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Abstract
In POPL 2002, Petrank and Rawitz showed a universal result—
finding optimal data placement is not only NP-hard but also impos-
sible to approximate within a constant factor if P 6= NP . Here we
study a recently published concept called reference affinity, which
characterizes a group of data that are always accessed together in
computation. On the theoretical side, we give the complexity for
finding reference affinity in program traces, using a novel reduction
that converts the notion of distance into satisfiability. We also prove
that reference affinity automatically captures the hierarchical lo-
cality in divide-and-conquer computations including matrix solvers
and N-body simulation. The proof establishes formal links between
computation patterns in time and locality relations in space.

On the practical side, we show that efficient heuristics exist. In
particular, we present a sampling method and show that it is more
effective than the previously published technique, especially for
data that are often but not always accessed together. We show the
effect on generated and real traces. These theoretical and empirical
results demonstrate that effective data placement is still attainable
in general-purpose programs because common (albeit not all) lo-
cality patterns can be precisely modeled and efficiently analyzed.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization, compilers

General Terms Theory, Algorithms, Performance

Keywords Hierarchical data placement, program locality, refer-
ence affinity, volume distance, NP-complete, N-body simulation

1. Introduction
Data placement becomes increasingly important to programming
language design as programmers routinely improve performance or
energy efficiency by better utilizing the cache memory in proces-
sors, disks, and networks. Different memory levels come with dif-
ferent sizes and configurations. The hardware configuration, how-
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ever, may not be fully visible to a user. In addition, a program may
run on machines with different configurations. As the program-
ming for specific memory levels becomes increasingly untenable,
solutions for hierarchical data placement are developed in separate
application domains including matrix solvers [16], wavelet trans-
form [7], N-body simulation [30], and search trees [3], where the
program data are recursively decomposed into smaller blocks. By
exploiting the inherent locality in computation, hierarchical data
placement optimizes for any and all cache sizes. While most stud-
ies examined specific computation tasks, in this work we show that
a general model can be used to derive the hierarchical data place-
ment from program traces without user’s knowledge of the meaning
of the program.

While the data placement is sensitive to a machine, it is first
and foremost driven by the computation order. In fact, any layout
is perfect if the program traverses the data contiguously. Given an
arbitrary data access trace, we say a group of data have reference
affinity if they are always accessed together in the trace [44]. The
closeness is parameterized by the volume distance (denoted by
k), which is the volume of data between two accesses in a trace.
We also call it the reuse distance if the two accesses are to the
same datum. Changing k, reference affinity gives a hierarchical
partition of program data. We show an example here and give
the formal definitions in the next section. Figure 1 (a) shows a
trace, where different letters represent accesses to different data,
and “. . .” means accesses to data other than those shown in the
trace.
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Figure 1. An example reference affinity hierarchy



Reference affinity gives a hierarchical relation shown as a den-
drogram in Figure 1(b). The top of the hierarchy (k = ∞) is the
set of all data {u, v, w, x, y, z}, which have the weakest affinity.
The group {w, x, y, z} have stronger affinity than they do with u
and v (when k = 3). Inside this group, {w, x} have closer affinity
(k = 2), so do {y, z}. At the bottom of the hierarchy (k = 0),
each data element becomes an affinity group. The affinity hierar-
chy enables the hierarchical data placement, which is simply the
order (or its reverse) of the leaves in the dendrogram. The hierar-
chical placement improves the spatial locality for all cache configu-
rations. When a data element is loaded, the following computation
accesses more likely the neighboring data than the distant data. As
shown by this example, reference affinity converts a computation
trace to a hierarchical data layout.

In this paper we first present two theoretical results on reference
affinity. The first is the complexity of finding reference affinity. We
give polynomial-time algorithms for cases k = 1 and k = 2. We
prove that the problems are either NPC or NP-hard when k ≥ 3.
Second, we prove that reference affinity automatically captures
the hierarchical locality in divide-and-conquer type computations
including blocked matrix solvers and N-body simulation. The proof
holds even when data are divided into non-uniform sections and
traversed in any order.

Despite of the theoretical complexity, efficient heuristics exist.
We present a new analysis method based on sampling. We show
through experiments that the new technique is more accurate than
the previously published approximation method [44], especially
for partial reference affinity where a group of data is often but
not always accessed together. We show two new uses of reference
affinity. The first is finding hierarchical data layout in recursive
matrix multiplication, and the second is improving the code layout
of seven SPEC 2000 applications.

The volume distance has been difficult for theoretical analy-
sis because data may appear in different orders with different fre-
quencies while still yielding the same volume distance. It raises
interesting problems different from those in traditional graph and
streaming domains. In this work, we present two new proof tech-
niques that link between the volume distance of memory references
and the affinity of data groups. The first contains a reduction that
converts the problem of data volume into formal logic. The sec-
ond contains a construction that connects the recursive structure of
computation and the hierarchical relation of data.

In POPL 2002, Petrank and Rawitz showed a universal result—
finding optimal data placement is not only NP-hard but also im-
possible to approximate within a constant factor if P 6= NP . This
work shows a finer partition. On the one hand, good data placement
is possible because reference affinity exists in most programs. This
explains the effective heuristics developed by many earlier studies.
On the other hand, the optimal placement is still unreachable for ar-
bitrary access patterns. The paper shows a division between a few
solvable or approximable sub-cases and the general case governed
by the Petrank-Rawitz theorems.

2. Reference Affinity
An address trace or reference string is a sequence of accesses to a
set of data elements. If we assign a logical time to each access, the
address trace is a vector indexed by the logical time. We use letters
such as x, y, z to represent data elements, subscripted symbols such
as ax, a′

x to represent accesses to a particular data element x, and
the array index T [ax] to represent the logical time of the access ax

on a trace T . We use sequence and trace interchangeably.

DEFINITION 1. Volume distance. The volume distance between
two accesses, ax and ay , at times T [ax] and T [ay]) in a trace
T , is one less than the number of distinct data elements accessed

in times between (and including) T [ax] and T [ay]. We write it as
dis(ax, ay).

According to the definition, dis(ax, ax) = 0 and dis(ax, ay) =
dis(ay, ax). In addition, the triangle inequality holds—
dis(ax, ay) + dis(ay, az) ≥ dis(ax, az), because the cardinality
of the union of two sets is no greater than the sum of the cardinality
of each set. For example, in the trace abbbc, the volume distance
from the first a and to the last c is 2 and vice versa. The symmetry
is important because the closeness is the same no matter which
access happens first. Next we define the condition that a group of
data elements are accessed close together.

DEFINITION 2. Linked path. A linked path in a trace is param-
eterized by the volume distance k. There is a linked path from
ax to ay (x 6= y) if and only if there exist t accesses, ax1

,
ax2

, . . ., axt
, such that (1) dis(ax, ax1

) ≤ k∧ dis(ax1
, ax2

) ≤
k ∧ . . . ∧ dis(axt

, ay) ≤ k and (2) x1, x2, . . . , xt, x and y are
different (pairwise distinct) data elements.

In words, a linked path has a sequence of hops, each hop lands
on a different data element and has a volume distance no greater
than k. We call k the link length. We will later restrict the hops,
x1, x2, . . . , xt, to be members of some set S and say that there is a
k-linked path from ax to ay with respect to set S.

For example consider the first part of the trace in Figure 1(a),
wxwxuyz. The closeness between the first w and the last z is
defined by the linked path with a minimal k, which is the path that
jumps to the second x and then steps through each one in uyz. Each
hop has a volume distance of 1 so is the link length. If we restrict
the path to the set {w, x, y, z}, the link length becomes 2 since any
path has to jump over u.

