L ocality Approximation Using Time

Jonathan Shaw

Shaw Technologies
jshaw@cs.rochester.edu

Xipeng Shen

Computer Science Department
The College of William and Mary

xshen@cs.wm.edu

Brian Meeker Chen Ding

Computer Science Department
University of Rochester

{bmeeker,cding}@cs.rocheester.edu

Abstract

Reuse distance (i.e. LRU stack distance) precisely characterizes
program locality and has been a basic tool for memory system
research since the 1970s. However, the high cost of measuring
has restricted its practical uses in performance debugging, locality
analysis and optimizations of long-running applications.

In this work, we improve the efficiency by exploring the connec-
tion between time and locality. We propose a statistical model that
converts cheaply obtained time distance to the more costly reuse
distance. Compared to the state-of-the-art technique, this approach
reduces measuring time by a factor of 17, and approximates cache
line reuses with over 99% accuracy and the cache miss rate with
less than 0.4% average error for 12 SPEC 2000 integer and floating-
point benchmarks. By exploiting the strong correlations between
time and locality, this work makes precise locality as easy to obtain
as data access frequency, and opens new opportunities for program
optimizations. enth bar, for instance, shows that 25% of total memory accesses
have reuse distance in range [32, 64).

Researchers have used reuse distance (mostly its histogram)
for many purposes: to study the limit of register [15] and cache
reuse [10, 13], to evaluate program transformations [1, 4, 25], to
predict performance [17], to insert cache hints [5], to identify
critical instructions [12], to model reference affinity [26], to detect
locality phases [22], to manage superpages [7], and to model cache
sharing between parallel processes [8].

Because of the importance, the last decades have seen a steady
stream of research on accelerating reuse distance measurement. In
71970, Mattson et al. published the first measurement algorithm [18]
sing a list-based stack. Later studies—e.g. Bennett and Kruskal in
975 [3], Olken in 1981 [19], Kim et al. in 1991 [14], Sugumar
and Abraham in 1993 [24], Almasi et al. in 2002 [1], Ding and

25

20r

-
3

Reference%

=
o

1

2

4 8 16 32 64 128 256 512

Reuse distance

Figure 1. A reuse distance histogram on log scale.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—optimization, compilers

General Terms Algorithms, Measurement, Performance

Keywords Time Distance, Program Locality, Reuse Distance,
Reference Affinity, Trace Generator, Performance Prediction

1. Introduction

As the memory hierarchy becomes deeper and shared by more pro
cessors, cache performance increasingly determines system spee
cost and energy usage. The effect of caching depends on progra
locality or the pattern of data reuses.

Initially proposed as LRU stack distance by Mattson et al. [18]
in 1970,reuse distance is the number of distinct data elements ac-
cessed between the current and the previous access to the same d
element [11]. As an example, in the data reference trace “abcb d

d a”, the reuse distance of the second access to data element “&’

is 3 since “b”, “c” and “d” are the distinct data elements between
the two accesses to “a”. Reuse distance provides an architecture
independent locality metric, precisely capturing program temporal
locality and reflecting memory reference affinity [26] Reuse dis-
tance histogramillustrated in Figure 1, summarizes the distribu-
tion of the reuse distances in an execution. In the graph, the sev-

Permission to make digital or hard copies of all or part of this work ferspnal or
classroom use is granted without fee provided that copies are not madsrdyuded
for profit or commercial advantage and that copies bear this notice and thédtitic
on the first page. To copy otherwise, to republish, to post on serveesredistribute
to lists, requires prior specific permission and/or a fee.

POPL'07 January 17-19, 2007, Nice, France.
Copyright(© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

ata

Zhong in 2003 [11]—have reduced the cost through various data
structures and algorithms.

Despite those efforts, the state-of-the-art measurement tech-
nique still slows down a program’s execution up to hundreds of
times: The measurement of a 1-minute execution takes more than
4 hours. The high cost impedes the practical uses in performance
debugging, locality analysis, and optimizations of long-running ap-
plications.

