
Program Interaction on Shared Cache

Theory and Applications

Chen Ding

Professor
Department of Computer Science
University of Rochester

Discovery of Locality-Improving Refactorings by Reuse Path Analysis – Kristof Beyls – HPCC06 –
2006-09-13

pag.

Illustration: bottlenecks of
SPEC2000 on Itanium1

0%

25%

50%

75%

100%

re
la

tiv
e

ex
ec

ut
io

n
tim

e

programs from SPEC2000

data cache miss
other bottleneck
calculate

Chen Ding, DragonStar lecture, ICT 2008

Madison Itanium 2
2002

3

Beyond Diminishing Returns

Cache System

Madison Itanium2

Released in 2002

L3 Cache

Photo courtesy Intel Corp.

Anant Aggarwal, MIT 6.975, 2007

http://
cse1.ne

t/

“Nothing travels faster than the speed of
light ...” Douglas Adams

Matthew
Hertz’s beer

Trishul
Chilimbi’s cliff

Chen’s
Platform

key problems:
latency/bandwidth

capacity
sharing

Chen Ding, University of Rochester, PMAM 2014 http://en.wikipedia.org/wiki/File:Cache,missrate.png Chen Ding, University of Rochester, PMAM 2014

Cache Performance for SPEC CPU2000 Benchmarks
Version 3.0

May 2003

Jason F. Cantin
Department of Electrical and Computer Engineering

1415 Engineering Drive
University of Wisconsin-Madison

Madison, WI 53706-1691
jcantin@ece.wisc.edu
http://www.jfred.org

Mark D. Hill
Department of Computer Science

1210 West Dayton Street
University of Wisconsin-Madison

Madison, WI 53706-1685
markhill@cs.wisc.edu

http://www.cs.wisc.edu/~markhill

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data

Abstract

The SPEC CPU2000 benchmark suite (http://www.spec.org/osg/cpu2000) is a collection of 26 compute-
intensive, non-trivial programs used to evaluate the performance of a computer's CPU, memory system, and
compilers. The benchmarks in this suite were chosen to represent real-world applications, and thus exhibit a
wide range of runtime behaviors. On this webpage, we present functional cache miss ratios and related
statistics for the SPEC CPU2000 suite. In particular, L1 instruction, L1 data, and L1 unified caches ranging
from 1KB to 1MB with 64B blocks and associativities of 1, 2, 4, 8 and full. Prefetch operations were
always executed, but results are posted both with and without them counted in the hit ratios. Most of this
data was collected at the University of Wisconsin-Madison with the aid of the Simplescalar toolset
(http://www.simplescalar.org).

Contents

Methodology
Benchmarks
Summary Data
Table Format
Miss Ratio Tables
Experimental Error
Related Work
Acknowledgements
Publications

Chen Ding, University of Rochester, PMAM 2014

D-cache misses/inst: 1,197,717,058,456 data refs (0.34534--/inst);
782,173,506,477 D-cache 64-Byte block accesses (0.22949--/inst)

Size
-------+-------------+-------------+-------------+-------------+-------------
1KB
2KB
4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB
1MB

 Compulsory: 0.0000150365--

Benchmarks:! 12
Sim Time:!1463.66 days,!4.007 years

File created 5/23/2003.

Program Locality

Reuse Distance

Chen Ding, University of Rochester, PMAM 2014

A Metric and A Tool Box

• Reuse distance
• independent of coding styles, memory allocation, or hardware
• possible to correlate between different runs
• pattern analysis

• aggregate or temporal
• cross-program inputs

• Single basis for analysis/optimization
• to analyze

• to compose and decompose reuse distance
• to optimize

• to shorten long reuse distance

0

25

50

0 1 2 3

a b c a a c b
2 0 1 28 8 8

9

The SLO Tool by Beyls and D’Hollander

•SLO - Suggestions for Locality Optimizations:
 http://slo.sourceforge.net

•An example: 173.APPLU from SPEC 2K

Chen Ding, DragonStar lecture, ICT 2008

Measuring Reuse Distance

• Naive counting, O(N) time per access, O(N) space
• N is the number of memory accesses
• M is the number of distinct data elements

• Too costly
• N is up to 120 billion, M 25 million

11

Reuse Distance Measurement
Measurement algorithms since 1970 Time Space
Naive counting O(N2) O(N)
Trace as a stack [IBM’70] O(NM) O(M)

Trace as a vector [IBM’75, Illinois’02] O(NlogN) O(N)

Trace as a tree [LBNL’81], splay tree
[Michigan’93], interval tree
[Illinois’02]

O(NlogM) O(M)

Fixed cache sizes [Winsconsin’91] O(N) O(C)
Approximation tree [Rochester’03] O(NloglogM) O(logM)
Approx. using time [Rochester’07] O(N) O(1)

N is the length of the trace. M is the size of data. C is the size of cache.

Chen Ding, University of Rochester, PMAM 2014

|

SIGN IN SIGN UP

Program locality analysis using reuse distance
Full Text: Pdf Buy this Article

Authors: Yutao ZhongGeorge Mason University, Fairfax, VA

Xipeng Shen The College of William and Mary, Williamsburg, VA

Chen Ding University of Rochester, Rochester, NY

Published in:

! Journal
ACM Transactions on Programming Languages and Systems
(TOPLAS) TOPLAS Homepage archive

Volume 31 Issue 6, August 2009
ACM New York, NY, USA

table of contents doi>10.1145/1552309.1552310

 2009 Article

Research

Refereed

 Bibliometrics
· Downloads (6 Weeks): 15
· Downloads (12 Months): 267
· Citation Count: 3

Tools and Resources

Buy this Article

Request Permissions

TOC Service:
Email RSS

Save to Binder

Export Formats:

BibTeX EndNote ACM Ref

Share:

Tags: algorithms compilers
languages measurement
optimization program locality
reuse distance stack distance
training-based analysis

 Feedback | Switch to single page view (no tabs)

Powered by

Abstract Authors References Cited By Index Terms Publication Reviews Comments Table of Contents

On modern computer systems, the memory performance of an application depends on its locality. For a single execution, locality-correlated
measures like average miss rate or working-set size have long been analyzed using reuse distance—the number of distinct locations accessed
between consecutive accesses to a given location. This article addresses the analysis problem at the program level, where the size of data
and the locality of execution may change significantly depending on the input.

The article presents two techniques that predict how the locality of a program changes with its input. The first is approximate reuse-distance
measurement, which is asymptotically faster than exact methods while providing a guaranteed precision. The second is statistical prediction
of locality in all executions of a program based on the analysis of a few executions. The prediction process has three steps: dividing data
accesses into groups, finding the access patterns in each group, and building parameterized models. The resulting prediction may be used
on-line with the help of distance-based sampling. When evaluated on fifteen benchmark applications, the new techniques predicted program
locality with good accuracy, even for test executions that are orders of magnitude larger than the training executions.

The two techniques are among the first to enable quantitative analysis of whole-program locality in general sequential code. These findings
form the basis for a unified understanding of program locality and its many facets. Concluding sections of the article present a taxonomy of
related literature along five dimensions of locality and discuss the role of reuse distance in performance modeling, program optimization,
cache and virtual memory management, and network traffic analysis.

Analysis Speed
benchmarks length data size unmodifed FP alg FP alg RD alg RD alg LF alg LF alg

176.gcc

181.mcf

164.gzip

252.eon

256.bzip2

175.vpr

186.crafty

300.twolf

197.parser

11 2K INT avg

179.art

183.equake

189.lucas

187.facerec

200.sixtrack

177.mesa

168.wupwise

188.ammp

178.galgel

191.fma3d

301.apsi

173.applu

172.mgrid

13 2K FP avg

403.gcc

445.gobmk

429.mcf

464.h264ref

401.bzip2

400.perlbench

456.hmmer

458.sjeng

462.libquantu
m

9 2006 INT avg

450.soplex

434.zeusmp

437.leslie3d

444.namd

435.gromacs

410.bwaves

6 2006 FP avg

(64B lines)(64B lines) time (sec) time cost (X) time cost (X) time cost (X)