DEFINITION 3. Reference affinity group. Given an address trace,
a set G of data elements is a reference affinity group (i.e. they have
the reference affinity) with the link length k if and only if

1. for any x ∈ G, all its accesses ax must have a linked path
from ax to some ay for each other member y ∈ G, that is,
there exist different elements x1, x2, . . . , xt ∈ G such that
dis(ax, ax1

) ≤ k∧dis(ax1
, ax2

) ≤ k∧. . .∧dis(axt
, ay) ≤ k

2. adding any other element to G will make Condition (1) impos-
sible to hold

Reference affinity is a communal bond. All members of an affin-
ity group must be accessed in the trace wherever one member is
accessed. Each access is linked to some access of every other mem-
ber in the group, and the linked path can go through only members
of the group. We can now explain the hierarchy in Figure 1 fully.
When k = ∞, any access in the trace is linked to any other access,
so all data belong to one group. When k = 0, no two accesses can
be linked, so each data element is a group. Now consider the group
{w, x, y, z}, which are access in both parts of the trace. Its link
length is 3 because in trace zyyzvxwxw, no linked path can wade
from the first z to an access of x without hopping through four dif-
ferent data elements around v. The path cannot land on the second
z because it starts from z. Neither can it land on v because it is not
a member of the group. When we reduce k, the group {w, x, y, z}
is partitioned into two sub-groups with closer affinity.

The initial purpose of this complex definition is for reference
affinity to give a unique and hierarchical partition of data, as shown
in the following three properties [44].

1. Unique partition Given an address trace and a fixed link length
k, the affinity groups form a unique partition of program data.



2. Hierarchical structure Given an address trace and two dis-
tances k and k′ (k < k′), the affinity groups at k form a finer
partition of the affinity groups at k′.

3. Bounded access range Given an address trace with an affinity
group G at the link length k, any time an element x of G is
accessed at ax, there exists a section of the trace that includes
ax and at least one access to all other members of G. The
volume distance between the two sides of the section is no
greater than 2k|G| + 1, where |G| is the number of elements
in the affinity group.

Having the definition of reference affinity, the problems of
checking and finding reference affinity groups can be formulated
as the following:

DEFINITION 4. Checking reference affinity groups Given an ad-
dress trace and k, check if a given group of data elements belongs
to the same reference affinity group with link length k.

DEFINITION 5. Finding reference affinity groups Given an ad-
dress trace and k, find all reference affinity groups with link length
k.

A related decision problem with checking reference affinity
groups is to test if two accesses is k-linked with each other:
DEFINITION 6. Given an address trace, a volume distance k ≥ 0
and two data accesses ax and ay , the Point-wise k-Linked Affinity
Problem (Pw-k -Aff , for short) is the problem of testing whether
ax and ay are k-linked in the trace.

3. Hardness of Finding Reference Affinity
The following theorems give the complexity of the linking, check-
ing, and finding problems for different k. We include the basic ideas
of the proofs and leave the full version in the appendix.

THEOREM 1. For each k ≥ 3, Pw-k -Aff is NP-complete.

We prove it by making a polynomial-time many-one reduction
from a variant of 3-SAT problem, where every variable appears at
most three times (an NP-complete problem, see, e.g., [31]) to the
linking problem. The proof constructs a three-part reference trace.
The first part forces a linked path to go through a set of elements
we call “separators”, which cannot be used as hops in the next
two parts. The second part prepares a set of data triples to model
the truth values of the logical variables in a 3-SAT expression.
Since two data elements may represent opposite values of a logical
variable, the construction ensures that the elements cannot be both
included in a possible linked path. A linked path can land on
different places and can even go backwards—the only constraint is
that the volume distance of the longest hop. The critical moment of
the construction is when the freedom of the linked path is contained
within seven cases, and each is shown to have the needed property.

The third part of the sequence models all 3-SAT expressions. A
linked path exists if and only if there is a truth value assignment to
satisfy all expressions. To design a trace that enforces the logical
consistency, we learned that we need to use multiple data accesses
to represent logical variables instead of using data to represent
them. The full proof is more than a page long and given in the
appendix. From Theorem 1, we can easily prove two corollaries.
COROLLARY 1. For k ≥ 3, the problem of checking reference
affinity groups is NP-complete.

COROLLARY 2. For k ≥ 3, the problem of finding reference affin-
ity groups is NP-hard.

THEOREM 2. Pw-2 -Aff is NL-complete.

Using the same polynomial-time reduction from Theorem 1, we
can show that 2 -CNF-SAT can be reduced to Pw-2 -Aff . The ex-
act proof is in the appendix. This theorem shows that a polynomial
algorithm exists for Pw-2 -Aff . Then we have the following result,
proved by the algorithm that follows.

THEOREM 3. For k = 2, the problem of finding reference affinity
groups is in P .

ALGORITHM 1. Finding reference affinity groups when k=2
procedure FindReferenceAffinityGroup 2(T)

1: {T is the trace, the link length k = 2}
2: initially no affinity groups
3: while there exist elements not yet grouped do
4: put all such elements into a set G and pick one x randomly

from this set;
5: repeat
6: if there is an element z not 2-linked to x with respect to

G then
7: remove z from G;
8: else
9: if there exist two elements y, z ∈ G such that an

access of y is not 2-linked to any access of z with
respect to G then

10: remove z from group G.
11: end if
12: end if
13: until G is unchanged
14: output reference affinity group G.
15: end while
endFindReferenceAffinityGroup 2

Algorithm 1 is polynomial time. From Theorem 2, the linking
problem, that is, testing whether a 2-linked path exists between two
data accesses, can be solved in polynomial time. This algorithm
needs a polynomial number of such tests. The algorithm gives cor-
rect reference affinity groups. First, it is easy to see that the groups
found by this algorithm satisfy the first condition of reference affin-
ity. To show every group is the largest possible, we show that the
algorithm removes z correctly, so that G still includes only the ref-
erence affinity group that x belongs to. Removing z at step 7 is
straightforward. The correctness of the removal of z at step 10 can
be proved by contradiction. Suppose z belongs to the same group
as x and should not be removed, we can construct a 2-linked path
from every access of y to an access of z. This contradicts with the
test at line 9. The full proof is given in the appendix.

From Theorem 3, we can get the following corollary.

COROLLARY 3. For k = 2, the problem of checking reference
affinity groups is in P .

The complexity for k = 1 is as follows.
THEOREM 4. Pw-1 -Aff can be solved in linear time.

THEOREM 5. For k = 1, there is a polynomial-time solution for
finding reference affinity groups.

Here we give a naive method. Since k = 1, all of the groups
appear in the sequence continuously, and two groups do not over-
lap. We sort the data elements according to their order of appear-
ance in the trace. Then for every t (from the number of data ele-
ments to 1) consecutive data elements starting from the first data
element, we check if it is a reference affinity group. Similarly, we
find other affinity groups. The algorithm is given in the appendix.
Finally, from Theorem 5, we have
COROLLARY 4. For k = 1, the problem of checking reference
affinity groups can be solved in polynomial time.



Compute(D1, D2, ..., Dn) begin
if the input data is above a threshold size

divide D1, D2, ..., Dn into sub-blocks
for some set of sub-block combinations

Compute(subblocki(D1), subblockj(D2),
..., subblockk(Dn))

end for
else process without sub-division

end if
end

Figure 2. The general form of the divide-and-conquer algorithm

4. Reference Affinity in Divide-and-Conquer
Computations

The divide-and-conquer type of computations we consider are
blocked and recursive algorithms for dense matrix operations, N-
body and mesh simulation, and wavelet transform. The general
form is given in Figure 2. The procedure takes a set of data such
as matrices. It then divides the input data into smaller blocks and
processes all or subsets of their combinations. For each subset, if
the blocks are still large, it makes a recursive call to itself. The
computation is hierarchical, so is its locality.

