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Abstract
Reuse distance (i.e. LRU stack distance) precisely characterizes
program locality and has been a basic tool for memory system
research since the 1970s. However, the high cost of measuring
has restricted its practical uses in performance debugging, locality
analysis and optimizations of long-running applications.

In this work, we improve the efficiency by exploring the connec-
tion between time and locality. We propose a statistical model that
converts cheaply obtained time distance to the more costly reuse
distance. Compared to the state-of-the-art technique, this approach
reduces measuring time by a factor of 17, and approximates cache
line reuses with over 99% accuracy and the cache miss rate with
less than 0.4% average error for 12 SPEC 2000 integer and floating-
point benchmarks. By exploiting the strong correlations between
time and locality, this work makes precise locality as easy to obtain
as data access frequency, and opens new opportunities for program
optimizations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization, compilers

General Terms Algorithms, Measurement, Performance

Keywords Time Distance, Program Locality, Reuse Distance,
Reference Affinity, Trace Generator, Performance Prediction

1. Introduction
As the memory hierarchy becomes deeper and shared by more pro-
cessors, cache performance increasingly determines system speed,
cost and energy usage. The effect of caching depends on program
locality or the pattern of data reuses.

Initially proposed as LRU stack distance by Mattson et al. [18]
in 1970,reuse distance is the number of distinct data elements ac-
cessed between the current and the previous access to the same data
element [11]. As an example, in the data reference trace “a b c b d
d a”, the reuse distance of the second access to data element “a”
is 3 since “b”, “c” and “d” are the distinct data elements between
the two accesses to “a”. Reuse distance provides an architecture-
independent locality metric, precisely capturing program temporal
locality and reflecting memory reference affinity [26]. AReuse dis-
tance histogram, illustrated in Figure 1, summarizes the distribu-
tion of the reuse distances in an execution. In the graph, the sev-
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Figure 1. A reuse distance histogram on log scale.

enth bar, for instance, shows that 25% of total memory accesses
have reuse distance in range [32, 64).

Researchers have used reuse distance (mostly its histogram)
for many purposes: to study the limit of register [15] and cache
reuse [10, 13], to evaluate program transformations [1, 4, 25], to
predict performance [17], to insert cache hints [5], to identify
critical instructions [12], to model reference affinity [26], to detect
locality phases [22], to manage superpages [7], and to model cache
sharing between parallel processes [8].

Because of the importance, the last decades have seen a steady
stream of research on accelerating reuse distance measurement. In
1970, Mattson et al. published the first measurement algorithm [18]
using a list-based stack. Later studies—e.g. Bennett and Kruskal in
1975 [3], Olken in 1981 [19], Kim et al. in 1991 [14], Sugumar
and Abraham in 1993 [24], Almasi et al. in 2002 [1], Ding and
Zhong in 2003 [11]—have reduced the cost through various data
structures and algorithms.

Despite those efforts, the state-of-the-art measurement tech-
nique still slows down a program’s execution up to hundreds of
times: The measurement of a 1-minute execution takes more than
4 hours. The high cost impedes the practical uses in performance
debugging, locality analysis, and optimizations of long-running ap-
plications.

All previous algorithms have essentially implemented the defi-
nition of reuse distance—“counting” the number of distinct data ac-
cessed for each reuse. In this work, we address the problem from a
different aspect:Can we use some easily obtained program behav-
ior to statistically approximate reuse distance?The behavior we
choose istime distance, which is defined as the number of data el-
ements accessed between the current and the previous access to the
same data element. (The time distance is 6 for the example given
in the second paragraph.) The difference from reuse distance is not
having the “distinct” requirement, which makes its measurement as
light as just recording the last access time of each data element—a
small portion of the cost of reuse distance measurement.



As what people commonly conceived, time distance itself can-
not serve as an accurate locality model. In access trace “a b b b b
a”, for example, the time distance of the second access to variable
a is 5, which could correspond to 5 different reuse distances, from
0 to 4, if no other information is given. However, if we know the
time distance histogram—among four reuses, one has time distance
of 5 and three have time distance of 1, we can easily determine the
trace given the number of variables and thus obtain the reuse dis-
tance. Although it’s not always possible to derive a unique trace
from time distances, this work discovers that a time distance his-
togram contains enough information to accurately approximate the
reuse distance histogram.