1.10E+10 3.99E+06 85.1 345 4.1 2,392 28.1 5,489 65

1.88E+10 2.52E+06 398 1,126 2.8 10,523 26.4 121,818 306

2.00E+10 1.41E+06 150 501 3.3 5,823 38.8 44,379 296

2.51E+10 1.54E+04 77.4 503 6.5 5,950 76.9

3.20E+10 1.47E+06 173 726 4.2 7,795 45.1 36,428 211

3.56E+10 5.08E+04 210 964 4.6 13,654 65.0 51,867 247

5.31E+10 3.20E+04 75.5 1,653 21.9 18,841 249.5 117,473 1,556

1.08E+11 9.47E+04 368 2,979 8.1 27,765 75.4 155,793 423

1.22E+11 6.52E+05 230 3,122 13.6 35,562 154.6 106,198 462

4.73E+10 1.14E+06 196 1,324 8 14,256 84 79,931 446

1.20E+10 5.93E+04 591 734 1.2 4,032 6.8 36,926 62

4.72E+10 7.96E+05 103 960 9.3 12,251 118.9 103,931 1,009

8.07E+10 2.60E+06 157 1,594 10.2 18,305 116.6

9.16E+10 4.45E+05 261 2,153 8.2 64,276 246.3

9.40E+10 3.96E+05 211 2,007 9.5 19,420 92.0

1.00E+11 1.37E+05 101 2,122 21.0 25,041 247.9 13,930 138

1.08E+11 2.88E+06 132 2,045 15.5 23,166 175.5

1.09E+11 3.52E+05 282 2,835 10.1 28,554 101.3 59,279 210

1.11E+11 7.64E+05 181 2,446 13.5 25,485 140.8

1.14E+11 1.71E+06 374 2,283 6.1 30,765 82.3

1.20E+11 3.13E+06 286 2,581 9.0 30,039 105.0

1.42E+11 2.86E+06 223 2,883 12.9 39,314 176.3

2.23E+11 9.10E+05 199 3,714 18.7 20,688 104.0

1.04E+11 1.31E+06 239 2,181 11 26,257 132 53,517 355

6.63E+10 7.46E+06 354 778 2.2 10,340 29.2

1.58E+11 3.00E+05 473 1,811 3.8 22,325 47.2

2.16E+11 1.37E+07 372 3,627 9.8 43,687 117.4

3.17E+11 2.13E+05 772 3,299 4.3 40,133 52.0

3.46E+11 6.86E+06 661 3,532 5.3 44,403 67.2

3.48E+11 9.06E+06 391 3,608 9.2 49,108 125.6

6.84E+11 6.61E+05 561 6,441 11.5 122,068 217.6

1.11E+12 2.86E+06 565 12,906 22.8 179,889 318.4

1.51E+12 2.10E+06 647 14,930 23.1 143,009 221.0

5.29E+11 4.81E+06 533 5,659 10 72,774 133

2.07E+11 7.63E+06 370 2,219 6.0 9,262 25.0

8.56E+11 8.12E+06 609 9,584 15.7 65,987 108.4

1.12E+12 2.02E+06 575 11,546 20.1 268 0.5

1.17E+12 7.36E+05 505 11,799 23.4 4,879 9.7

1.31E+12 2.22E+05 839 12,883 15.4 47,523 56.6

1.91E+12 1.45E+07 555 18,551 33.4 35,004 63.1

1.09E+12 5.54E+06 576 11,097 19 27,154 44

Table 4. Individual statistics of 37 benchmark programs

References
[1] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Char-

acterizing reference locality in the WWW. In Proceedings of the
International Conference on Parallel and Distributed Information
Systems (PDIS), pages 92–103, Dec. 1996.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In Proceedings of the ACM
Symposium on Theory of Computing, pages 20–29, 1996.

[3] E. Berg and E. Hagersten. Fast data-locality profiling of native
execution. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, pages 169–180,
2005.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multi-processor architecture. In
Proceedings of the International Symposium on High-Performance

Computer Architecture, pages 340–351, 2005.

[5] Z. Chen, Y. Zhou, and K. Li. Eviction-based cache placement for
storage caches. pages 269–281, 2003.

[6] A. Dan and D. F. Towsley. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems,
pages 143–152, 1990.

[7] P. Denning. Working sets past and present. IEEE Transactions on
Software Engineering, SE-6(1), Jan. 1980.

[8] C. Ding and T. Chilimbi. A composable model for analyzing locality
of multi-threaded programs. Technical Report MSR-TR-2009-107,
Microsoft Research, August 2009.

[9] B. Falsafi and D. A. Wood. Modeling cost/performance of a parallel
computer simulator. ACM Transactions on Modeling and Computer
Simulation, 7(1):104–130, 1997.

11 2010/11/10

3m16s 3h57m
47 billion
accesses

Chen Ding, University of Rochester, PMAM 2014

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

r(t) is not in the resident set established at time t - 1, a seg-
ment (or page) fault occurs at time t. This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
"loaded on demand" (others are "preloaded").
The memory policies of interest here determine the content

of the resident set by loading segments on demand and then
deciding when to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a "cold start," and an
initially nonempty resident set as a "warm start" [60].)
The memory policy's control parameter, denoted 0, is used

to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of 0
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 0 could
be generalized to a set of parameters, e.g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.
The performance of a memory policy can be expressed

through its swapping curpe, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 0 as the size of the
resident set; in this case the swapping curve f(0) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter 0 to determine a bound
on the residence times of segments. Thus a value of 0 implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f(x), is determined
parametrically from the set of (x, y) points generated for the
various 0. (See [53].)
One of the parameters needed in a queuing network model

of a multiprogramming system is the paging rate [47] - [49],
[521. This parameter is easily determined from the lifetime
curve, which is the function g(x) = 1 /f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum ofg(x)/x.
(See Fig. 2.)
A memory policy's resident set at virtual time t for control

parameter 0 is denoted R (t1 0).
A memory policy satisfies the inclusion property ifR (t, 0) C

R (t, 0 + a) for a > 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases. In Fig. 2, this means that the lifetime
curve increases uniformly as 0 increases. (See [52], [53],
[66].)
Several empirical models of the lifetime curve have been

proposed. One is the Belady model [15]

g(x) = a . xk

where x is the mean resident set size, a is a constant, and k is
normally between 1.5 and 3 (a and k depend on the program).
This model is often a reasonable approximation of the portion

time/fault

g(o)

E
._

a,
E

'Vb/
PRwR g(x)

primary knee

/ /, tincreasing 0

// [secondary knee

ma

mean size of resident set
x

Fig. 2. A lifetime curve.

of the lifetime curve below the primary knee, but it is other-
wise poor ([49], [117]).1 A second model is the Chamberlin
model [28]

T/2
g(x) =1 + (d/X)2

where T is the program execution time and d is the resident
set size at which lifetime is T/2. Though this function has a
knee, it is a poor match for real programs. The recent empiri-
cal studies by Burgevin, Lenfant, and Leroudier contain many
interesting observations about and refinements of these models
([81], [83]). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], [74],
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram's behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults-an event that might not be predicted if the mean life-
time is long.

Space-Time Product
A program's space-time product is the integral of its resi-

dent set size over the time it is running or waiting for a missing

'Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident set
initially empty) to "warm start" [60]; however, the "warm start"
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also [73], [78], [1171.)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady model to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [971; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)

66

~/DingFiles/Trips/IndianaSept07

reuse distance

m
is

s
 r

a
te

0
.0

0
0

.0
4

0
.0

8

32 1K 32K 1M

1626

0.060 -

0.050

0.040 -

0.030

0 . m

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0.010 -

U.M

0.20
M

1

S

S

R

a

1

I

0 0.10

0.00

M

I

S

s

M

I

S

S

IK

Cache Size (bytes)

(a)

10K

\, \

o.Oo0 J4,
IOK IOOK 1M

Cache Size (bytes)

(b)

Fig. 1 1 . Predicted (dashed) and actual (solid) m i s s ratios for trace “mu12”
with caches of associativity 1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches.

ing the same capacity, the same block size, and m i s s ratios

m(A = n) and m(A = 2n). Let the miss ratio spread be the

ratio of the miss ratios, less one:

m(A = n)

m(A =2n) m(A = 2n)

m(A = n) - m(A = 2n)
- I =

M

1

S

S

0.50

0.40

0.30

0.20

0.10

0.00

0.40

0.30

0.20

0.10

0.00

1c
I ’\
I \
I \

I \
I \

~ ; /-to-l I \

I

-4e-J:

-x’

x

IK 10K LOOK IM

Cache Size (bytes)

(a)

____)j;_-LIII
\

I
I

\ \ I \ \ I

- d

IK 10K IOOK IM

Cache Size (bytes)

(b)

Fig. 12. Unified cache miss ratio spreads (solid lines are smoothed data).
A line labeled “2n-to-n” displays [m(A = n) - m(A = 2n)]/m(A = 2n)
where m(A = n) is the miss ratio of an n-way set-associative cache. (a)
Five-trace group. (b) 23-trace group.

Figs. 12 and 13 and Table IV present data from trace-driven

simulation. As discussed in Section 111, data for larger caches

are subject to more error than data for smaller caches, and

measurements for caches larger than 64K should be treated

with considerable caution. Fig. 12 shows some miss ratio

11
http://en.wikipedia.org/wiki/Fifth_dimension

1. Input

2. Data

3. Code

4. Time

5. Environment

Locality

whole-program
locality [PLDI’03,

PACT’03,
LACSI’03, TOC’07,

TOPLAS’09]

reference affinity
[PLDI’04, ICS’05, POPL’06]

program opt and
tuning [JPDC’04,

ISMM’09, ISMM’11,
ISMM’12]

locality phases,
dynamic opt

[PLDI’99, ASPLOS’04,
ExpCS’07, JPDC’07]

data, cache, and memory
sharing [ISMM’06, PPOPP’11,
PACT’11, CCGrid’12, CGO’13,

ASPLOS’13]

Active Sharing (now)

The End of Cache Monopoly

• Multicore
• desktop, cloud, and handheld

• Multicore cache
• a mixture of private/shared caches

• Intel Nehalem 256KB private L2, 4MB to 8MB shared L3
• IBM Power 7 256KB private L2, 32MB shared ERAM L3
• ERAM to appear on Intel processors

• New problems
• available cache resource is variable

• not the full size, not constant size
• not just performance but also stability
• not just parallel program but also sequential program

17 Chen Ding, University of Rochester, PMAM 2014

The End of Cache Monopoly (by Henry Kautz)

18

Chen Ding, University of Rochester, PMAM 2014
results collected by Bin Bao

Chen Ding, University of Rochester, PMAM 2014

Old Wine in New Bottle?