We show that reference affinity can reconstruct the hierarchical
data locality from an execution trace, if the following two require-
ments are met by the hierarchical computation. First, once a block
of Datai is accessed, all its sub-blocks are accessed before moving
to the next block of Datai. Second, the access order of sub-blocks
is the same for the same block. For example, consider the multi-
plication of two matrices A and B. The computation, if starting
from the left sub-matrix of A, must access all elements of the left
sub-matrix of A at least once before accessing any element from
the right sub-matrix of A. Still, it is free to access B or other data
at the same time. The traversal order within A is the same, for ex-
ample, Morton order. The traversal order in B can be different. In
addition, non-nesting blocks in the same matrix can have different
traversal orders.

We use N-body simulation as an example, which calculates
how particles interact and move in space. Most computation is
spent on computing the direct interaction between each particle and
its neighbors within a specific radius. The typical implementation
divides the space into basic units. For ease of presentation, we
assume each unit contains the same number of particles, and the
program computes the interaction between all unit pairs. Our main
result, Theorem 7, holds when units contain a different number of
particles, and when interactions are limited within a radius.

In the following analysis, we assume a one-dimensional space.
Higher dimensions can be linearized by using a space-fitting
curve [30]. For simplicity, we assume that the space has n = 2t

units, where integer t is non-negative. The N-body simulation trace
is then of size 22t+1. As an example, we give the trace that follows
the Morton space filling curve when computing the interactions
between all pairs of four molecule data, shown in Figure 3 (a). The
locality is in the recursive structure of computation. The data access
trace is given in Figure 3 (b). We show that reference affinity can
identify the locality structure by examining only the data access
trace.

We call each data a unit and divide units into sections. We call
the set of units i ∗m + 1 to i ∗m + m an m-section of data, where
m is a power of 2 and i is a non-negative integer. As the example
in Figure 3 (a) shows, the rows and columns of the matrix are data
units, and the Morton space filling curve gives the execution order.
The interaction between an m-section and another m-section is
computed at their product area in the graph, a block of size m by

m. We call it an m-block of computation. In a divide-and-conquer
computation, each m-block contains a contiguous sequence of the
computation trace.

We will prove the exact structure of the reference affinity hier-
archy for divide-and-conquer computations. As a shorter exercise,
we first show that the reference-affinity hierarchy has more than
a constant number of levels when the size of data n is arbitrarily
large.

THEOREM 6. For one-dimensional N-body simulation in the Mor-
ton order, the reference affinity has more than a constant number of
levels when n is arbitrarily large.

Proof Given a k that is a power of 2, we show that (a) every k
2

-
section of data belongs to a k-affinity group but (b) some m-section
of data does not all belong to a k-affinity group. We prove part (a)
first. Every use of a k

2
-section data is contained in a k

2
-block of

computation, which contains at most k distinct data. It is obvious
that a k-linked path exists from any access to any other access in
the k

2
-block, therefore a k

2
-section belongs to a k-affinity group.

We prove part(b) by contradiction. Suppose for any m, an m-
section of data belongs to a k-affinity group. We denote the first and
the last data elements of the m-section as d1 and dm. According to
the definition of reference affinity, there must be a k-linked path
from the first access of d1 to some access of dm, the path has at
most m − 1 links, and the volume distance of each link is no more
than k. The trace from the first access of d1 to the first access of dm

includes at least a m
2

-block, which has a length m2

4
. Hence the path

of m−1 links spans at least m2

4
data accesses, and there must exist

a link that spans at least m
4

accesses. However, when m is large
enough, it is impossible to bound the number of distinct data in m

4

contiguous accesses on the trace. The volume distance of the link
must be greater than k. A contradiction. Therefore, the reference-
affinity hierarchy has more than a constant number of levels when
n can be arbitrarily large.

Next we prove the exact structure of the reference affinity hier-
archy. First, we give a key lemma needed by the final theorem. We
call it the insertion lemma. It shows that the insertion of a new data
access converts a link of length k into two shorter links.

LEMMA 1. Insertion Lemma Given two different data elements u
and v; their accesses au and av where the volume distance from au

to av is exactly k; and a third access ax, which happens between
au and av in the trace; then there exists an access a′

x between au

and av such that the volume distance from au to a′
x and the volume

distance from a′
x to av are both less than k.

The insertion lemma states that a link from au to av of length k
can be divided into two shorter links. In particular, for any data
element x accessed along the path, there exists an access of x
such that it breaks the link into two shorter links. Not all accesses
to x can be the breaking point. The proof considers all possible
configurations of u, v, x, au, av and shows the placement of x in
each case. The proof is mechanical and long due to the number of
cases. We include a sketch of the proof in the appendix.

The following theorem gives the exact structure of the reference-
affinity hierarchy. It is the most important theoretical result, estab-
lishing the link between the linear, flexible concept of linked paths
in a computation trace and the hierarchical structure of locality in
space.

THEOREM 7. Given N-body simulation of 2s particles imple-
mented using the divide-and-conquer technique or a space-fitting
curve, the reference affinity hierarchy contains s + 1 levels, where
each 2i-section belongs to an i-level affinity group.

The proof is straightforward after proving the following lemma.
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(b) The trace of the access to data

Figure 3. An example 4-body simulation

LEMMA 2. Separation Lemma For any m-section, there exists a
k, such that the m-section is a k-affinity group, but the 2m-section
does not all belong to the k-affinity group.

Proof Let k be the smallest reuse distance such that the m-section
belongs to an affinity group. Without loss of generality, we assume
the m-section and 2m-section are the first such sections in the data
space, as shown in Figure 4(a). Suppose the 2m-section also be-
longs to the k-affinity group, we derive a contradiction by showing
that the m-section belongs to a k − 1-affinity group, for which it
suffices to show that there is a k−1-linked path from the first access
of 1 to the first access of m.

Because the 2m-section is in a k-affinity group, there is a k-
linked path from the first access of element 1 to some access of
element m + 1, as shown in Figure 4(a). The path is linked by at
most one access of elements 2 to m. Now consider the two m-
blocks of computation in the figure marked with U and V . They
divide the path into two parts. By adding an ending point at the first
access of m in the U block, and a starting point at the first access of
1 in the V block, we cut the k-linked path from 1 to m+1 into two
k-linked paths from an access of 1 to an access of m. The two paths
are shown at the bottom of Figure 4(a). The intermediate links in
the two paths are u1, . . . , us and v1, . . . , vt. We map the vi path in
the V block to the U block. We now have two k-linked paths from
the first access of 1 to the first accesses of m. The links are accesses
to different data elements.

We construct a k − 1 linked path from the first access of 1 to
the first access of m in U block in Figure 4(a). Consider each link
on the ui path, say from ui to ui+1. If the link length is not exactly
k, then we are done. If the length is k, and some vj happens in
between, then from the insertion lemma, the k-link can be divided
into two shorter links by moving vj . If no vj happens between
ui and ui+1, there must exist vj and vj+1 that include ui and
ui+1 in between. Since the volume distance from ui to ui+1 is
k, vj and vj+1 must appear between ui−1 and ui+2, forming the
sequence shown in Figure 4(c). If the volume distance from ui−1 to
vj is smaller than k, then using the insertion lemma, the link from
vj to ui+1 can be divided into two smaller links by moving ui,
and the link from ui+1 to ui+2 can be divided into two smaller
links by moving vj+1. Similarly we can construct smaller links
when the volume distance between vj+1 and ui+2 is less than k.
Otherwise, ui−1, ui, ui+1, ui+2, are exactly k-linked. We continue
to consider elements of vj−1, vj−2, . . . , v1 and vj+2, vj+3, . . . , vt

through similar steps. If we can not get a k − 1 linked path after
examining all elements, it means that the path 1, u1, · · · , us, m are
exactly k-linked. This is impossible, since the original linked path

m 2m 3m 4m1

m

2m

1 1

m+1

1    u1          u2    ...            us         m

1    v1           v2    ...            vt          m

1

mm

U V

(a) Given that a k-link path exists from
1 to m + 1, we want to show that a (k-
1)-link path exists from 1 to m. The k-
link path is broken into two and placed
in parallel at the bottom.

ui-1             vj             ui             ui+1           vj+1            ui+2     

If the top 3 are exactly k-linked

Then the bottom 2 are exactly k-linked

(b) When no links of length k can be broken into
smaller links, all links must have exactly the length
k, and the last link must be k+1, which contradicts
to the assumption.