All previous algorithms have essentially implemented the defi-
nition of reuse distance—*“counting” the number of distinct data ac-
cessed for each reuse. In this work, we address the problem from a
different aspectCan we use some easily obtained program behav-
ior to statistically approximate reuse distanc&he behavior we
choose igime distance, which is defined as the number of data el-
ements accessed between the current and the previous access to the
same data element. (The time distance is 6 for the example given
in the second paragraph.) The difference from reuse distance is not
having the “distinct” requirement, which makes its measurement as
light as just recording the last access time of each data element—a
small portion of the cost of reuse distance measurement.

As what people commonly conceived, time distance itself can- to appear in any given time interval of length, represented by
not serve as an accurate locality model. In access tradeld' b b Psy(A)L
a’, for example, the time distance of the second access to variable
ais 5, which could correspond to 5 different reuse distances, from
0 to 4, if no other information is given. However, if we know the
time distance histogram—among four reuses, one has time distanc
of 5 and three have time distance of 1, we can easily determine the
trace given the number of variables and thus obtain the reuse dis-
tance. Although it's not always possible to derive a unique trace
from time distances, this work discovers that a time distance his-
togram contains enough information to accurately approximate the
reuse distance histogram.

We describe a novel statistical model that takes a time distance
histogram to estimate the reuse distance histogram in three steps
by calculating the following probabilities: the probability for a time n k ek
point to fall into areuse intervalan interval with accesses to the f(k;n,p) = (k)p (I=p)" "
same data at both ends and without accesses to that data element
in between) of any given length, the probability for a data element ~ Assuming the probability of any data to be accessed in an in-
to appear in a time interval of any given length, and the binomial terval is independent from other data, data accesses can be consid-
distribution of the number of distinct data in a time interval. ered as a Bernoulli process. Each distinct data is like one toss of an

The new model has two important advantages over previous pre-experimental coin with probability oP;(A) showing heads. The
cise methods. First, the model predicts the reuse distance histogrannumber of tosses is equal to the total number of distinct data ele-
for bars of any width, which previous methods cannot do unless ments in the program. The number of times showing heads is the
they store a histogram as large as the size of program data. Thenumber of distinct data elements being accessed in an interval of
second is a drastic reduction of measuring costs with little loss of lengthA.
accuracy. Our current implementation produces over 99% accuracy ~ We useP(k, A) to represent the probability of havirgdistinct
for reuse distance histogram approximation, providing a factor of data in aA long interval, which is equivalent to the probability
17 speedup on average compared to the fastest precise method. of having k heads inNV tosses of a coin withP;(A) probability

of showing heads each time. The percentage of references having
reuse distance df can therefore be calculated as follows:

Note that the probabilityPs(A) is a function of A only and is
dndependent to the identity of the data.
The approximation of reuse distance throug{A) is based on

the model of Bernoulli processes.Bernoulli processs a discrete-
time stochastic process consisting of a sequence of independent
random variables taking values over the §@t1}. A typical ex-
ample is coin tossing: there is a coin with probabilityshowing
heads when being tossed. The probabilityfdreads im tosses is
abinomial distribution denoted byf (k;n, p)

2. Approximation of L ocality

The inputs to our model are the number of distinct data accessed

in an eF))<ecution and the time distance histogram of the execution; Pr(k) = ZP(k, A)- Pr(A) @)
the output of the model is the reuse distance histogram which A

characterizes the locality of that execution. To ease the explanation, where,

we assume that the size of bars in both histograms is 1 and the

histograms are of datalementreuses. Section 2.4 describes the

te)rgﬁlifions for histograms of any size bars and for any size cache P(k,A) = (JZ) Py(A)*(1 — Ps(A)NF

We use the following notations: Pgr(k) and Pr(A) respectively denote the Y-axis value of a bar

in reuse distance histograms at positionkofind time distance

B(z) : abinary function, returning 1 whenis true and 0 when: . -
histograms at position ah.

is false.
M (v) : the total number of accesses to data elemeent

N : the total number of distinct data elements in an execution. 22 Step 2: Calculate P5(A)