• Time sharing systems (Multics)
• memory sharing
• well studied and solved

• routine by modern OS
• Cache sharing is more complex

• hardware managed
• coffee cup analogy

• levels, private/shared
• more frequent access

• content wiped out in 1ms
• can’t buy more cache
• asymmetry/circular

feedback

20

Chen Ding, University of Rochester, PMAM 2014

PAW: Profiling of All-Window Footprints

Abstract
Applications are increasingly run in share cache as multi-core pro-
cessors become commonplace and cloud computing is gaining ac-
ceptance. One phenomenon people observe is an asymmetrical ef-
fect on performance due to cache sharing. For example, when two
programs are run together, it is possible for one program to show
near 85% slowdown while the other program show only 15% slow-
down. The traditional metric of single-thread cache performance,
miss rate, cannot easily explain this asymmetry.

Cache sharing depends on a concept called footprint, which
is independent of the miss rate. Previous work has recognized
the importance of footprint but has not provided a method for
accurate measurement, mainly because the complete measurement
would take time quadratic to the length of a trace. The paper
first presents an efficient algorithm that approximately measure the
footprint with a guaranteed precision. The cost of the analysis can
be adjusted by changing the precision. Then the paper presents a
prediction method and uses it to rank program co-run choices based
the predicted negative interference in shared cache without having
to run any parallel test. The predicted ranking is as effective in
identifying poor program co-run choices as the ranking obtained
by exhaustive testing and up to 3 times better than miss-rate based
ranking.

1. Introduction
A basic question in multi-core processor design is whether to use
partitioned or shared cache. Partitioned cache is wasteful when a
processor has only one program to run. Shared cache is risky since
programs may interfere with each other in unpredictable ways.
Recent system design favors a mix of private and shared cache.
Recently released Intel Nehalem has 256KB L2 cache per core and
4MB to 8MB L3 cache shared by all cores. The upcoming IBM
Power 7 will have 8 cores, with 256KB L2 cache per core and
32MB L3 shared by all cores.

This paper addresses the problem of modeling interference be-
tween independent, sequential applications in shared, second- or
third-level cache. It has two aims in building the model.

• application centric: Can we predict cache interference by only
program characteristics?

• composable: Can we predict group behavior by only individual
characteristics?

To make the model applicable to all programs, we use profil-
ing to analyze a program by its execution traces. We profile two
metrics: reuse distance and footprint.

For each memory access, the reuse distance is the number of dis-
tinct data elements accessed between this and the previous access
to the same data. We call the distribution of all reuse distances a
locality signature since it shows the average locality of a trace. For
a sequential execution, a locality signature can be used to compute
capacity and conflict miss rate for cache of all sizes, often referred
to as a miss-rate curve, as we illustrate in Figure 1(a,b) through an
example.

To model interaction between programs, we need a second
metric called footprint. Given an execution window in a trace, the
footprint is the number of distinct elements accessed in the window.
The example in Figure 1(c) illustrates this interaction. The reuse
time window in program 1 concurs with a time window in program

a b c a a c b
2 0 1 28 8 8

(a) reuse distances

0

25

50

75

100

0 1 2 3

%
 m

is
s
 r

a
te

cache size

(b) capacity miss-rate curve
computed from reuse distances

program 1 abcdefa

program 2 kmmmnon

program 1&2 akbcmdmemfnona

(c) the effect of cache sharing on one reuse distance.
The reuse distance of “a” is 5 in program 1. When
running concurrently with program 2, it is increased
by the footprint of program 2 to 9.

rd = 5

ft = 4

rd’ = rd+ft = 9

Figure 1. Locality of a sequential execution (Part a, b) and a
parallel execution (Part c).

2. The reuse distance of the first window is lengthened by the
footprint of the second.

Given two programs, me and my peer, the following equations
show the effect of cache sharing using a probability function P .

P(capacity miss by
me when running
alone)

= P(my reuse distance � cache size)

P(capacity miss by
me when sharing
cache w/ peer)

= P(my reuse distance + peer footprint
� cache size)

P(capacity miss by
peer when sharing
cache w/ me)

= P(peer reuse distance + my footprint
� cache size)

The preceding model is not new [8, 11, 21], but it had two
unsolved problems.

• all-window footprint: In an execution of n run-time instruc-
tions, the number of different, non-empty windows is n�(n+1)

2

or O(n2). A typical execution has tens or hundreds of billions
of memory accesses. There had been no prior solution that can
actually measure all-window footprints.

• non-linear execution dilation: When two programs A and B are
run together, memory access by A affects the speed of B. The
change in B affects its memory access, which in turn affects A.
Prior methods have not formally modeled this circular effect.

The conventional metric of cache performance is miss rate.
One may expect that shared cache performance can be derived
from the miss rate of each program. There are several inherent
difficulties. Refer to the example in Figure 1(c). The reuse in
program 1 may or may not be a cache miss when it is running
alone. The accesses in the footprint of program 2 may be cache
misses or may be cache hits. Therefore, neither reuse distance nor
footprint can be determined by looking at the miss rate alone.
Furthermore, as a machine-dependent metric, miss rate needs to
be measured repeatedly for each machine type. Finally, to count
misses in a random window of arbitrary size, one still requires all-
window statistics.

The performance of parallel execution on multi-core depends
on many factors, including not only cache sharing but also interac-

1 2009/11/21

• Private cache locality
P(capacity miss by me) =

P(my reuse distance >= cache size)

• Shared cache locality
P(capacity miss by me) =

P(my reuse distance + peer footprint >= cache size)
Chen Ding, University of Rochester, PMAM 2014

Footprint Locality

[Ding, Xiang, et al. PPOPP 2008/11, PACT
11, ASPLOS 13]

Chen Ding, University of Rochester, PMAM 2014

Footprint

• Example: “abbb”
• 3 length-2 windows: “ab”, “bb”, “bb”

• footprints 2, 1, 1
• the average fp(2) = (2 + 1 + 1)/3 = 4/3

23 Chen Ding, University of Rochester, PMAM 2014

4

2 4 6 8

1
2

3
4

5
6

7

all−window 'footprint' footprint

window size

fo
ot

pr
in

t

1 2 3 4 5 6 7 8 9

Figure 1.1: The footprint of 36 windows in the contrived 9-element trace “foot-

print”

their footprint is obviously 1. The longest window is the whole trace, and the

footprint is 7.

It is natural that a longer period of execution accesses a greater amount of

data. The footprint quantifies the relation by showing the size of active data in

all periods of execution, as shown in the plot in Figure 1.1 for the example trace.

In practice, the footprint is too numerous to enumerate. The number of time

windows is quadratic to the length of the trace.1 Assuming a program running

for 10 seconds on a 3GHz processor, we have 3E10 CPU cycles in the execution

and 4.5E20 distinct windows.

1If the trace length is n, the number of windows (and hence footprints) is
�n
2

�
+ n = n⇤(n+1)

2

or O(n2) asymptotically.

Chen Ding, University of Rochester, PMAM 2014

Footprint Measurement 1972 - 2007
• Working set

• limit value in an infinitely long trace [Denning & Schwartz 1972]
• Direct counting

• single window size [Thiebaut & Stone TOCS’87]
• seminal paper on footprints in shared cache

• same starting point [Agarwal & Hennessy TOCS’88]
• Statistical approximation

• [Denning & Schwartz 1972; Suh et al. ICS’01; Berg & Hagersten PASS’04;
Chandra et al. HPCA’05; Shen et al. POPL’07]

• level of precision couldn’t be directly checked
• No precise definition/solution for all windows

• can’t be measured for real
• can’t know the accuracy of an estimate

25 Chen Ding, University of Rochester, PMAM 2014

Footprint Measurement 2008 - 2013

• Footprint distribution
• all-window enumeration [Ding/

Chilimbi PPOPP 2008]
• max/min/median/percentiles

• trace compression [Xiang+ PPOPP 11]
• 70X speedup
• 4 hours per program

• Average footprint [Xiang+ PACT 11]
• Xiang formula

• 22 minutes per program
• Footprint Sampling [Xiang+ ASPLOS 13]

• shadow profiling
• 0.5%

26

• HUST BS 2005
• ICT MS 2008
• Rochester PhD

(expected)
• Twitter 2013

Xiaoya Xiang

Chen Ding, University of Rochester, PMAM 2014 27

solo
footprint

solo miss
rate

co-run
footprint

co-run
miss rate

composable

组合性

X

? ?

not
composable

Chen Ding, University of Rochester, PMAM 2014

•
• average time for

aal misses

•
• miss rate at size c

Footprint to Miss Rate Conversion

28

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t
403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

Chen Ding, University of Rochester, PMAM 2014

The Xiang formula for average footprint [PACT’11]
• rt: reuse time
• m: data size
• n: trace length

Conversion Formulas

29

fp(x) ⇡ m�
Pn�1

k=x+1(k � x)P (rt = k)

mr(c) = mr(fp(x)) = fp(x+�x)�fp(x)
�x

P (rd = c) = mr(c� 1)� mr(c)
(a)

t fp(t) c mr(c) P(rd=c)
1 1 1 1 0
2 2 2 1 0
3 3 3 0 1
4 3 4 0 0

(b)

Figure 3: The definition of footprint function fp(t) and the calculation of the miss ratio curve mr(c) and the reuse
distance distribution P (rd = c) in (a). The formulas are used on an example trace “xyzxyz...” to produce its locality
measures in (b).