Figure 4. An illustration for the proof of Separation Lemma

goes from the first access of 1 to an access of m + 1. The last link
connecting to the access of m + 1 must have a length greater than
k. A contradiction.

We make two observations. First, the proofs do not assume
what, when, and whether a section of data is used. It requires only
that a section is used together as a block. In N-body simulation, the
interactions are calculated within a radius. In this case, an affinity



group cannot cross the boundary of a radius. The proofs assume
the Morton order for the convenience of illustration, but it remains
valid as long as all data are traversed in some order. The order
may change when the same block is accessed at a different time.
Hence the theorems can be extended to general divide-and-conquer
algorithms. Second, the proofs are for the existence of k. The exact
size of the data sections may change the value of k but not the
existence of k. Therefore, the affinity hierarchy exists when data
sections are divided into non-uniform sections.

Given Theorem 1, a natural question is whether the reference
affinity in divide-and-conquer algorithms can be efficiently discov-
ered. While the answer requires a systematic study that is beyond
the scope of this paper, we note that our initial experiments in Sec-
tion 6 show good results for recursive matrix multiplication. One
reason is that in divide-and-conquer algorithms, the elements of
the same affinity group are accessed in a similar order, while the
reduction in the NP-complete proof requires data be accessed in all
possible orders.

5. Affinity Analysis Through Sampling
Given a trace, an affinity group G, and x, y ∈ G, if there is a
window of the trace covering at least an access for ax and an access
for ay , and the length of the section is no greater than k(|G|−1)+1,
then we call it a witness window for x and y. We consider that
affinity holds for ax and ay if there a witness window 1.

A sampling window of size w is a window of the trace where
the volume distance between the two boundaries is w. We estimate
affinity groups by finding elements that are frequently accessed
together in sampling windows.

The sampling method is given by Algorithm 5. It first estimates
the upper bound for the size of affinity groups. Suppose it is g.
The size of the sampling window is set accordingly to l = 2gk.
For a pair of data elements, x, y, the sampling method measures
the affinity by what percent of the sampling windows have both x
and y. Since they may appear in a different number of windows,
the smaller number is used as the denominator. If the value is
bigger than some threshold θ′, then we consider x and y have
affinity. The pairwise relation is extended into a group relation by
taking the transitive closure. To reduce the number of data elements
considered in the analysis, we may exclude infrequently accessed
data element, i.e. the number of appearances fewer than ε, in a
similar fashion as association rule mining [21].

ALGORITHM 2. Sampling method for reference affinity analysis
Input: A trace; window size w; sample rate δ; threshold ε;

Affinity threshold θ.
Output: the reference affinity groups.
Method:

Let S be the number of sampled windows every single data
element appears;
Let P be the number of sampled windows where each pair of
data elements appear;
Sample windows of size w from the given trace, according to the
sampling rate δ.
for each window do

for each distinct data element x do
increase S[x] by 1.

end for
for every distinct pair of data element x, y do

Increase P [x, y] by 1
end for

end for

1 This is an approximation because the bounded appearance is a necessary
but not sufficient condition for reference affinity.

Ignore those data elements x with S[x] < ε.
Construct a graph with the data elements not ignored as vertices.
for two vertices x, y do

if (confidence(x, y) = P [x, y]/min(S[x], S[y])) > θ
then

Add an edge between x and y
end if

end for
Output every connected subgraph as a group.

Suppose M is the number of distinct data elements, L be
the length of the trace. The time complexity of this algorithm is
O(Lδw2). The space complexity is O(M 2).

THEOREM 8. For any data element x in the reference affinity
group, there exists a y in the same group and their expected confi-
dence (defined in the algorithm 2) is greater than 1

2
.

Proof Suppose the upper bound for the affinity group size is g.
Consider reference affinity group G. Clearly, |G| ≤ g . For any
data access to x ∈ G, from the definition of reference affinity, we
can find an access to y ∈ G, where their volume distance is within
k(|G|−1)+1. The sample size is 2kg . Hence the sampling window
has

1 −
k(|G| − 1) + 1 − 1

2kg
≥ 1 −

k|G|

2kg
≥ 1 −

kg

2kg
=

1

2

probability of covering x and y, given it covers x.
Since the windows are sampled independent of x and y, the

confidence value for x and y is at least 1

2

By Theorem 8, we know that if we set the threshold θ to be 1

2
,

we can ensure the data elements in the same group remain in the
same group found by Algorithm 2. Notice that in the algorithm, the
window size, instead of the confidence threshold, is dependent of
the reuse distance k.

The previous algorithm finds one level of reference affinity.
For practice use, we can vary the sampling window size w in a
logarithmic scale to find affinity groups at different levels.

Pairwise affinity has been used to reduce cache conflicts for
code and data. Thabit [38] modeled the pairwise affinity of arrays
in a proximity graph and showed that optimal packing is NP-
hard. Gloy and Smith [19] studied procedure placement and used
profiling to find the frequency a pair of procedures are called within
a distance smaller than the cache size 2. Similar profiling methods
are used for placing dynamic program data by Calder et al. [5] and
Chilimibi et al [9].

The goal of the sampling method is to find reference affinity
rather than to minimize cache conflicts. It is unique in at least three
aspects. First, the pairwise frequency is the percentage of accesses.
Consider the access sequence abcabc..abc. The percentage weight
between all three data is 100%, so they belong to an affinity group.
Now consider the sequence abab..ab ... bcbc..bc ... acac..ac. The
percentage frequency is no more than 0.5 on average, so they do
not have affinity, despite that access frequency of data pairs can be
arbitrarily high. Petrank and Rawitz showed that for any placement
method, a trace exists that has the same pairwise frequency but the
data layout given by the method is at least a factor of k − 3 away
from the optimal layout, where k is the cache size. The sampling
method alleviates this problem to a degree because the high per-
centage from the first example implies the affinity pattern in the ac-
cess sequence, while the frequency from the second example does
not contain enough information to ensure a good data layout. This
shows the gist of the theory of reference affinity—it identifies a

2 If a procedure p is called and the reuse distance after the previous call p′

is no greater than twice of the cache size, the frequency is incremented for
all pairs between p and all procedures called between p and p′.



specific access pattern and provides a better solution to the limited
problem.

Two other differences are also significant. The size of the sam-
pling window is proportional to the group size rather than the cache
size. Since the useful group size is the size of cache blocks, it is
much smaller than the cache size, and the smaller window allows
more efficient analysis and in turn larger traces and finer granular-
ity. Finally, the data transformation is simple, which is to group
members of the same affinity group. It is no problem if group
members have different sizes. In contrast, previous methods solve
weighted data packing problems and must reconcile between differ-
ent size data. The difference is due to the fact that reference affin-
ity is transitive but the pairwise frequency is not. The placement
between affinity groups is still a problem of packing, and the gen-
eral complexity is given by Petrank and Rawitz. Still, the solution
within an affinity group is clear.

As a heuristic, the sampling method is not accurate for several
reasons. First, it may miss an affinity group when not enough
witness widows are sampled. Second, it may find false groups
that are not accessed together as often as they do in sampling
windows. While in general one cannot guarantee without a priori
knowledge about the distribution of data accesses in a trace, we can
use a higher sampling rate to improve the statistical coverage and
accuracy. In fact, we can sample every window in profiling analysis.
Finally, it needs an upper bound for the group size. This prevents
the method from finding large affinity groups. However, if we target
specific hardware, the size of the storage unit, for example, the size
of cache blocks, can be used as the upper bound for the group size.