This step is to calculatés(A), the probability of any given data
element to appear in a time interval of length Given any time
pointt, the interval { — A, ¢) includesA time points, represented
byt—7,wherer = A, ..., 2, 1. A given data being accessed in time
T, (v) : the time of then'th access to data. range f — A, t) means that its last access time befoie at time

T>+(v), T<+(v) : the time ofv’s first access after time and the t—1,0rt -2 0r ... 0rt — A Let P»(r) be the probability for
time of its last access befotgespectively. the access to happen at timme 7. We calculatePs (A) as follows:

v : the data element accessed at time

T : the length of an execution. Without explicitly saying so, we
use logical time, i.e. the number of data accesses. Each point of
time corresponds to a data access.

A

The algorithm includes three steps, outlined below in reverse P5(A) =) Pa(r) 2
order for the purpose of clarity. Please see our technical report [20 =1
21] for more details. In a real execution, the value d¢% () may differ at different
. . times and for different data. But for statistical inference, we want
2.1 Step 3: Estimate Reuse Distance the average probability, which is calculated as follows.
The last step is based on the following observation:

OBSERVATION 2.1. Given a program’s execution, we can approx- 1The formal definition ofPs (A) is as follows: Given a random time point
imate the reuse distance histogram if we know the time distance ¢, if we pick a datav at random from those that are not accessed at time
histogram of the execution and the probability for any given data Ps(A) is the probability that’s last access prior tois aftert — A — 1.

the first accesses and assigning a large distance value to them. The
1 circular time distance scheme shows the best effect.
P(1) = T N=D) Z B(t — T<¢(v) =7)

da " 3. Evaluation
M(v) Ty v)—1 . . .
B 1 T Z(:) “z: Blt - Tp(v) = 7) This section presents experimental results on both generated
T T (N-1) ‘ n0) =7 traces from a trace generator [20] and 12 real programs in SPEC

v on=l =T ()t CPU2000 suite (Table 2). We use the generated traces to test the ap-
1 M(v) proximation model on histograms of different distributions. We use
= TN=D Z Z B(Thy1(v) — Tn(v) > 1) the SPEC programs to measure the efficiency and accuracy in real
v n=1 uses. All experiments were run on Intel(R) Xeon(TM) 2.00GHz
Processors with 2 GB of memory running Fedora Core 3 Linux.
Mathematical inferences [21] produce the following result: We use PIN 3.4 [16] for instrumentation with GCC version 3.4.4

as our compiler (with the “-O3" flag). We use Ding and Zhong's
T 1 technique to measure the real reuse distance histograms [11]. It is
Py(r) = Z G- . asymptotically the_ fastest tool for measuring reuse distance at a
S=rt1 guaranteed precisién

1

TNCD) Z B(Tst(v) — T<¢(v) = 9). 3.1 Resultson Generated Traces

v,t(ve#v) Using the trace generator, we generate traces of different reuse
distributions. Figure 2(a)(b) show the reuse distance histograms of
Let P1(0) = ﬁ Z B(Tst(v) = T<t(v) = 9), the pulse-like and exponential distributions.

v, t(ve£v) In the experiment, we first measure the time distance histogram
equation becomes (T'DH) of the generated trace. We then apply the statistical model
to TDH to approximate the reuse distance histograRDH)
£l Pi(6) of the trace. After measuring the real reuse distance histogram
Py(r) = Z 5—1 @) (RDH) of the generated trace, we calculate the accuracy of the
S=7+1 approximation as follows:
The problem is now reduced to that of calculatifg6).
2.3 Step 1: Calculate P, (6) accuracy = 1— W (5)

Py (0) is the probability for a randomly chosen tim fall into ad-

long reuse interval of a data element that is randomly chosen from . Where,_Bﬂsihe Y-am_s_vglue of theth bar in BDH and B
the data elements that are not accessed Hthas the following Is the one iNRDH. The division by 2 is to normalize the accuracy
relation with time distance histograf () [21]: to [0,1]. In the experiments on generated traces, we make the bars

of both histograms as wide as 1 so that we may observe errors that
5—1 would otherwise be hidden by a larger bar size.
Pi(0) = N1 Pr(9) 4) The three graphs on the left column of Figure 2 are for the trace