We describe a novel statistical model that takes a time distance
histogram to estimate the reuse distance histogram in three steps
by calculating the following probabilities: the probability for a time
point to fall into areuse interval(an interval with accesses to the
same data at both ends and without accesses to that data element
in between) of any given length, the probability for a data element
to appear in a time interval of any given length, and the binomial
distribution of the number of distinct data in a time interval.

The new model has two important advantages over previous pre-
cise methods. First, the model predicts the reuse distance histogram
for bars of any width, which previous methods cannot do unless
they store a histogram as large as the size of program data. The
second is a drastic reduction of measuring costs with little loss of
accuracy. Our current implementation produces over 99% accuracy
for reuse distance histogram approximation, providing a factor of
17 speedup on average compared to the fastest precise method.

2. Approximation of Locality
The inputs to our model are the number of distinct data accessed
in an execution and the time distance histogram of the execution;
the output of the model is the reuse distance histogram which
characterizes the locality of that execution. To ease the explanation,
we assume that the size of bars in both histograms is 1 and the
histograms are of dataelementreuses. Section 2.4 describes the
extensions for histograms of any size bars and for any size cache
blocks.

We use the following notations:

B(x) : a binary function, returning 1 whenx is true and 0 whenx
is false.

M(v) : the total number of accesses to data elementv.

N : the total number of distinct data elements in an execution.

T : the length of an execution. Without explicitly saying so, we
use logical time, i.e. the number of data accesses. Each point of
time corresponds to a data access.

Tn(v) : the time of then’th access to datav.

T>t(v), T<t(v) : the time ofv’s first access after timet and the
time of its last access beforet respectively.

vt : the data element accessed at timet.

The algorithm includes three steps, outlined below in reverse
order for the purpose of clarity. Please see our technical report [20,
21] for more details.

2.1 Step 3: Estimate Reuse Distance

The last step is based on the following observation:

OBSERVATION 2.1. Given a program’s execution, we can approx-
imate the reuse distance histogram if we know the time distance
histogram of the execution and the probability for any given data

to appear in any given time interval of length∆, represented by
P3(∆)1.

Note that the probabilityP3(∆) is a function of∆ only and is
independent to the identity of the data.

The approximation of reuse distance throughP3(∆) is based on
the model of Bernoulli processes. ABernoulli processis a discrete-
time stochastic process consisting of a sequence of independent
random variables taking values over the set{0,1}. A typical ex-
ample is coin tossing: there is a coin with probabilityp showing
heads when being tossed. The probability fork heads inn tosses is
abinomial distribution, denoted byf(k; n, p)

f(k; n, p) =

„
n
k

«
pk(1 − p)n−k.

Assuming the probability of any data to be accessed in an in-
terval is independent from other data, data accesses can be consid-
ered as a Bernoulli process. Each distinct data is like one toss of an
experimental coin with probability ofP3(∆) showing heads. The
number of tosses is equal to the total number of distinct data ele-
ments in the program. The number of times showing heads is the
number of distinct data elements being accessed in an interval of
length∆.

We useP (k, ∆) to represent the probability of havingk distinct
data in a∆ long interval, which is equivalent to the probability
of havingk heads inN tosses of a coin withP3(∆) probability
of showing heads each time. The percentage of references having
reuse distance ofk can therefore be calculated as follows:

PR(k) =
X

∆

P (k, ∆) · PT (∆) (1)

where,

P (k, ∆) =

„
N
k

«
P3(∆)k(1 − P3(∆))N−k

PR(k) andPT (∆) respectively denote the Y-axis value of a bar
in reuse distance histograms at position ofk and time distance
histograms at position of∆.