6. Evaluations of The Sampling Method
6.1 Comparisons with K-distance Analysis

We first review the k-distance analysis based on reuse signa-
ture [44]. K-distance analysis targets only groups of data that are
always accessed together. It first measures the reuse signature of ev-
ery data element, which is the histogram of the reuse distance of all
accesses of the element. Then it computes the Manhattan distance
between the reuse signature of every data pair x, y as follows.

d =
B

X

i=1

|Avgx
i − Avgy

i | (1)

where Avgx
i is the average distance for bin i, B is the number of

bins considered. If their access pattern is near identical, |Avgx
i −

Avgy
i | is smaller than k in every bin. Hence if d ≤ k ∗B, then x, y

are in the same affinity group.
K-distance builds the affinity hierarchy incrementally. Initially

every data element is a group. Then it merges two groups if the
distance between a member in one group and a member in the other
group is the smallest among all cross-group distances.

Compared with the sampling method, k-distance tends to cluster
irrelevant data elements into one group, especially for those single
data elements which occur randomly. The second problem is that
the vector may not be the same for data elements in the same strict
reference affinity group because of the partition boundaries when
collecting the histogram. Finally, it does not work well for partial
reference affinity where groups of data are often but not always
accessed together. Their reuse signatures may differ by an average
of more than k.

We first compare the two methods using generated traces. A di-
rect measure is the number of perfect matches between the affinity
groups we use to generate the trace and the affinity groups found
by an analysis method. We call it the match rate of the analysis.
A more complex metric, accuracy, measures the quality of im-
perfect matches. Let an affinity group G be separated into pieces

P ′
1, P

′
2, . . . , P

′
n and scattered into groups G′

1, G
′
2, . . . , G

′
n found

by an analysis method. We define the accuracy for this affinity
group as

accuracy(G) =

Pn

i=1

|P ′

i
|

|G′

i
|

n2
.

The more pieces a group is separated into, the lower the accuracy
is. Same is true when a small group is clustered into a bigger group.
We use n2 instead of n as the denominator. Consider the following
situation: if G is scattered into exactly |G| trivial groups, then the
accuracy would be 1 if we used n as the denominator. The overall
accuracy is the average accuracy of all affinity groups. We use both
the match rate and the accuracy in the following comparison. When
the affinity groups are correctly recognized, both the match rate and
the accuracy are 1. Otherwise the accuracy is in general higher than
the match rate because the former includes partially recognized
groups.

The results presented here are an average of simulating 20
traces. The variances of the accuracy and the miss rate are very
small and we don’t report them here. The size of the trace is
200,000 by default or a length in which every affinity group occurs
roughly 400 times. In every figure except Figure 7, the link length
k is set to 1, which is the best case for k-distance analysis. Fig-
ure 7 will show that when k increases, the accuracy of k-distance
drops much faster than the sampling method does. For every exper-
iment, the sample rate is set to be 0.001. For lack of space, we omit
parameters of the trace generation that are not essential to the pre-
sentation. A more detailed description can be found in a technical
report [42].

We first compare sampling and k-distance analysis on 50 groups
whose members are often but not always accessed together. The
frequency of the affinity is the weakness. A weakness of 0.7 means
that when one member is accessed, 70% of other members will be
accessed. Figure 5 shows that when the weakness is 0.5, the match
rate and the accuracy are over 96% for the sampling method but
below 73% for k-distance analysis (the accuracy is under 65%).
As the weakness changes from 0.5 to 1, both methods improve.
The match rate and accuracy are close to perfect for the sampling
method but still below 86% for k-distance analysis.
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Figure 5. Comparison of performance when groups of data are
often but not always accessed together

Figure 6 shows the comparison when the number of affinity
groups varies. For strict affinity groups (weakness is 1), when the
number of groups change from five to fifty, the match rate and the



accuracy are stable (around 85%) for the sampling method but drop
significantly for k-distance, from 86% to 67% for the match rate
and from 78% to 50% for the accuracy. The match rate of the
sampling method is not only much higher but also much closer
to the accuracy, compared with k-distance. The upper two curves
differ by no more than 5%, showing that most affinity groups are
detected in whole by the sampling method.
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Figure 6. Comparison of performance when the number of affinity
groups varies

We now compare the effect of k, which is the closeness between
accesses to data of the same affinity group. As k increases, the
complexity of finding affinity groups increases, from polynomial
time to NP-hard as shown in theory in earlier sections. Figures 7
shows the result for 200 strict affinity groups. The match rate of the
sampling method is perfect when k is 1 and 2 and drops to around
80% when k increases from 3 to 10. K-distance analysis has much
worse performance from the beginning (around 85%) followed by
a steep drop (to below 20%). The sampling method detects most
affinity groups in whole but k-distance does not.
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Figure 7. Comparison of performance when k (the closeness) of
the affinity group varies

Last we test different sizes of the sampling window using affin-
ity groups of size 20. Figure 8 shows that the performance is best
when the window size is 20, comparable to kg, where k = 1 and

g = 20. Since accesses are randomly scattered, the average dis-
tance is about half of kg. Thus using only kg, we can get enough
confidence. The performance varies by less than 2% for window
sizes between 10 and 30 and less than 8% between 5 and 50. The
match rate and the accuracy are always higher than 92%. There-
fore, the sampling method tolerates a wide range of window sizes
when targeting groups of specific sizes.
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Figure 8. The performance of the sampling method for different
window sizes

The two methods can be combined. We first run K-distance
analysis to find approximate affinity groups, estimate the size of
the affinity groups, and then use the sampling method to refine
and improve the results. The estimate from K-distance analysis
also reduces the memory requirement of the analysis. We have
left out results from other experiments based on generated traces
because of the limited space. In all cases, the sampling method
gives efficient and accurate analysis for a wide range of affinity
groups. Next we look at real program traces.

6.2 Recursive Matrix Multiplication

We test affinity analysis on recursive matrix multiplication. Given
two square matrices, each has 256 elements (16*16), the program
recursively divides the matrices into four parts and calculates their
product. The length of data access trace is 12288 (3 ∗ 163). Ac-
cording to Theorem 7, there are five levels of reference affinity in
16*16, 8*8, 4*4, 2*2, and 1*1 sub-matrices. When we set the sam-
pling window to be volume distance 12 and the affinity threshold
to be 0.6, the sampling method correctly identifies affinity groups
in 2*2 blocks. Figure 9 shows one of the input matrix, with affinity
groups drawn in different shades of gray. Figure 10 shows that k-
distance analysis identifies half of the 2*2 blocks but groups others
into 4*4 blocks, which is not as accurate as the sampling method.

This is a simple experiment, but it demonstrates that sampling
analysis can uncover the high-level locality structure despite that it
examines only the data access trace of the complex computation,
and that the general problem is NP-hard.

The affinity analysis can be used in a profiling tool for a user
to see the locality structure in program data. Some of the data
transformations can be automated, for example, structure splitting
and array regrouping. Some cannot, for example, the recursive
data layout in complex computations, so user support is currently
needed. It may be possible for dynamic data transformation. A
program can often analyzes its run-time data access and reorganizes
the data for better locality, as demonstrated by many studies for
array data in scientific programs or objects managed by a garbage
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Figure 9. All 2*2 affinity groups are identified by the sampling
method
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Figure 10. Half of the 2*2 affinity groups are identified by k-
distance analysis

collector. Reference affinity should be profitable if its analysis can
be made efficient enough.

6.3 Affinity-based Code Layout

We use profiling to collect the trace of basic block references,
apply reference affinity analysis, and then reorganize code layout
by placing basic blocks of the same group sequentially in memory.
The sim-cache module of SimpleScalar is modified to simulate the
instruction cache and measure the cache miss rate. We compare
these affinity groups with the original code layout and the code
regions formed by checking transition frequencies between basic
blocks [22], a common method in profiling-based code layout. For
lack of space, we briefly describe only the main setup and the result.
The purpose is to demonstrate the applicability of reference affinity
and the sampling method. We do not intend in this work to design
a complete compiler technique nor evaluate it against the existing
literature.

