is a data trigger and useful when a
read needs to wait for an unidentified write in the predeces-
sor task [32]. A problem may arise if the previous task does
not write or writes multiple times. As shown in Section 3.4,
BOP provides a more programmable solution. SMTX is an
interface for software multi-threaded transactions. It pro-
vides primitives to accessed versioned data [23]. The read
and write accesses specify a variable name and are matched
by the name and version number. The channel identifier in
BOP can serve the purpose of a version number. BOP chan-
nels use one-sided addressing (to allow dynamic changes to
the channel content) and can communicate aggregate and
dynamically-allocated data, which would require additional
annotations if using flow or versioned access.

The Galois system lets a user express parallelism at an ab-
stract level of optimistic iterators instead of the level of reads
and writes [22]. Dependence hints also address the problem
in complex code where access tracking is difficult to specify,
but with a different solution which is to mark larger units of
data and to combine with speculation. Optimistic iterators
in Galois can specify semantic commutativity and inverse
methods, which permits speculative parallelism beyond the
limit of dependence hints. However, these extensions are not
hints and must be used correctly.

An increasing number of software systems use copy-on-
write data replication to implement speculation [12, 13, 23,
30] or race-free threaded execution [7, 8, 31]. Tasks do not
physically share written memory and must exchange depen-
dent data explicitly. A solution, transactional communicator,
addresses the problem in transactional memory [19]. BOP
hints provide a solution for parallelization and use channels
supported by sender-side addressing, selective dependence
marking, and channel chaining to reduce the programming
effort and implementation cost.

Dependence in dynamic parallelization Instead of enu-
merating dependences, the Jade language uses data speci-
fication to derive dependence automatically [25]. Jade iden-
tifies all dependences without having to specify any of them.
The dependence hint provide a different solution through
partial dependence specification. Being speculative, depen-
dence hints enforce all dependences without having to spec-
ify all of them. In comparison, Jade specifications are not
hints and may lead to program error if used incorrectly.
The two approaches are fundamentally different. Jade is
aimed for automatically optimized parallelization. Depen-



dence hints focus on parallelization with incomplete pro-
gram knowledge but with direct control.

In many programs especially irregular scientific code, de-
pendences can be analyzed through the inspector-executor
approach. Recent advances include leveraging the OpenMP
interface [4] and utilizing powerful static tools such as
the use of uninterpreted function symbols in an integer-
set solver [28]. The combination of static techniques such
pointer and inter-procedural analysis with run-time depen-
dence counting has also enabled dynamic parallelization of
Java programs by OoOJava [16].

Fork-join parallel languages Fork-join primitives, in-
cluding spawn/sync in Cilk [14], future/get in Java, and
async/finish in X10 [9], come in pairs: one for fork and
one for join. PPR has fork but no explicit join. bop ppr uses
speculation to abandon a task if it does not finish in time,
thus providing a safe join. It is useful when the join point of
a task is unknown, unpredictable, or too complex to specify.
In fact, not relying on user is a requirement for full safety.
One use of the dependence hint is in suggesting a task join.

Parallel languages provide primitives for synchronization
such as critical (atomic) section or transactions. New lan-
guages such as Fortress have primitives for reduction [1].
These primitives maximize parallelism in dependent opera-
tions and may be necessary for highly scalable performance.
BOP cannot support these constructs because it cannot auto-
matically guarantee sequential semantics for them. The or-
dering hint loses parallelism, but BOP recoups the loss by
speculating on the later PPRs while waiting. Ordered opera-
tions are often useful. For example in bzip2, it ensures that
the compressed data is generated in order, which cannot be
done by a critical section or a transaction.

7. Summary
Copy-on-write data replication is increasingly used in safe
program parallelization to isolate parallel tasks and eliminate
their false dependences. In this paper, we have presented the
dependence hint, an interface for a user to express partial
parallelism so copy-on-write tasks can speculatively com-
municate and synchronize with each other.

We have presented single-post channel, sender-side ad-
dressing and selective dependence marking to simplify pro-
gramming; channel chaining to express conditional depen-
dences; the three correctness checks for safe implementa-
tion; and a set of techniques including filtered posting, silent
drop, reordered receive, inter-PPR and distant-PPR hint over-
rides to enhance parallelism and reduce communication. We
show that dependence hints can be used to build high-level
constructs such as ordering and pipelining hints and make
them safe and safely composable.

We have shown example uses of dependence hints and
demonstrated their expressiveness and safety. In evaluation,
we found that despite of the cost of data copying, access
monitoring and task serialization, the safe parallelization by

BOP achieves on average 9.1 times performance improve-
ment for 8 programs on today’s multicore computers.
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