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

(a) The hierarchy of cache locality metrics. The five local-
ity metrics are mutually derivable by either taking the dif-
ference when moving down the hierarchy or taking the sum
when moving up.

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

(b) Comparison between two higher order locality theories:
the working set locality theory (WSLT) for primary memory
and the cache locality theory (CLT) for cache memory.

Figure 4: The higher-order cache locality theory (shown partly in Figure 3) and comparison with the working-set
theory.

distance c. The capacity miss ratio, mr(c), is the total fraction of reuse distances greater than the cache size
c, i.e. mr(c) = P (rd > c). The third formula in Figure 3(a) computes P (rd > c) by taking the difference
between successive mr(c) values.

To demonstrate the conversion formulas, Figure 3(b) shows the computed locality for the example trace
“xyzxyz...” Assuming it infinitely repeating, we have m = 3 and n = 1. The formulas in Figure 3(a)
produce the results in Figure 3(b).

In algebra, the term order may refer to the degree of a polynomial. Through differentiation, a higher
order function can derive a lower order function. If we use the concept liberally on locality functions (over
the discrete integer domain), we see a similar relation among the three locality metrics and can therefore
organized them as a metrics hierarchy in Figure 4(a). The higher order theory gives their relations. In
one direction, we compute a higher-order metric by taking the sum in a lower-order metric; in the reverse
direction, we compute a lower-order metric by taking the difference in a higher-order metric.

The new theory is a parallel to the working-set locality theory (WSLT), developed Denning and others for
dynamic partitioned primary memory [?,?,?]. Figure 4(b) shows the matching metrics in the 3-tier hierarchy.
Denning and Schwartz gave the original proof based on ideal conditions in infinitely long executions [?]. We
recently proved the higher order relation for arbitrary, finite-length program executions [?]. The new theory
subsumes the infinitely long case and gives a theoretical explanation to the long observed effectiveness of
the working set theory [?].

D–5

Chen Ding, University of Rochester, PMAM 2014 30

Composition + Conversion

9

Combining footprint composition and metrics conversion, we can see immedi-

ately that if we treat co-run programs as one composite task, the co-run miss ratio

can be computed from the aggregate footprint. Figure 1.3 shows the derivation

by adding the individual footprints and then converting the sum to the miss ratio.

1

individual
footprint

solo-run
miss ratio

private reuse
distance (PRD)

combined
footprint

co-run miss
ratio

concurrent
reuse distance

(CRD)

footprint
composition

metrics
conversion

Figure 1.3: The joint use of two theoretical properties: composition (dotted line)

and conversion (solid lines)

.

Since the conversion formula is reversible, we can switch between the footprint

and the miss ratio and compose the latter indirectly through the former. First,

we compute the individual footprint from the individual miss ratios (of all cache

sizes). Then we add the individual footprints and finally compute the co-run miss

ratio in the shared cache (of all sizes). Figure 1.3 shows this type of deduction

and others that are made possible by composition and conversion. In particular,

the figure shows how to compose another locality metric, the reuse distance. We

use the terms private reuse distance (PRD) and concurrent reuse distance (CRD),

as introduced by Wu and Yeung [2011]; Wu et al. [2013b].

The solution of composition raises the problem of decomposition. The co-

run miss ratio does not tell us the contribution from each program. To see the

individual e↵ects, we need more elaborate models.

Chen Ding, University of Rochester, PMAM 2014

Reality Check

• 20 SPEC 2006 programs
• 190 different pair runs

• Modeling
• per program footprint
• composition
• a few hours

• prediction for all cache sizes
• Exhaustive parallel testing

• 190 pair runs
• 380 hw counter reads (OFFCORE.DATA_IN, 8MB 16-way L3)
• ~9 days total CPU time

31 Chen Ding, University of Rochester, PMAM 2014

4.4 Direct Fill Time vs. Filmer Fill Time
The measurement of the direct fill time, definition in Section 2.3
and algorithm in Section A, takes so long that the only programs
we could finish are 10 of the 11 SPEC 2000 integer benchmark
programs. Table 4 compares the average time for these programs.
An unmodified SPEC 2000 program runs for 3 minutes on aver-
age, the direct fill time analysis takes over 22 hours. The average
overhead is more than 7 hours for each minute. In comparison, the
per minute overhead is an hour and a half for reuse distance and 7
minutes if we first compute footprint and then derive the Filmer fill
time.

analysis avg. time avg. slowdown
direct fill time (Section A) 22h12m11s 446x
reuse distance 3h57m36s 84x
Filmer fill time (Section 2.3) 22m4s 8x

Table 4: Speed comparison for 10 SPEC 2000 integer benchmarks.
The average trace length n is 47 billion, data size m is 73MB, and
baseline run time is 3 minutes and 16 seconds.

More problematic is that with the direct fill time, the predicted
miss ratio is not monotone. Worse, the miss ratio may be negative.
Consider an example trace with 100 a’s followed by 11 b’s, 1 c, 20
d’s, 15 e’s, 1 f and 320 g’s. The average time to fill a 4-element
cache, vt(4), is 161.5, is longer than the average time to fill a
5-element cache, vt(5), which is 149.5. Since the direct fill time
decreases when the cache size v increases, the predicted miss ratio
is negative!

The preceding example was constructed based on an analysis of
real traces. During experimentation, we found that the miss ratios
of some cache sizes were negative. While most of the 3000 or so
sizes had positive predictions, the negatives were fairly frequent
and happened in most test programs. It seemed contradictory that
it could take a program longer to fill a smaller cache. The reason
is subtle. To compute the direct fill time, we find windows with
the same footprint and take the average length. As we increase the
footprint by 1, the length of these windows will increase but the
number of such windows may increase more, leading to a lower
average, as happened in the preceding example.

In contrast, the Filmer fill time is a positive, concave function
(Corollary 2.4). Its miss-ratio prediction is monotone and can be
measured in near real time (Section 4.2.2).

4.5 Predicting Cache Interference
A complete 2-program co-run test for the 29 SPEC 2006 bench-
marks would include

�
29
2

�
= 406 program pairs. To reduce the

clutter in the graphs we show, we choose 20 programs. To avoid
bias, we pick programs with the smallest benchmark ids. Since we
profile data accesses only, we exclude perlbench and gcc because
their large code size may cause significant instruction misses in the
data cache. After the removal, we have 20 SPEC benchmark pro-
grams from 401.bzip2 to 464.h264ref. The trimming reduces the
number of pair-run tests to

�
20
2

�
= 190.

Cache interference models were pioneered by Thiebaut and
Stone [41], Suh et al. [39] and Chandra et al. [9], who computed
the cache interference by the impact of the peer footprint on the self
locality.2 The footprint is measured for a single window length [41]
and approximated for multiple lengths [9, 39]. Our subsequent
work found a way to measure all-window footprints precisely and

2 Chandra et al. also gave a model that used only the reuse distance [9].
Zhuravlev et al. used it and two other such models and found that in task
scheduling, they did not significantly outperform a simple model that used
only the miss rate [51].

0 100 200 300 400

0
5

10
15

20

tests

co
ru

n
m

is
s

ra
tio

 (%
)

hardware counter
prediction

(a) linear scale miss ratios

tests

co
ru

n
m

is
s

ra
tio

 (%
)

0 100 200 300 400

1e
−5

1e
−3

0.
1

10 hardware counter
prediction

(b) logarithmic scale miss ratios

Figure 9: The predicted and measured miss ratios of the 380 exe-
cutions in 190 pair runs. The executions are ordered by the ascend-
ing miss ratio as measured by the hardware counters in exhaustive
testing. For each execution, the solid (black) line shows the hard-
ware counter result, and the dotted (red) line shows the prediction.
The prediction takes about a half percent of the time of exhaustive
testing. Just two executions have a significant error in both graphs,
which are a half percent of all executions.

efficiently [17, 45, 46]. The self locality is measured by the reuse
distance. As the measurement problem for the footprint is solved,
the speed of reuse-distance analysis becomes the bottleneck. We
found that by profiling up to two days for each program, the reuse
distance analyzer by Zhong et al. [49] could finish only 8 SPEC
2006 programs [46]. The total modeling time was over 106 CPU
hours, 94% of which was spent on the reuse-distance analysis. In

Chen Ding, University of Rochester, PMAM 2014

4.4 Direct Fill Time vs. Filmer Fill Time
The measurement of the direct fill time, definition in Section 2.3
and algorithm in Section A, takes so long that the only programs
we could finish are 10 of the 11 SPEC 2000 integer benchmark
programs. Table 4 compares the average time for these programs.
An unmodified SPEC 2000 program runs for 3 minutes on aver-
age, the direct fill time analysis takes over 22 hours. The average
overhead is more than 7 hours for each minute. In comparison, the
per minute overhead is an hour and a half for reuse distance and 7
minutes if we first compute footprint and then derive the Filmer fill
time.

analysis avg. time avg. slowdown
direct fill time (Section A) 22h12m11s 446x
reuse distance 3h57m36s 84x
Filmer fill time (Section 2.3) 22m4s 8x

Table 4: Speed comparison for 10 SPEC 2000 integer benchmarks.
The average trace length n is 47 billion, data size m is 73MB, and
baseline run time is 3 minutes and 16 seconds.