We test seven integer programs from SPEC 2000 3. We use com-
plete traces, which contain up to one billion basic blocks and 10 bil-
lion references. K-distance method is based on the reuse signature

3 Bzip2, Crafty, Gap, Mcf, Perlbmk, Twolf, and Vpr

from long-distance reuses, so it ignores many basic blocks, which
are only accessed once with a short reuse distance. It suffers more
from false positives because the reuse signature lacks the timing in-
formation. In experiments, k-distance tends to produce one or two
very large groups, containing up to 50% of all basic blocks. The
sampling method overcomes these drawbacks. For complete cover-
age in profiling, the sampling rate is 100%. The exact comparison
depends on the thresholds and parameters for both sampling and
the frequency-based method. A detailed comparison is too long to
include. However, the best affinity-based layout always has better
locality than the best frequency-based layout, as shown in Figure 11
for two different cache configurations. Compared with the unopti-
mized code layout on 8KB direct-mapped cache, the affinity-based
layout reduces the cache miss rate for six of the seven programs
by up to a factor of more than 3. When 16KB 2-way set associative
cache is used, the miss rate of the three of the seven programs drops
to near zero. The affinity-based layout improves the locality in all
other four programs. The largest relative improvement is on Twolf,
a circuit placement and global routing program using simulated an-
nealing. The miss rate drops from 0.4% by more than a factor of 10
by the affinity-based layout. In comparison, the frequency-based
layout reduces the miss rate by a factor of about 2.

7. Related Work
Thabit showed that data packing for a given block size using pair-
wise frequency is NP-hard [38]. Kennedy and Kremer gave a gen-
eral model that includes run-time data transformation (among other
techniques) and showed that the problem is NP-hard [23]. Pe-
trank and Rawitz showed the strongest theoretical result to date—if
P 6= NP , no polynomial time method can guarantee a data layout
whose number of cache misses is within O(n1−ε) of that of the
optimal data layout, where n is the length of the trace. In addition,
if only pair-wise information is used, no algorithm can guarantee a
data layout whose number of cache misses is within O(k − 3) of
that of the optimal data layout, where k is the size of cache. The
results hold even when the computation sequence is completely
known, objects have the same size, and the cache is set associa-
tive [32]. These general results, however, do not preclude effective
optimization targeting specific (rather than all) data access patterns.
In fact, one can easily construct traces for which it is trivial to find
the optimal data layout.

Zhong et al. defined reference affinity and used a heuristic called
k-distance analysis in structure splitting and array regrouping [44].
The earlier work does not give the computational complexity of
reference affinity, nor is it used in hierarchical data placement. In
addition, as shown in Section 6, k-distance analysis does not work
well for partial reference affinity.

Hierarchical data layout is first used for matrix multiplication
and QR factorization by Frens and Wise [16, 17], Cholesky fac-
torization (based on data shackling [25]) and wavelet transform by
Chatterjee et al. [7], and N-body and mesh simulation by Mellor-
Crummey et al [30]. We show that reference affinity can help a
programmer to analyze data locality in these and other programs
(without knowing the structure of the computation).

Bender et al. used the recursive van Emde Boas layout for
dynamic search trees and proved the asymptotic optimality if the
input consists of random searches [3]. Reference affinity cannot
yet give the van Emde Boas layout because the affinity hierarchy
is flat (two levels) for any constant k. The extension for variable-
distance affinity groups is a subject of future work. On the other
hand, if the input is not random search and has reference affinity,
for example, a group of tree nodes are often searched together, then
reference affinity is directly applicable and in principle may yield
better locality than the van Emde Boas layout does.
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Figure 11. Comparison of cache performance of the original and the best of frequency- and affinity-based code layout for seven SPEC2K
integer benchmarks

Wolf and Lam [40] and McKinley et al. [29] used compiler
analysis to identify groups of memory references in loop nests.
Our work is related to trace-based pairwise affinity models, as dis-
cussed in Section 5. Hang and Tseng used pairwise (connection)
models for scientific data and found that hierarchical clustering was
more cost-effective than general graph partitioning [20]. Chilimbi
defined hot data streams, which are sequences of repeated data ac-
cesses and are not limited by pairwise affinity [8]. When a pro-
gram has good computation locality, simple data packing (first-
touch ordering) improves the data layout, as shown by several stud-
ies [12, 30, 36, 39]. Recently, Strout and Hovland introduced mod-
els based on hyper-graphs [37]. Most of these techniques are in-
tended for on-line adaptation and do not model hierarchical local-
ity.

Earlier studies have established the locality upper bound (the
best possible locality) for specific computing problems. Hong and
Kung used a graph model to prove the tight lower bound of I/O for
FFT, matrix multiply, and sorting. Aggarwal et al. gave a hierarchi-
cal memory model (HMM), where the cost for access location x
was dlog xe [1]. They showed that the maximal slowdown factor
(O(log n)) could be avoided for some computations (FFT, matrix
multiply, and sorting) but not for others (list search and circuit sim-
ulation). They also studied other convex cost functions. Alpern et
al. extended the hierarchical model with explicit transfer cost and
gave a set of threshold functions when computations (FFT, matrix
multiply, matrix transpose, and parallel matrix multiply) became
communication bound [2]. Frigo et al. refined the cache model to
consider cache size Z and block size L. They gave recursive al-
gorithms that yielded the best asymptotic locality for FFT, matrix
multiply, and sorting for any Z and L (Z = Ω(L2)) [18]. The al-
gorithms are cache oblivious because they do not depend on Z and
L. Yi et al. showed that a compiler can automatically convert loops
into recursive subroutines to exploit hierarchical locality [41].

The ordering of general computations has been studied as a
clustering problem in loop fusion and computation regrouping.
Kennedy and McKinley [24] showed that fusion for locality was
NP-hard because it could be reduced to the problem of k-way
cut [10]. Ding and Kennedy proved a similar result for a refined
model, where hyper graphs were used to represent data reuses
among multiple computations [13]. Darte gave complexity results
for a larger class of fusion problems [11]. These results suggest
that efficient, hierarchical models are unlikely for general-purpose
computations.

In 1970, Mattson et al. first defined reuse distance (named LRU-
stack distance) [28]. The distribution of all reuse distances (which
we call the reuse signature) gives the temporal locality of an execu-
tion. Snir and Yu recently disproved the possibility of a more com-
pact metric by showing that temporal locality could not be char-
acterized by one or few parameters [35]. Indeed, reuse signature
has been widely used in virtual memory and cache design. Build-
ing on decades of development by others, our earlier work reduced
the measurement cost to near linear time [14] and used reuse dis-
tance patterns for program locality prediction [33, 43], data struc-
ture transformation [44], and locality phase prediction [34]. Reuse-
distance based models are found useful for program analysis by
an increasing number of studies (three appeared in 2005), includ-
ing cache miss rate prediction across inputs by Marin and Mellor-
Crummey [26, 27], per-reference miss rate prediction by Fang et
al. [15] and Beyls and D’Hollander [4], and cache interference
prediction for parallel processes by Chandra et al [6]. This paper
presents a formal theory for reuse distance. The proof for Theo-
rem 1 gives a reduction between reuse distance and formal logic.
The proof of Theorem 7 connects the structure in computation with
the locality in data. These formal connections serve as a theoret-
ical basis for current and future reuse-distance based models and
techniques.