2.2 Step 2: Calculate P3(∆)

This step is to calculateP3(∆), the probability of any given data
element to appear in a time interval of length∆. Given any time
point t, the interval [t − ∆, t) includes∆ time points, represented
by t−τ , whereτ = ∆, ..., 2, 1. A given data being accessed in time
range [t − ∆, t) means that its last access time beforet is at time
t − 1, or t − 2, or, ...., ort − ∆. Let P2(τ) be the probability for
the access to happen at timet− τ . We calculateP3(∆) as follows:

P3(∆) =

∆X

τ=1

P2(τ) (2)

In a real execution, the value ofP2(τ) may differ at different
times and for different data. But for statistical inference, we want
the average probability, which is calculated as follows.

1 The formal definition ofP3(∆) is as follows: Given a random time point
t, if we pick a datav at random from those that are not accessed at timet,
P3(∆) is the probability thatv’s last access prior tot is aftert − ∆ − 1.



P2(τ) =
1

T · (N − 1)

X

t,v 6=vt

B(t − T<t(v) = τ)

=
1

T · (N − 1)

X

v

M(v)X

n=1

Tn+1(v)−1X

t=Tn(v)+1

B(t − Tn(v) = τ)

=
1

T · (N − 1)

X

v

M(v)X

n=1

B(Tn+1(v) − Tn(v) > τ)

Mathematical inferences [21] produce the following result:

P2(τ) =

TX

δ=τ+1

1

(δ − 1)
·

1

T · (N − 1)

X

v,t(vt 6=v)

B(T>t(v) − T<t(v) = δ).

Let P1(δ) = 1
T ·(N−1)

·
X

v,t(vt 6=v)

B(T>t(v)−T<t(v) = δ), the

equation becomes

P2(τ) =

TX

δ=τ+1

P1(δ)

δ − 1
(3)

The problem is now reduced to that of calculatingP1(δ).

2.3 Step 1: Calculate P1(δ)

P1(δ) is the probability for a randomly chosen timet to fall into aδ-
long reuse interval of a data element that is randomly chosen from
the data elements that are not accessed att. It has the following
relation with time distance histogramPT (δ) [21]:

P1(δ) =
δ − 1

N − 1
PT (δ) (4)

This concludes the basic model for the approximation of a reuse
distance histogram. Putting equations (2, 3, 4) together produces
the following formula forP3(∆):

P3(∆) =

∆X

τ=1

TX

δ=τ+1

1

N − 1
PT (δ)

Although it seems simple, the formula is hard to interprete
intuitively. When the bars are wider than 1, the corresponding
formula becomes very complex [20]. The three steps above give not
only an intuitive explanation of the model, but also a clear guide for
implementation.

2.4 Extensions and Implementation

In the above description, we assumed that each bar’s width in both
time and reuse distance histograms is 1. With some extensions, our
model is general enough to allow bars of any width, and hence
histograms on any scale (e.g. linear, log or random scale.) For lack
of space, please see [20] for the extensions.

In our implementation, we remove the redundant calculations
by reordering some computations. We use a look-up table generated
offline to minimize the computation of binomial probabilities. A
boundary case is the treatment of the first access (i.e. the cold
access) to a variable. We use the variable’s circular time distance,
which is the sum of the time distance from the starting of the
program to its first access and the distance from its last access to
the end of the execution. We tried other options such as ignoring

the first accesses and assigning a large distance value to them. The
circular time distance scheme shows the best effect.

3. Evaluation
This section presents experimental results on both generated
traces from a trace generator [20] and 12 real programs in SPEC
CPU2000 suite (Table 2). We use the generated traces to test the ap-
proximation model on histograms of different distributions. We use
the SPEC programs to measure the efficiency and accuracy in real
uses. All experiments were run on Intel(R) Xeon(TM) 2.00GHz
Processors with 2 GB of memory running Fedora Core 3 Linux.
We use PIN 3.4 [16] for instrumentation with GCC version 3.4.4
as our compiler (with the “-O3” flag). We use Ding and Zhong’s
technique to measure the real reuse distance histograms [11]. It is
asymptotically the fastest tool for measuring reuse distance at a
guaranteed precision2.

3.1 Results on Generated Traces

Using the trace generator, we generate traces of different reuse
distributions. Figure 2(a)(b) show the reuse distance histograms of
pulse-like and exponential distributions.