More problematic is that with the direct fill time, the predicted
miss ratio is not monotone. Worse, the miss ratio may be negative.
Consider an example trace with 100 a’s followed by 11 b’s, 1 c, 20
d’s, 15 e’s, 1 f and 320 g’s. The average time to fill a 4-element
cache, vt(4), is 161.5, is longer than the average time to fill a
5-element cache, vt(5), which is 149.5. Since the direct fill time
decreases when the cache size v increases, the predicted miss ratio
is negative!

The preceding example was constructed based on an analysis of
real traces. During experimentation, we found that the miss ratios
of some cache sizes were negative. While most of the 3000 or so
sizes had positive predictions, the negatives were fairly frequent
and happened in most test programs. It seemed contradictory that
it could take a program longer to fill a smaller cache. The reason
is subtle. To compute the direct fill time, we find windows with
the same footprint and take the average length. As we increase the
footprint by 1, the length of these windows will increase but the
number of such windows may increase more, leading to a lower
average, as happened in the preceding example.

In contrast, the Filmer fill time is a positive, concave function
(Corollary 2.4). Its miss-ratio prediction is monotone and can be
measured in near real time (Section 4.2.2).

4.5 Predicting Cache Interference
A complete 2-program co-run test for the 29 SPEC 2006 bench-
marks would include

�
29
2

�
= 406 program pairs. To reduce the

clutter in the graphs we show, we choose 20 programs. To avoid
bias, we pick programs with the smallest benchmark ids. Since we
profile data accesses only, we exclude perlbench and gcc because
their large code size may cause significant instruction misses in the
data cache. After the removal, we have 20 SPEC benchmark pro-
grams from 401.bzip2 to 464.h264ref. The trimming reduces the
number of pair-run tests to

�
20
2

�
= 190.

Cache interference models were pioneered by Thiebaut and
Stone [41], Suh et al. [39] and Chandra et al. [9], who computed
the cache interference by the impact of the peer footprint on the self
locality.2 The footprint is measured for a single window length [41]
and approximated for multiple lengths [9, 39]. Our subsequent
work found a way to measure all-window footprints precisely and

2 Chandra et al. also gave a model that used only the reuse distance [9].
Zhuravlev et al. used it and two other such models and found that in task
scheduling, they did not significantly outperform a simple model that used
only the miss rate [51].

0 100 200 300 400

0
5

10
15

20

tests

co
ru

n
m

is
s

ra
tio

 (%
)

hardware counter
prediction

(a) linear scale miss ratios

tests

co
ru

n
m

is
s

ra
tio

 (%
)

0 100 200 300 400

1e
−5

1e
−3

0.
1

10 hardware counter
prediction

(b) logarithmic scale miss ratios

Figure 9: The predicted and measured miss ratios of the 380 exe-
cutions in 190 pair runs. The executions are ordered by the ascend-
ing miss ratio as measured by the hardware counters in exhaustive
testing. For each execution, the solid (black) line shows the hard-
ware counter result, and the dotted (red) line shows the prediction.
The prediction takes about a half percent of the time of exhaustive
testing. Just two executions have a significant error in both graphs,
which are a half percent of all executions.

efficiently [17, 45, 46]. The self locality is measured by the reuse
distance. As the measurement problem for the footprint is solved,
the speed of reuse-distance analysis becomes the bottleneck. We
found that by profiling up to two days for each program, the reuse
distance analyzer by Zhong et al. [49] could finish only 8 SPEC
2006 programs [46]. The total modeling time was over 106 CPU
hours, 94% of which was spent on the reuse-distance analysis. In

half percent time,
half percent error

Chen Ding, University of Rochester, PMAM 2014

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0

5

10

15

20
hardware counter
prediction

(a) Co-run interference of libquantum; high pressure, zero sensitiv-
ity; measured miss ratio 17.82% to 17.89%, predicted 17.9437% to
17.9447%

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0

5

10

15

20 hardware counter
prediction

(b) Co-run interference of mcf ; high pressure, highly sensitive; mea-
sured miss ratio 11.2% to 16.4%, predicted 11.6% to 14.4%

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0.0

0.1

0.2

0.3

0.4 hardware counter
prediction

(c) Co-run interference of gobmk; low pressure, highly sensitive; mea-
sured miss ratio 0.13% to 0.33%, predicted 0.08% to 0.32%

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0.00

0.01

0.02

0.03

0.04

0.05
hardware counter
prediction

(d) Co-run interference of gamess; low pressure, low sensitivity; mea-
sured miss ratio 0.0002% to 0.04%, predicted 0.000013% to 0.03%

Figure 10. The predicted and measured co-run miss ratios of four programs, each is tested when running with one of the 20 programs
including itself. The four programs are selected by their different shared-cache personality (Figure 9). Note that the measured miss ratios
(the y-axis in these plots) vary by three orders of magnitude. It is remarkable that the software prediction (with no parallel testing
nor any hardware counter input) matches with the hardware measurement in every case.

simple. In fact, co-run miss ratios can be computed by hand by
looking at the pressure and the sensitivity curves.

The extensive testing of both sequential and parallel bench-
marks show that the new models produce consistently accurate pre-
dictions for co-run miss ratios that vary by six orders of magnitude
from 10�7 to nearly 20%. The accuracy is obtained by the models
without parallel testing or hardware counter inputs. In these empir-
ical results we acquire the greatest confidence that the new models,
despite of the simplifications we have made to make it usable, have
captured the program characteristics essential to its performance in

shared cache and will be useful in shared-cache program tuning and
optimization.

References
[1] K. Beyls and E. D’Hollander. Generating cache hints for improved

program efficiency. Journal of Systems Architecture, 51(4):223–250,
2005.

[2] K. Beyls and E. D’Hollander. Discovery of locality-improving refac-
toring by reuse path analysis. In Proceedings of HPCC. Springer. Lec-
ture Notes in Computer Science Vol. 4208, pages 220–229, 2006.

9 2012/11/29

Co-run interference of libquantum;
high miss ratio, zero sensitivity;
measured miss ratio 17.82% to 17.89%,
predicted 17.94% to 17.94%

Chen Ding, University of Rochester, PMAM 2014

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0

5

10

15

20
hardware counter
prediction

(a) Co-run interference of libquantum; high pressure, zero sensitiv-
ity; measured miss ratio 17.82% to 17.89%, predicted 17.9437% to
17.9447%

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0

5

10

15

20 hardware counter
prediction

(b) Co-run interference of mcf ; high pressure, highly sensitive; mea-
sured miss ratio 11.2% to 16.4%, predicted 11.6% to 14.4%

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0.0

0.1

0.2

0.3

0.4 hardware counter
prediction

(c) Co-run interference of gobmk; low pressure, highly sensitive; mea-
sured miss ratio 0.13% to 0.33%, predicted 0.08% to 0.32%

bz
ip

2
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M
le

sl
ie

3d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sj

en
g

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

m
is

s
ra

tio
 (%

)

0.00

0.01

0.02

0.03

0.04

0.05
hardware counter
prediction

(d) Co-run interference of gamess; low pressure, low sensitivity; mea-
sured miss ratio 0.0002% to 0.04%, predicted 0.000013% to 0.03%

Figure 10. The predicted and measured co-run miss ratios of four programs, each is tested when running with one of the 20 programs
including itself. The four programs are selected by their different shared-cache personality (Figure 9). Note that the measured miss ratios
(the y-axis in these plots) vary by three orders of magnitude. It is remarkable that the software prediction (with no parallel testing
nor any hardware counter input) matches with the hardware measurement in every case.

simple. In fact, co-run miss ratios can be computed by hand by
looking at the pressure and the sensitivity curves.

The extensive testing of both sequential and parallel bench-
marks show that the new models produce consistently accurate pre-
dictions for co-run miss ratios that vary by six orders of magnitude
from 10�7 to nearly 20%. The accuracy is obtained by the models
without parallel testing or hardware counter inputs. In these empir-
ical results we acquire the greatest confidence that the new models,
despite of the simplifications we have made to make it usable, have
captured the program characteristics essential to its performance in

shared cache and will be useful in shared-cache program tuning and
optimization.