8. Summary
In this paper we have given a complete characterization of the com-
plexity of reference affinity. We have proved that when k = 1 or
k = 2, finding reference affinity grooups can be done within poly-
nomial time and when k = 3, finding reference affinity groups is
a NP-hard problem. We have extended the hierarchical locality to
divide-and-conquer computations such as matrix solvers, factoriza-
tion, wavelet transform, N-body and mesh simulation, where the
results confirms the previous empirical solutions. The theoretical
results have established formal links between the computation, the
data reuse, and the locality. In practical use side, We don’t know
a real use for cases k = 1 or k = 2. The hardness of finding
the reference affinity groups when k > 2 implies that it is hard to
find any polynomial algorithms. Instead, we have presented a sam-
pling method and shown through experiments that it is more accu-
rate than the previously published technique, especially for groups
greater in number and complexity and weaker in their affinity. We
have shown two new uses of reference affinity. The first is finding



hierarchical data layout in a recursive program, and the second is
improving the code layout of seven SPEC 2K applications.

In POPL 2002, Petrank and Rawitz precisely characterized the
theoretical difficulty of the general data placement. Reference affin-
ity side steps this limitation by targeting a common pattern rather
than all patterns of data access. Since the volume distance is widely
used in experimental algorithms, the theoretical findings in this pa-
per may help the development of other distance-based locality the-
ories.

A. Proofs

Theorem 1 For each k ≥ 3, Pw-k -Aff is NP-complete.

Proof It is obvious that the problem is in NP. We will prove its NP-
hardness by constructing a polynomial-time many-one reduction
to Pw-k -Aff from 3-SAT, which is the problem of testing, given
a formula of conjunctive normal form in which each clause has
at most 3 literals, whether the formula is satisfiable. We consider
the variant of this problem in which each variable appears as a
literal (positively or negatively) at most three times. This problem
is also known to be NP-complete (see, e.g., [31]). Without loss of
generality, we can assume that all variables appear both positively
and negatively in the formula. If a variable appears only positively
(respectively, negatively) then we can create a simpler, equivalent
formula by setting the value of the variable to true (respectively,
false).

Let ϕ be a CNF formula of N variables and M clauses in which
each clause has at most 3 literals and each variable appears at most
three times. Let x1, . . . , xN be the variables of ϕ and C1, . . . , CM

be the clauses of ϕ.
Let λin and λout be two distinct labels. We will define a se-

quence T whose first label is λin and whose last label is λout. λout

appears nowhere else in the sequence. We will consider the prob-
lem of creating a k-linked path between the two. The sequence is
of the form

λinΣΓ1 · · ·ΓNΘ1 · · ·ΘMλout.

The sequence Σ is the k repetitions of ν1 · · · νk separated by
k− 1 λin’s. where ν1, . . . , νk are k pairwise distinct labels. Recall
that for a pair of positions to be k-linked there must be a set of
intermediate points with pairwise distinct labels in which the reuse
distance between each neighboring intermediate points is at most k.
To create such a path between our two end points, the subsequence
Σ must be traversed without visiting a same label more than once so
that the distance between the two neighboring visited points have
reuse distance at most k. The only way to construct such a path is
to visit every (k+1)st element of Σ besides the first λin, exiting at
the first element after Σ. This path visits ν1, . . . , νk exactly once.
This means that any k-link path between our two endpoints should
not visit any one of ν1, . . . , νk+1 again.

For each xi appeared in the formula, 1 ≤ i ≤ N , Γi if of form
αi,1γi,1γi,2γi,3ν1 · · · νk−2γi,1αi,2ν1 · · · νk−1.

The α’s here appear nowhere else in the sequence. Each γ appears
at most once elsewhere. If it does indeed, it appears in one of the
Θ’s. Suppose that a k-linked path between the two endpoints lands
on αi,1. Then the path can only be threaded in Γi using one of the
following paths:
1. [γi,3, αi,2],
2. [γi,3, γi,1, αi,2],
3. [γi,2, γi,3, αi,2],
4. [γi,2, γi,3, γi,1, αi,2],
5. [γi,2, γi,1, αi,2],

6. [γi,1, γi,2, γi,3, αi,2], and
7. [γi,1, γi,3, αi,2].

Consider the set of all γ’s that has not been visited yet. The set is
1. {γi,1, γi,2},
2. {γi,2},
3. {γi,1},
4. ∅,
5. {γi,3},
6. ∅,
7. {γi,2}.

Two crucial observations here are that (a) there is no set that
contains γi,3 and one extra element and (b) that the first set has both
γi,1 and γi,2. Suppose that xi appears three times in the formula,
twice as xi and once as xi. Then we use γi,1 to denote the first
occurrence of xi, γi,2 to denote the second occurrence of xi, and
γi,3 to denote xi. In the case when xi appears twice and xi appears
once, we use γi,1 to denote the first occurrence of xi, γi,2 to denote
the second occurrence of xi, and γi,3 to denote xi. In the case when
both xi and xi appear only once, we use γi,1 to denote the unique
occurrence of xi and γi,3 to denote the unique occurrence of xi.
Note that all of these possible paths must land the first element
after Γi.

For each i, 1 ≤ i ≤ M , such that Ci has exactly two literals,
Θi is of the form

βi,1θi,1θi,2ν3 · · · νk.βi,2ν2 · · · νk,

and for each i, 1 ≤ i ≤ M , such that Ci has exactly three literals,
we construct Θi as

βi,1θi,1θi,2θi,3ν4 · · · νk.βi,2ν2 · · · νk,

where θi,l is the lth literal of Ci. Note here that the literals in the
clause are replaced using γ’s in the sequence according to the rules
in the construction of Γ’s. Suppose that the k-linked path between
our two endpoints land on βi,1. Since there are k labels between
βi,1 and βi,2 and none of the ν’s can be visited again, the k-linked
path can only be extended if one of the θ literals is visited. The
segment after βi,2 forces the path to land on the element right after
Θi.

we can see that Σ is of length k(k + 1) − 1, for each i,
1 ≤ i ≤ N , Γi has length 2k + 3, and for each i, 1 ≤ i ≤ M , Θi

has length 2k + 1. So, the total length of the sequence, including
the two endpoints, is

2 + k(k + 1) − 1 + N(2k + 3) + M(2k + 1),

which is equal to k(2N + 2M + k + 1) + 3N + M + 1, which
is polynomial of the size of the CNF formula. So the construction
can be done in polynomial time.

We view the literals that are visited in Θi as those satisfied
by the assignment represented by the path. For such a path to be
valid, the selections in the Θ sections have to be made so that the
literals satisfying the clauses are still available. Suppose that ϕ is
satisfiable. Let A be a satisfying assignment of ϕ. Construct the
path within Θ’s so that the those that are visited are precisely those
that are satisfied by A. Then it is possible to select the paths in
Γ so that none of those visited in Θ are visited in Γ. So, the two
endpoints are k-lined.

On the other hand, suppose that ϕ is not satisfiable. Take any
potentially k-linked path π in the Θ’s. There exist at least one vari-
able, xi for which both one occurrence of xi and one occurrence of
xi is selected. Then it is not possible to construct a k-linked path
within Γi, so there is no k-linked path between the two endpoints.



We note here that the set of labels, Λ, which is the part of the
instance is the set of all labels that we’ve defined. By now, we have
constructed a polynomial-time many-one reduction from 3-SAT to
Pw-k -Aff . Since Pw-k -Aff apparently belongs to NP, we prove
that Pw-k -Aff is a NP-complete problem.

Corollary 1 For k ≥ 3, the problem of checking reference
affinity groups is NP-complete.

Proof Suppose the group of data elements is G. First, let’s show
that this problem belongs to NP. This can be done by first guessing
the possible supersets of G, say G′. For every two different data
elements x, y ∈ G′, for every ax, we guess it can be connected to
the nearest ay located left-side or right-side, and then we guess a
link-path between them and then verify if this is a link path of link-
length k. If it is, then continue to check other ax’s and then other
pairs of data elements. But if not, it will just refuse to accept. We
can check for all of the pairs and all accesses of x in a sequential
way. If every pairs and every accesses are checked to be linked
successfully, then accept.