In the experiment, we first measure the time distance histogram
(TDH) of the generated trace. We then apply the statistical model
to TDH to approximate the reuse distance histogram (̂RDH)
of the trace. After measuring the real reuse distance histogram
(RDH) of the generated trace, we calculate the accuracy of the
approximation as follows:

accuracy = 1 −

P
i
|Bi − cBi|

2
(5)

Where,Bi is the Y-axis value of thei’th bar in RDH and cBi

is the one in̂RDH. The division by 2 is to normalize the accuracy
to [0,1]. In the experiments on generated traces, we make the bars
of both histograms as wide as 1 so that we may observe errors that
would otherwise be hidden by a larger bar size.

The three graphs on the left column of Figure 2 are for the trace
whose reuse distance histogram is in a pulse-like shape. The esti-
mated histogram matches the pulses with a smoother shape, which
causes some deviations at the pulse boundaries. However, because
the estimated curve fits the flow of the real curve well, the local
deviations tend to cancel each other in a bar graph. Figure 2 (e)
shows the log-scale reuse distance histograms with approximation
accuracy of 98.4%. Figure 2(c) is the time distance curve, which
has 5 smoothly fluctuating waves decreasing gradually to 0. What
the graph does not show for lack of space is a thin peak at the end
of the curve, distance 50000, with 0.001% references, which is due
to the limited number of counters and the time distance of cold ac-
cesses (Section 2.4).

The right column of Figure 2 shows the results for a trace whose
reuse distance histogram exhibits an exponential distribution. The
estimated curve matches the real curve so well that they cannot be
distinguished in Figure 2(b). Figure 2(d) shows the time distance
curve, which is a long tail curve. Figure 2(f) gives the log-scale
reuse distance histograms with accuracy 98.7%. We see similar
results on random distribution histograms [21].

Note, in the generated traces, the data element to be accessed
at a time point depends on all the prior accesses (including the
accesses to other data elements.) Therefore, different data elements
can have different reuse distributions. In our model, we give all data
elements the same probability—the average probability, which may
hurt the prediction of the reuses of a data element, but is effective
for the reuses of a whole program.

2 We set the tool to guarantee 99.9% accuracy.
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(a) Reuse distance histogram of a pulse distribution (b) Reuse distance histogram of an exponential distribution
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(c) Time distance histogram of a pulse distribution (d) Time distance histogram of an exponential distribution
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(e) Log-scale reuse distance histogram of a pulse distribution (f) Log-scale reuse distance hist. of an exp. distribution

Figure 2. Comparisons of the actual reuse distance histograms and the histogramsestimated from the time distance histograms. Different
distributions and bar sizes are shown.



3.2 Results on SPEC CPU2000

We apply the statistical model to 12 SPEC CPU2000 benchmarks.
In all the experiments, the approximation uses 1K-wide bars in both
the measured time distance histograms and the approximated reuse
distance histograms. The log-scale histograms are derived from the
linear-scale ones.

3.2.1 Comparison of Time Cost

Table 1 shows the time cost of the statistical model compared with
the previous fastest method [11] for 12 SPEC CPU2000 bench-
marks with the train inputs. The first column shows the benchmark
names. The second column gives the basic overhead of the instru-
mentation,Tinst. It is the running time of the benchmarks after
being inserted an invocation of an empty function at each memory
access. Much of that overhead could be saved with a more effi-
cient instrumentor, e.g. a source-code level instrumentor through a
compiler. The left half of the rest of the table shows the result of
element reuses, and the right half gives that of cache line reuses
(cache line is 128B wide.) Within each part, the first column is the
time of Ding and Zhong’s technique,TRD; the sum of the next
two columns is the time of our technique, including the time to
measure time distance,TTD, and the time to convert time distance
histograms to reuse distance histograms,Tconv. The next column
shows the speedup of our technique. In order to avoid the effects of
different instrumentors, we subtract the instrumentation overhead
from both kinds of measured time as follows:

Speedup = (TRD − Tinst)/(TTD + Tconv − Tinst)

The table demonstrates 19.4 times speedup for data element
reuses. The smallest speedup is 8 times on programmcf, which has
the largest number of data elements, 10.1 million, among integer
benchmarks. The program has a large range of reuse distances and
time distances, which make its conversion time much longer than
others.