References
[1] K. Beyls and E. D’Hollander. Generating cache hints for improved

program efficiency. Journal of Systems Architecture, 51(4):223–250,
2005.

[2] K. Beyls and E. D’Hollander. Discovery of locality-improving refac-
toring by reuse path analysis. In Proceedings of HPCC. Springer. Lec-
ture Notes in Computer Science Vol. 4208, pages 220–229, 2006.

9 2012/11/29

Co-run interference of gamess;
low miss ratio, high sensitivity
measured miss ratio 0.0002% to 0.04%,
predicted 0.000013% to 0.03%

Chen Ding, University of Rochester, PMAM 2014

Denning’s Law of Locality

What’s the relation between reuse frequency and
footprint?

Limit value [Denning and Schwartz, CACM 1972]

Time space [Denning and Slutz, CACM 1978]
All program traces [Rochester, ASPLOS 2013]

abc ... abc ...
aaa ... bbb ...

Chen Ding, University of Rochester, PMAM 2014

An Old Open Question

How quickly can we measure the miss rate for all
cache size?

Lifetime-based Sampling Lifetime by definition is more amenable
to sampling. We can start a lifetime sample at any point in an ex-
ecution and continue until the sample execution accesses enough
data to fill the largest cache size of interest. We can sample multiple
windows independently, which means they can be parallelized. It
does not matter whether the sample windows are disjoint or over-
lapping, as long as the choice of samples is random and unbiased.

The Associative Cache A program execution produces a series of
m samples at regular intervals, x1, x2, . . . , xm

. We use them in the
following way:

1. For each sample x
i

, with trace length n
i

, predict the miss ratio
function mr(x

i

, c) for each cache size c by the following:
(a) Use the analysis of Xiang et al. [36] to compute the average

footprint function fp.
(b) Use the lifetime conversion to compute the capacity miss

ratio for cache size c.
(c) Use the miss-ratio conversion to compute reuse distance dis-

tribution and the Smith formula [30] to estimate the number
of conflict misses for cache size c.

2. For all x
i

, take the weighted average and compute the miss ratio
function for the program mr(c) =

P
m

i=1 mr(x
i

,c)⇤n
iP

m

i=1 n

i

.

The Phase Effect The preceding design assumes phase behavior.
Since different samples may come from different phases, combin-
ing their footprints would lose the phase distinction. To validate this
intuitive view, we will compare the phase-sensitive sampling with
phase-insensitive sampling. The former, as just described, com-
putes the miss rate for each sample and then takes the average.
The next design combines the footprint from all the samples and
then computes the miss ratio. Specifically, the second design is as
follows:

1. For each sample x
i

, with trace length n
i

,
(a) Use the analysis of Xiang et al. [36] to compute the average

footprint function fp.
2. For all samples x

i

, take the weighted average and compute the
fp function for the program fp =

P
m

i=1 fp(x
i

)⇤n
iP

m

i=1 n

i

.

3. Use the lifetime and miss-ratio conversion and the Smith for-
mula [30] to estimate the number of cache misses.

Comparison with Reuse Distance Sampling To be statistically
sound, reuse distance sampling must evenly sample for different
lengths of reuse windows. When picking an access, it needs to
measure the distance to the next reuse. When a reuse distance is
long, it does not know a priori how far to monitor, so it keeps
analyzing until seeing the next reuse or until the reuse distance
exceeds the largest cache size of interest. The cut-off strategy is
also used in lifetime sampling. The two conditions, one on lifetime
and the other on reuse distance, are equivalent.

Beneath this equivalence lies important differences. Reuse dis-
tance measures locality by reuses. Lifetime measures locality by
data accesses. Lifetime sampling counts the data volume in one
window and uses the Filmer conversion to infer reuse distances. In
comparison, reuse distance sampling has to count the data volume
in every sampled reuse window. In addition, once each window is
selected, the Filmer calculation takes linear time, while the cost of
reuse distance measurement is asymptotically more. The footprint
is measured by counting data volume over one lifetime window,
while for reuse distance we have to do so for all reuse windows.
Hence the strength of lifetime sampling is algorithmic and compu-
tational, and this strength comes from our conversion theory.

4. Evaluation
4.1 Experimental Setup
We have tested the full set of 29 SPEC2006 benchmarks and 8
benchmarks from the PARSEC v2.1 suite. For SPEC2006, we use
the first reference input provided by the test suite. Table 1 shows
for each SPEC 2006 program the length of trace n, the size of
data m and the time of the unmodified program execution. The
length of SPEC 2006 traces ranges from 20 billion in 403.gcc to
2.1 trillion in 436.cactusADM. The amount of data ranges from
3MB in 416.gamess to 1.7GB in 429.mcf. For PARSEC, we test
programs using the three provided input sizes: small, medium and
large. The length of the traces, memory usage and base run time
are shown in table 3. For parallel execution, we chose 4 threaded, a
widely used configuration. We simulate a single-level cache shared
by the four threads. All sequential benchmarks are instrumented by
Pin [22] and profiled on a Linux cluster where each node has two
Intel Xeon 3.2GHz processors. PARSEC is run on a machine with
two Intel Xeon E5649 processors.

Locality sampling is implemented using fork, as described in
Section 3. The implementation does not yet recognize system calls,
so it failed for 7 of the 29 programs. For the 7 programs, we can
only show the accuracy of the Filmer conversion but not sampling
analysis. We did not implemented locality sampling for multi-
threaded code. In performance comparisons, the baseline is the
program run time without instrumentation or any analysis.

3000+ Cache Sizes In the analysis, the footprint and reuse dis-
tance numbers are bin-ed using logarithmic ranges as follows. For
each power-of-two range, we sub-divide it into 256 equal-size in-
crements. As a result, we can predict the miss ratio not just for
power-of-two cache sizes, but 3073 cache sizes between 16KB and
64MB.

4.2 Miss-Ratio Prediction
We first evaluate the accuracy and the speed of miss-ratio predic-
tion, made by the Filmer conversion and locality sampling, tested
on sequential and parallel programs, and verified through simula-
tion and hardware counters.

4.2.1 Sequential Programs
We first use cache simulation to evaluate the accuracy of Filmer-
based miss ratio prediction. Instead of evaluating each of the 29
programs on 3073 cache sizes, we show results for 3 configura-
tions: 32KB, 8-way associative L1D; 256KB, 8-way associative
L2; and 8MB, 16-way associative L3, which represent the cache
configurations on our test machine. We will compare our predic-
tion to the performance counter result later. The cache-block size is
64 bytes in all cases. The accuracy for the other 3070 cache sizes is
similar.

Figure 4 plots measured and predicted miss ratios. The rd-
prediction, which uses the measured reuse distance, is the most
accurate. The other two, fp-prediction and sampling measure
the footprint and then use the Filmer conversion. fp-prediction
closely matches rd-prediction in almost all cases, showing that
the footprint-converted reuse distance is almost identical to the
measured reuse distance—hence the validity of the reuse-window
hypothesis.

The Phase Effect We began the paper with a question on the
relation between the active data usage and the miss frequency. To
avoid being cache specific, let’s compare the footprint and the reuse
distance, in particular how they are affected by program phases.

The reuse distances of a program, when added together regard-
less of phases, predict the (capacity) miss ratio accurately, because
an access is a cache capacity miss if and only if its reuse dis-

5 2012/11/19

Xiang et al. ASPLOS 13
(Tongxin Bai’s tool)

Chen Ding, University of Rochester, PMAM 2014

Chen Ding, University of Rochester, PMAM 2014

Vivek Sarkar
Houston Museum of
Nature Science

From dinosaur to
computer scientist

Chen Ding, University of Rochester, PMAM 2014

An Old Open Question

What’s the relation between miss rate and cache
pressure? Does a higher miss rate mean higher

pressure?

IBM University Days, April 2012Chen Ding

Miss Ratio vs Pressure, 32KB Cache

0.00 0.02 0.04 0.06 0.08 0.10 0.12

1e
−0

5
1e
−0

3
1e
−0

1
1e

+0
1

pressure (cache fill rate: % per microsecond)

se
ns

iti
vi

ty
 (

m
is

s
ra

tio
: %

)

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

bzip2
bwaves
gamess
mcf
milc
zeusmp
gromacs
cactusADM
leslie3d
namd
gobmk
dealII
soplex
povray
calculix
hmmer
sjeng
GemsFDTD
libquantum
h264ref

(a) The sensitivity-pressure (program personality) graph, 4MB cache

5 10 15 20

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

pressure (cache fill rate: % per microsecond)

se
ns

iti
vi

ty
 (

m
is

s
ra

tio
: %

)

+ +

+

+

+ +

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

bzip2
bwaves
gamess
mcf
milc
zeusmp
gromacs
cactusADM
leslie3d
namd
gobmk
dealII
soplex
povray
calculix
hmmer
sjeng
GemsFDTD
libquantum
h264ref

(b) The sensitivity-pressure (program personality) graph, 32KB cache

Figure 9. The program personality in shared cache, represented by plotting the sensitivity (miss ratio) and pressure (fill rate) in a single chart
first for the 4MB cache and then for the 32KB cache

as high as several thousand times slowdown (although with a differ-
ent implementation) [16]. A series of studies reduced the cost using
sampling techniques, including the publicly available SLO tool [2],
continuous program optimization [3], bursty reuse distance sam-
pling [24], multicore reuse distance analysis [16], and by shared-
memory, MPI, and GPU parallelization [7, 9, 15, 16]. A new study
used the footprint and shadow sampling and reduced the measure-
ment cost to 17% of the unmodified execution time [22]. The miss-
rate based formulation in this paper shows that these measurement
techniques can be used to model the shared cache pressure and sen-
sitivity.