This concludes the basic model for the approximation of a reuse whose reuse distance histogram is in a pulse-like shape. The esti-

dist hist PuLi ti > 3 4) togeth d mated histogram matches the pulses with a smoother shape, which
IStance histogram. Futling eFlua ions (2, 3, 4) together pro UCeScauses some deviations at the pulse boundaries. However, because
the following formula forPs (A):

the estimated curve fits the flow of the real curve well, the local
A T deviations tend to cancel ea_u:h other_ in a bar grgph. Figur_e 2 _(e)
Py(A) = Z Z 1 Pr(s) shows the log-scale reuse distance histograms with approximation
3 N-17T accuracy of 98.4%. Figure 2(c) is the time distance curve, which
. T=18=r+1 . . has 5 smoothly fluctuating waves decreasing gradually to 0. What
_ Although it seems simple, the formula is hard to interprete he graph does not show for lack of space is a thin peak at the end
intuitively. When the bars are wider than 1, the corresponding of the curve, distance 50000, with 0.001% references, which is due
formula becomes very complex [20]. The three steps above give notg the limited number of counters and the time distance of cold ac-
only an intuitive explanation of the model, but also a clear guide for ggges (Section 2.4).
implementation. The right column of Figure 2 shows the results for a trace whose
. . reuse distance histogram exhibits an exponential distribution. The
24 Extensionsand |mplementation estimated curve matches the real curve so well that they cannot be
In the above description, we assumed that each bar’s width in both distinguished in Figure 2(b). Figure 2(d) shows the time distance
time and reuse distance histograms is 1. With some extensions, ourcurve, which is a long tail curve. Figure 2(f) gives the log-scale
model is general enough to allow bars of any width, and hence reuse distance histograms with accuracy 98.7%. We see similar
histograms on any scale (e.qg. linear, log or random scale.) For lack results on random distribution histograms [21].
of space, please see [20] for the extensions. Note, in the generated traces, the data element to be accessed
In our implementation, we remove the redundant calculations at a time point depends on all the prior accesses (including the
by reordering some computations. We use a look-up table generatedaccesses to other data elements.) Therefore, different data ééemen
offline to minimize the computation of binomial probabilities. A can have different reuse distributions. In our model, we give all data
boundary case is the treatment of the first access (i.e. the coldelements the same probability—the average probability, which may
access) to a variable. We use the variable’s circular time distance, hurt the prediction of the reuses of a data element, but is effective
which is the sum of the time distance from the starting of the for the reuses of a whole program.
program to its first access and the distance from its last access to
the end of the execution. We tried other options such as ignoring ?We set the tool to guarantee 99.9% accuracy.

— Real — Real

0.5r —— Estimated || —— Estimated
0.4] 15 |
2 3
203 ;3
c . c
o o 1r 1
2 2
[0 [9)
& 0.2- |
0.5¢ 1
0.1r
0 (0] !
0 100 200 300 400 500 0 100 200 300 400 500
Reuse distance Reuse distance
(a) Reuse distance histogram of a pulse distribution (b) Reuse distarmgram of an exponential distribution
20
0.4 1
0.35 1 15/]
0.3 7 1 <
g [5)
) [45]
© 0.25(1 e
5] & 1f |
@ 1 NI
E 0.2 &
0.15r,]
0.5- 1
0.1r 1
0.05r 1 L
T ha N . ok L L L L
0 0 1000 2000 3000 4000 0 10000 20000 30000 40000 50000
Time distance Time distance
(c) Time distance histogram of a pulse distribution (d) Time distance hatogf an exponential distribution
50 : : :
[Real [Real
Il Estimated Il Estimated
40(1 |
. . 201
3 30 1%
g g
o o 15¢
L L
£ 20/ 18
10r
l L 4
0 5
O = | = (] I 0
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
Reuse distance Reuse distance
(e) Log-scale reuse distance histogram of a pulse distribution (Hdoade reuse distance hist. of an exp. distribution

Figure 2. Comparisons of the actual reuse distance histograms and the histaggtimated from the time distance histograms. Different
distributions and bar sizes are shown.