By the definition of reference affinity group, for any x, y ∈ G,
for all ax, we need to check if there exists an ay , such that ax and
ay are k-linked. The only way is to check if there is a k-linked
path from ax to the left-side or right-side nearest ay . So we can see
that if there is a polynomial-time algorithm for checking reference
affinity problem, then there is a polynomial-time algorithm for
Pw-k -Aff problem. Thus we have proved that for k ≥ 3,checking
reference affinity group problem is NP-complete problem.

Corollary 2 For k ≥ 3, the problem of finding reference
affinity groups is NP-hard.

Proof The proof is quite straightforward. If there is a polynomial-
time solution that can find out the reference affinity groups, then
we can solve the problem of checking reference affinity groups in
polynomial time. This contradicts with Corollary 1.

Theorem 2 For k = 2, Pw-k -Aff is NL-complete.

Proof 2 -CNF-SAT is the problem of testing whether a given
conjunctive normal form formula with two literals per clause is
satisfiable. This problem is the standard NL-complete problem. By
following the proof of Theorem 1 with k = 2, we can show that
the 2 -CNF-SAT is reducible to Pw-k -Aff for k = 2.

To prove that PWkAff belongs to NL for k = 2, suppose
that a set of labels Λ, a sequence Σ = {σi}

M
i≥1 over Λ, an integer

k ≥ 0, and two integers I and J , 1 ≤ I ≤ J ≤ M are given as
an instance to the problem. We wish to test whether I and J are
k-linked.

Since the elements before the Ith entry and those after the J th

are irrelevant to the problem at hand, we may assume, Without loss
of generality, that I = 1 and J = M . Also, if the ith entry and the
(i + 1)st entry are the same, at most one of the two can be visited,
and if one is visited at all which one doesn’t matter. So, one of them
can be safely removed. This means that, for all i, 2 ≤ i ≤ M − 2,
σi 6= σi+1.

For each i, 2 ≤ i ≤ M −1, let yi be the variable that represents
whether the ith element is visited. We construct a formula ϕ by
joining the following size-two clauses:
• for each i, 2 ≤ i ≤ M − 2, (yi ∨ yi+1), and
• for all ρ ∈ Σ and for all i and j such that 2 ≤ i < j ≤ M − 1

and σi = σj = ρ, (yi ∨ yj).
Suppose that this formula is satisfiable. Let A be a satisfying
assignment of the formula. Then A clearly defines a k-linked path,
since only those belonging to Σ are visited, no element in Σ is
visited more than once, and there is at most one entry between any

two neighbors on the path. Similarly, if there is a k-linked path, then
by setting the truth value of each variable according to whether the
node is included in the path, we can satisfy the formula. So, the
satisfiability of the formula is equivalent to the existence of a k-
linked path.

Theorem 3 For k = 2, the problem of finding reference
affinity groups is in P .

Algorithm 1 can be found in Section 3. Here we present the
detailed proof.
Proof First let us show this is a polynomial-time algorithm. By
Theorem 2, we need polynomial time to test whether two data
accesses are 2-linked. Hence, testing if two data elements is 2-
linked with respect to a given group can be done in polynomial
time. Constructing the graph G needs only polynomial time. For
the reference affinity group that x belongs to, we remove at most
m data elements from the group, where m is the number of data
elements in the trace. There are at most m reference affinity groups.
Therefore, the algorithm takes polynomial time.

Next we prove the correctness. First, it is easy to see that the
groups found by this algorithm satisfy the first condition of refer-
ence affinity. Second, let us show every group is the maximal size
possible. We show that the algorithm removes z correctly. Remov-
ing z at step 7 is straightforward. The correctness of the removal of
z at step 10 can be proved by contradiction. Suppose z and x be-
long to the same group G1. We have y /∈ G1. From the algorithm,
an access ay cannot be 2-linked to any access of z. Since x and y
are 2-linked, there are some accesses of x that is 2-linked to ay . We
pick the nearest one as ax. Without loss of generality, we assume
ax appears at the right side of ay . Similarly, we choose az , which
is 2-linked to and nearest to the ax. This az can not appear on the
left side of ax. Otherwise, we have two cases. First, if az appears
between ay and ax, then the path from ay to ax must pass the very
data element at the right side of az , since k = 2. Then the ay can
be 2-linked to this az by replacing the very data element with az ,
which is a contradiction. Second, if az appears on the left side of
ay , since x and z are in the same group, a path exists from ax to az

without passing ay . This path must land on the very data element
at the right side of ay , since k = 2. Then we can replace the very
data element with ay and get a new path from ay to az , which is
also a contradiction.

Now let’s select the leftmost data element in G1 that appears on
the section of trace between the ay and az . Suppose it is al. This is
shown in Sequence (2).

...y...l...x...z... (2)
We first show that a path exists from ay to al with respect to

(G − G1)
S

{l}. Since ay is 2-linked to ax with respect to group
G, there is a path π connecting them. If π does not pass al, it must
pass the very data element at the left side of al, since k = 2. A new
path π1can be generated from ay to al by first reaching the very
data element and then one step further to al. If π passes al, then we
pick the segment from ay to al as π1. All of the data elements on
the path π1 is in G − G1 except for l.

Since l is in the same group with z, there is a path π2 from al to
az with respect to G1. We get a new path π′ by merging paths π1

and π2. Now π′ is a 2-linked path without duplicated data elements
from ay to az , which is a contradiction with step 9.

Theorem 5 For k = 1, there is a polynomial-time solution for
finding reference affinity groups.

ALGORITHM 3. Finding reference affinity groups when k=1
procedure FindReferenceAffinityGroup 1(T)

1: {T is the trace, k = 1}



2: encode the data elements according to the order of appearance
in the trace. Suppose there are m distinct data elements.

3: while there exist data not yet grouped do
4: pick the smallest not yet grouped datum s.
5: for t=m to s step −1 do
6: if IsAGroup(T,s,t) then
7: break;
8: end if
9: end for

10: output elements in {s, . . . , t} as a group.
11: end while

endFindReferenceAffinityGroup 1
procedure IsAGroup(T,s,t)

1: for i from 1 to |T | do
2: if T[i] is within s and t then
3: if The elements T[i] can be 1-linked to with respect to

{s, . . . , t} can not cover set {s, . . . , t} then
4: return false;
5: end if
6: end if
7: end for
8: return true;

endIsAGroup

It is straightforward to show that the algorithm is polynomial
time and can output the correct reference affinity groups.
Lemma 1 Given two different data elements u and v; their
accesses au and av where the volume distance from au to av is
exactly k; and a third access ax, which happens between au and
av in the trace; then there exists an access a′

x between au and
av such that the volume distance from au to a′

x and the volume
distance from a′

x to av are both less than k.

Proof The element u is either earlier or later than v in the data
space. Because a link and a path are not directed, the two cases
are symmetrical. Without loss of generality, we assume u is before
v. Consider the smallest m-block that contains u, v, au, av . The
element x must be in the data section of the block; otherwise the
path from au to av does not go through x. There are two cases
shown by the two graphs in Figure 12, each has six sub-cases. The
location of ax is given for each sub-case in the figure. In most cases,
ax splits the k-link from au to av into two shorter links of less than
k. The first case is when au and av are in upper and lower half
blocks. In the first sub-case of the first case, we need to use one
of the two locations, marked by a′

x and a′′
x . Then we use the au

to break the link from the access of x to av and treat the access to
x as au. The last sub-case of the first case is similar. The second
case happens when au and av are both in the upper or lower half
block. Figure 12 shows the three out of the six sub-cases when both
accesses are in the upper half block. The other three sub-cases are
symmetrical. In sub-case 1 and 3, we pick a′

x to be in the middle
on the same side of ax. In sub-case 2, we use one of the two middle
points depending on the position of ax.
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