For cache line reuses, the speedup is from 10 to 21 times, with
the average as 17.2. Programmcf shows 19.2 times speedup. The
significantly greater speedup compared to data element reuse is due
to the decrease of the number of counting units and the range of
distances. Figure 3 shows the reuse distance histograms of element
reuse and cache line reuse. The distance range shrinks from 16M
to 512K.

3.2.2 Approximation Accuracy

Table 2 shows the accuracy of the reuse distance approximation
on both element and cache line level for the test and train runs of
the SPEC CPU2000 benchmarks. A bar in linear-scale histogram
covers the reuse distance of 1K; the bars in a log-scale histogram
have the range as [0 1K), [1K, 2K), [2K, 4K), [4K, 8K),. . .. The
accuracy calculation is through Equation 5.

The approximation accuracy for cache line reuses is 99.3% and
99.4% for linear and log scale respectively. The lowest accuracy
is 96.5% and 96.6% on benchmarkammp. Nine out of the 12
benchmarks have over 99% accuracy.

The accuracy for element reuses is 91.8% and 94.1% on aver-
age. Benchmarkmcfandequakegive low accuracy. Figure 3 shows
the histograms ofmcfreuses. The largest error of element reuse ap-
proximation happens in bars of [128K, 256K) and [256K, 512K).
The estimated bar in the range [256K, 512K) matches well with the
real bar in the range [128K, 256K). A possible reason for that mis-
match is the independence assumption of the statistical model: we
assume that the probability for a variable to appear in an interval
is independent of the other variables. However, a larger granular-
ity removes the error almost completely, as shown in the result of
cache line reuses in Figure 3 (b). Programequakehas the similar

phenomenon. A common use of reuse distance is to study cache
behavior through cache line reuse histograms, for which the occa-
sionally low accuracy of element reuses does not matter.

Overall, the statistical model shows 17 times speedup, over 99%
accuracy for cache line reuses, and 94% for element reuses.

Uses for Cache Miss Rate Prediction Previous work has shown
the uses of reuse distance histograms in cache miss rate predic-
tion [25]. In this experiment, we compare the predicted cache miss
rates from the actual and the approximated reuse distance his-
tograms to test the effectiveness of the statistical model in real uses.

Among all 12 benchmarks, the largest errors are 2.5% fortwolf
and 1.4% forequake, which is consistent with Table 2, where,
the two benchmarks have the lowest accuracy of cache line reuse
estimation. Note although it has the worst element reuse estimation,
benchmarkmcf has only 0.34% miss rate estimation error. That
is because of its excellent cache line reuse estimation, the basis
for cache performance prediction. On average for all benchmarks,
the miss rates predicted from the actual and the approximated
histograms have less than 0.42% differences [21].

4. Related Work
This section discusses some related work that are not mentioned in
Section 1. In 1976, Smith gave a probability method for predicting
the miss rate of set-associative cache [23]. To predict the effect
of cache sharing, Chandra et al. proposed models to predict inter-
thread cache contention from isolated cache stack distance [8]. Our
method complements these techniques—by combining them one
can predict the (shared) performance of set-associative cache solely
based on time distance histograms.

An orthogonal way of reducing the measuring cost is using a
sampled trace rather than the full trace [2, 6, 9]. The combination
of sampling and this work has the potential to make reuse distance
applicable to run-time optimizations.

5. Conclusions
In this work, we demonstrate the strong connection between time
and locality with a novel statistical model to approximate program
locality from easily-obtained time distance histograms. The experi-
ments show 17 times speedup over the state-of-the-art locality mea-
surement. The approximation accuracy is over 99% for cache block
reuse and over 94% for element reuse. The model is general enough
to allow reuse distance histograms of any scale and data reuse of
different granularity to be approximated. The new levels of effi-
ciency and generality open up opportunities for performance pre-
diction, debugging, and optimizations.
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