Composable Models of Cache Sharing Composable models
were first developed to model cache sharing in multicore and time-
sharing systems [5, 17]. A key problem was how to measure the
data footprint, i.e. the volume of data access in all execution win-
dows. This was solved [20, 21]. In fact, the footprint alone was
used to model cache sharing [22]. The technique uses a set of con-
versions through the footprint and the reuse distance, the latter of
which is derived from the footprint through several additional steps.
The relation between the shared cache miss ratio and the footprint
is indirect. This work uses the intuition of flow rate and an en-
tirely different set of derivations to produce two specific metrics
for cache sharing. The new model may be more accurate than the
footprint model because the new model can take the accurate miss
ratio curve as the input.

Wu and Young [11, 19] compared the best performance, mea-
sured by the configuration that provides the lowest average memory
access time (AMAT). They used the metrics of private-cache and
concurrent reuse distance histogram (PRD and CRD) and focused
on the hardware characteristics and effects, not hardware indepen-
dent program characterization.

Shared Cache Optimization and Scheduling QoS-Compile from
Tang et al. [18] is a compiler solution to mitigate memory hierarchy
contention for independent co-run programs. The optimization first
requires a profiling pass to identify contentious code regions.

When a set of programs are assigned to smaller groups to share
cache within the group, the notion of politeness has been defined
for a program as “the reciprocal of the sum of the degradations
of all co-run groups that include the job.” [10] The notion was
used to approximate optimal job scheduling using a heuristic-based
solution. The politeness is measured by the effect on the execution
time, not just the miss ratio. The miss count has been used to model
the cache fairness [8]. The model assumes that the cache access is
uniformly distributed. While the assumption is not always valid,
the model is efficient for use in an OS scheduler to manage cache
sharing in real time. The miss count is measured in real time to be
hardware specific and peer dependent. The requirements of QoS
compile, fairness and optimal scheduling are opposite to the needs
of offline program optimization, for which the metrics should be
hardware and peer independent.

The high cost of co-run testing is addressed in a strategy called
Bubble-Up [13]. The strategy has two steps. First, a program is co-
run against an expanding bubble to produce a sensitivity curve. The
bubble is a specially designed probe program. In the second step,
the pressure of the program is reported by another probe and prob-
ing run. Bubble-Up is a composable strategy since each program is
tested individually without testing all program combinations. The
pressure and sensitivity can predict the time effect of program co-
location. These metrics is to capture CPU- and cache-dependent
effects. They are designed for task scheduling, not target metrics
for program optimization.

6. Summary
In this paper, we have presented the cache pressure and sensitivity
metrics as tools for program analysis and targets for program opti-
mization for shared cache, for which the total size is fixed and the
replacement is highly dynamic. We show that the new metrics can
be derived from the miss ratio and the reuse time histogram. The
calculation used to predict cache sharing is intuitive and extremely

8 2012/11/29

IBM University Days, April 2012Chen Ding

Miss Ratio vs Pressure, 4MB Cache

0.00 0.02 0.04 0.06 0.08 0.10 0.12

1e
−0

5
1e
−0

3
1e
−0

1
1e

+0
1

pressure (cache fill rate: % per microsecond)

se
ns

iti
vi

ty
 (

m
is

s
ra

tio
: %

)

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

bzip2
bwaves
gamess
mcf
milc
zeusmp
gromacs
cactusADM
leslie3d
namd
gobmk
dealII
soplex
povray
calculix
hmmer
sjeng
GemsFDTD
libquantum
h264ref

(a) The sensitivity-pressure (program personality) graph, 4MB cache

5 10 15 20

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

pressure (cache fill rate: % per microsecond)

se
ns

iti
vi

ty
 (

m
is

s
ra

tio
: %

)

+ +

+

+

+ +

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

bzip2
bwaves
gamess
mcf
milc
zeusmp
gromacs
cactusADM
leslie3d
namd
gobmk
dealII
soplex
povray
calculix
hmmer
sjeng
GemsFDTD
libquantum
h264ref

(b) The sensitivity-pressure (program personality) graph, 32KB cache

Figure 9. The program personality in shared cache, represented by plotting the sensitivity (miss ratio) and pressure (fill rate) in a single chart
first for the 4MB cache and then for the 32KB cache

as high as several thousand times slowdown (although with a differ-
ent implementation) [16]. A series of studies reduced the cost using
sampling techniques, including the publicly available SLO tool [2],
continuous program optimization [3], bursty reuse distance sam-
pling [24], multicore reuse distance analysis [16], and by shared-
memory, MPI, and GPU parallelization [7, 9, 15, 16]. A new study
used the footprint and shadow sampling and reduced the measure-
ment cost to 17% of the unmodified execution time [22]. The miss-
rate based formulation in this paper shows that these measurement
techniques can be used to model the shared cache pressure and sen-
sitivity.

Composable Models of Cache Sharing Composable models
were first developed to model cache sharing in multicore and time-
sharing systems [5, 17]. A key problem was how to measure the
data footprint, i.e. the volume of data access in all execution win-
dows. This was solved [20, 21]. In fact, the footprint alone was
used to model cache sharing [22]. The technique uses a set of con-
versions through the footprint and the reuse distance, the latter of
which is derived from the footprint through several additional steps.
The relation between the shared cache miss ratio and the footprint
is indirect. This work uses the intuition of flow rate and an en-
tirely different set of derivations to produce two specific metrics
for cache sharing. The new model may be more accurate than the
footprint model because the new model can take the accurate miss
ratio curve as the input.

Wu and Young [11, 19] compared the best performance, mea-
sured by the configuration that provides the lowest average memory
access time (AMAT). They used the metrics of private-cache and
concurrent reuse distance histogram (PRD and CRD) and focused
on the hardware characteristics and effects, not hardware indepen-
dent program characterization.

Shared Cache Optimization and Scheduling QoS-Compile from
Tang et al. [18] is a compiler solution to mitigate memory hierarchy
contention for independent co-run programs. The optimization first
requires a profiling pass to identify contentious code regions.

When a set of programs are assigned to smaller groups to share
cache within the group, the notion of politeness has been defined
for a program as “the reciprocal of the sum of the degradations
of all co-run groups that include the job.” [10] The notion was
used to approximate optimal job scheduling using a heuristic-based
solution. The politeness is measured by the effect on the execution
time, not just the miss ratio. The miss count has been used to model
the cache fairness [8]. The model assumes that the cache access is
uniformly distributed. While the assumption is not always valid,
the model is efficient for use in an OS scheduler to manage cache
sharing in real time. The miss count is measured in real time to be
hardware specific and peer dependent. The requirements of QoS
compile, fairness and optimal scheduling are opposite to the needs
of offline program optimization, for which the metrics should be
hardware and peer independent.

The high cost of co-run testing is addressed in a strategy called
Bubble-Up [13]. The strategy has two steps. First, a program is co-
run against an expanding bubble to produce a sensitivity curve. The
bubble is a specially designed probe program. In the second step,
the pressure of the program is reported by another probe and prob-
ing run. Bubble-Up is a composable strategy since each program is
tested individually without testing all program combinations. The
pressure and sensitivity can predict the time effect of program co-
location. These metrics is to capture CPU- and cache-dependent
effects. They are designed for task scheduling, not target metrics
for program optimization.

6. Summary
In this paper, we have presented the cache pressure and sensitivity
metrics as tools for program analysis and targets for program opti-
mization for shared cache, for which the total size is fixed and the
replacement is highly dynamic. We show that the new metrics can
be derived from the miss ratio and the reuse time histogram. The
calculation used to predict cache sharing is intuitive and extremely

8 2012/11/29

Chen Ding, University of Rochester, PMAM 2014

An Old Open Question

Is there a machine independent way to compare
program behavior in shared cache? How do

programs in different domains differ?

Chen Ding, University of Rochester, PMAM 2014

An Old Open Question

Does LRU cache produce optimal partition?
[Thiebuat and Stone, 1992]

30

defined a precise measure called the reload transient. For a departing process,

the reload transient is the amount of its cached data lost when it returns after

another process is run. To compute the reload transient, Thiébaut and Stone

[1987] defined cache footprint, which is the number of data blocks a program has

in cache. Given two programs A,B, the reload transient of A after B is the overlap

between their cache footprints.

To compute footprints and their overlap, Thiébaut and Stone [1987] assumed

that a program has an equal probability accessing any cache block. The proba-

bility is independent and identically distributed. The overlap is then computed

from expectations of binomial distributions.

Instead of discrete probabilistic models, Strecker [1983] put forward an intu-

itive notion that a program is a continuous flow and fills the cache at the rate

that is the product of two probabilities: the chance of a miss and the chance that

the miss results in a new location in the cache being filled. A di↵erential equa-

tion was constructed since the fill rate is the derivative of the footprint over time.

To compute the miss ratio, Strecker [1983] used an analytical formula by Saltzer

[1974]. Saltzer [1974] computed the inter-miss time which he called the headway

as the number of hits between successive misses.

The second type of sharing happens between the instruction and the data of

a program. Stone et al. [1992] investigated whether LRU produces the optimal

allocation. Assuming that the miss rate functions for instruction and data are

continuous and di↵erentiable, the optimal allocation happens at the points “when

miss-rate derivatives are equal” [Thiébaut and Stone, 1992]. The miss rate func-

tions, one for instruction and one for data, were modeled instead of measured. The

authors showed that LRU is not optimal, but left open a question whether there

is a bound on how close LRU allocation is to optimal allocation. The pressure

model in Chapter 4 can be used to compute the cache allocation and therefore

answer the open question for any group of programs.

still open

Chen Ding, University of Rochester, PMAM 2014

(a) Rationing performs as well as partitioning and better than sharing because rationing protects core 1 against the
interference by core 2.

(b) Rationing performs as well as sharing and better than partitioning because rationing utilizes the unused ration of core
1.

Figure 2: Resource protection (a) and utilization (b) in evenly rationed cache, in comparison with communist (hard partitioning) and capitalist
(free-for-all sharing) policies.

replace it before replacing other blocks. Such an instruction can be
readily supported by cache rationing.

We add a hint bit to load/store instructions. At the access, the
processing is exactly as we have defined before. The only effect
happens when setting the access bit. In the default logic, the access
bit is set after the access. With the new interface, the access bit is
set only if the hint bit is not. In other words, the software can tell the
rationing hardware not to set the access bit if it knows that the block
will have no more cache reuse, or if its eviction would free cache
space for other blocks. The block then becomes unused ration and
will be favored for immediate eviction (before every block whose
access bit is 1).

As an example, consider two cores sharing a four-block cache.
Let the access traces be “xyzxyz...” for one core and “abcabc...” for
the other. With equal rationing, neither core has enough cache to
obtain any reuse. However, with cache hints, the software can free
up cache space by zeroing some access bits (where the hint bit is
set). In Figure 3, every other access has its hint bit set, so the access
bit is zeroed. In this case, the non-compulsory miss ratio is reduced
from 1 to 1/2. In [10], it is shown that a hint-based solution can
achieve optimal caching, and its application for single threads is
demonstrated in [3].

2.7 Comparison with Promotion/Insertion Pseudo
Partitioning (PIPP)

In this section, we compare and differentiate our technique with
several other designs. The recently proposed PIPP design [39]
tries to achieve partitioning with the help of intelligent insertion
and promotion policies. Because PIPP does not explicitly and pro-
actively partition the cache, it is pseudo-partitioning as the name
suggests. The baseline PIPP design works as following: For n

Thread 1 | a b c a b c a b c!
Hint Bit | 0 1 0 1 0 1 0 1 0!
Access Bit | 1 0 1 0 1 0 1 0 1!
Misses | M M M M M M!
--------------|------------------!
Thread 2 | x y z x y z x y z!
Hint Bit | 0 1 0 1 0 1 0 1 0!
Access Bit | 1 0 1 0 1 0 1 0 1!
Misses | M M M M M M!
==============|==================!
Post-Access | a b c a b c a b c!
Cache Content | x y z x y z x y z!
 | a a c c b b a a!
 | x x z z y y x x

Figure 3: An example of cache rationing with a hardware-software
collaboration hint bit. If the hint bit is set, the access bit is zeroed so
that the accessed blocks will not be kept in the cache. The contents
of the cache are shown after each pair of accesses, and blocks with
their access bit zeroed are underlined.

cores, it assumes that there exists a set of target partitions P =
{p1, p2, ..., pn} such that

P
pi = w, where w is the set associa-

tivity of the cache. Simple baseline PIPP implements three policies.
On insertion, corei simply installs all new incoming lines at prior-

4 2013/11/22

Two threads, each accessing three elements and using
two-element cache. Best per thread and overall

cache utilization --- 50% miss rate for each program.
45

Collaborative Rationing

Jacob Brock and
Raj Parihar

Chen Ding, University of Rochester, PMAM 2014

Optimal Collaborative Caching:
Theory and Applications

by

Xiaoming Gu

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Chen Ding

Department of Computer Science
Arts, Sciences & Engineering

Edmund A. Hajim School of Engineering & Applied Sciences

University of Rochester
Rochester, New York

2013

Maximal cache performance?
Answer:

Miss rate in all cache sizes?
Answer: LRU-MRU (Gu) distance

[Gu et al. ISMM 2012, Rochester Dissertation 2013]

On-going Studies

Shared Footprint Analysis

with Hao Luo and Pengcheng Li

Chen Ding, University of Rochester, PMAM 2014

window sizes

ferret

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+03 1e+06 1e+09

measured, max 4t
predicted, max 4t
measured, min 4t
predicted, min 4t

window sizes

dedup

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+03 1e+06 1e+09
window sizes

vips

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+03 1e+06 1e+09

window sizes

facesim

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+03 1e+06 1e+09
window sizes

bodytrack

0

2MB

4MB

6MB

8MB

10MB

1e+00 1e+02 1e+04 1e+06 1e+08
window sizes

raytrace

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+03 1e+06 1e+09

window sizes

fluidanimate

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+02 1e+04 1e+06 1e+08
window sizes

canneal

0

10MB

20MB

30MB

40MB

50MB

1e+00 1e+02 1e+04 1e+06 1e+08
window sizes

blackscholes

0

0.2MB

0.4MB

0.6MB

0.8MB

1MB

1e+00 1e+02 1e+04 1e+06 1e+08

window sizes

swaptions

0

0.2MB

0.4MB

0.6MB

0.8MB

1MB

1e+00 1e+03 1e+06 1e+09
window sizes

streamcluster

0

2MB

4MB

6MB

8MB

10MB

1e+00 1e+03 1e+06 1e+09

Figure 7: Comparison of the predicted and measured footprints

9 2013/11/16

All thread-group locality prediction. Min/max locality in all
70 four-thread groups for two PARSEC programs with 8

asymmetric threads.

Peer-Aware Program
Optimization

 Bin Bao
Advisor: Chen Ding

Chen Ding, University of Rochester, PMAM 2014

Recent Developments

• Competitiveness, politeness, sensitivity
• Jiang et al. [TPDS’11, HiPEAC’10]

• Intensity and sensitivity
• Zhuravlev et al. [ASPLOS’10]

• Niceness, pressure and sensitivity
• Mars et al. [CGO’12, Micro’12]

• Interference of cache
• composable models [Stone+ TOCS’87/TOC’92; Suh+ ICS’01;

Chandra+ HPCA’05; Xiang+ PPOPP’11/PACT’11/ASPLOS’13]
• threaded code [Ding/Chilimbi MSR’09, Jiang+ CC’10/TPDS’12,

Schuff+ PACT’10, Wu/Yeung PACT’11/ISCA’13]
• Interference model of execution time/speed

• bubble-up [Mars+ Micro’12, ISCA’13]
• QoS-aware scheduling [Delimitrou/Kozyrakis ASPLOS’13]

50

Chen Ding, University of Rochester, PMAM 2014

Recent Developments [cont’d]

• Parallel reuse distance measurement
• cluster [OSU, IPDPS 2012]
• GPU [ICT and NCSU, IPDPS 2012]
• sampling

• footprint shadow sampling [Rochester, ASPLOS 2013]
• multicore reuse distance [Purdue, PACT 2010]
• reuse distance sampling [Chang & Zhong, PACT 2008]

• Reuse distance in threaded code
• multicore reuse distance [Purdue, PACT 2010]
• CRD/PRD scaling [Maryland, ISCA 2013, to appear]

51 Chen Ding, University of Rochester, PMAM 2014

Recent Developments (cont’d)

• Asymptotic locality effect in parallel algorithms
• Leslie Valiant, PACT 2011 keynote
• Guy Blelloch et al. CMU, MIT, Intel Labs Pittsburgh [MSPC

2013]
• Morris Herlihy and student, [PPOPP 2014]

• Shared footprint [Rochester, WODA 2013]
• Static reuse distance analysis in Matlab [Indiana, ICS 2010]
• Static footprint analysis [Rochester, CGO 2013]

• peer-aware program optimization [Bao, dissertation’13]
• Collaborative caching

• practical uses [UT, Ghent, Google etc]
• optimal collaborative LRU cache [Gu, ISMM’11/12/13,

dissertation’13]

52

Chen Ding, University of Rochester, PMAM 2014

Summary

• Program interaction in multicore
• data sharing in threaded code
• cache and memory bandwidth sharing by all programs

• Locality theory
• working set, footprint, shared footprint
• metrics composition and conversion
• higher order theory of cache locality (HOTL)

• Recent research
• locality in parallel algorithms
• peer-aware program optimization
• sharing conscious task scheduling
• collaborative caching

53