3.2 Resultson SPEC CPU2000 phenomenon. A common use of reuse distance is to study cache

We apply the statistical model to 12 SPEC CPU2000 benchmarks. b_ehavior through cache line reuse histograms, for which the occa-
In all the experiments, the approximation uses 1K-wide bars in both S|or(1)ally Icl’lv" ﬁlccura_cy_ oflelerrc]elnt rr]euse;dc.)eS not ma(;ter. 99%
the measured time distance histograms and the approximated reuse veraf,t esft'sl'.t'ca moaels %"‘540/ ftlmels SPEEdUp, OVer 957
distance histograms. The log-scale histograms are derived from thefccuracy for cache fine reuses, an b for element reuses.

linear-scale ones. Uses for Cache Miss Rate Prediction Previous work has shown

the uses of reuse distance histograms in cache miss rate predic-
) o _ tion [25]. In this experiment, we compare the predicted cache miss
Table 1 shows the time cost of the statistical model Compared with rates from the actual and the approximated reuse distance his-

the previous fastest method [11] for 12 SPEC CPU2000 bench- tograms to test the effectiveness of the statistical model in real uses.
marks with the train inputs. The first column shows the benchmark ~Among all 12 benchmarks, the largest errors are 2.5%violf
names. The second column gives the basic overhead of the instru-and 1.4% forequake which is consistent with Table 2, where,
mentation, Tins:. It is the running time of the benchmarks after the two benchmarks have the lowest accuracy of cache line reuse
being inserted an invocation of an empty function at each memory estimation. Note although it has the worst element reuse estimation,
access. Much of that overhead could be saved with a more effi- henchmarkmcf has only 0.34% miss rate estimation error. That
cient instrumentor, e.g. a source-code level instrumentor through ajs because of its excellent cache line reuse estimation, the basis
Compiler. The left half of the rest of the table shows the result of for cache performance prediction_ On average for all benchmarks
element reuses, and the right half gives that of cache line reusesthe miss rates predicted from the actual and the approximated
(cache line is 128B wide.) Within each part, the first column is the histograms have less than 0.42% differences [21].

time of Ding and Zhong's techniquézp; the sum of the next

two columns is the time of our technique, including the time to 4 Related Work

measure time distanc®rp, and the time to convert time distance)))))
histograms to reuse distance histograffi$,.... The next column Thls_sectlon dlscusses_some related wor_k_ that are not mentlc_med in
shows the speedup of our technique. In order to avoid the effects of Section 1. In 1976, Smith gave a probability method for predicting

different instrumentors, we subtract the instrumentation overhead the miss rate of set-associative cache [23]. To predict the effect
from both kinds of measured time as follows: of cache sharing, Chandra et al. proposed models to predict inter-

thread cache contention from isolated cache stack distance [8]. Our
method complements these techniques—by combining them one

3.21 Comparison of Time Cost

Speedup = (Trp — Tinst) /(Trp + Teonv — Tinst) can predict the (shared) performance of set-associative calghg so
The table demonstrates 19.4 times speedup for data elementased on time distance histograms. . o
reuses. The smallest speedup is 8 times on prognafrwhich has An orthogonal way of reducing the measuring cost is using a

the largest number of data elements, 10.1 million, among integer Sampled trace rather than the full trace [2, 6, 9]. The combination
benchmarks. The program has a large range of reuse distances an8f sampling and this work has the potential to make reuse distance
time distances, which make its conversion time much longer than applicable to run-time optimizations.
others.

For cache line reuses, the speedup is from 10 to 21 times, with 5. Conclusions

the average as 17.2. Progranefshows 19.2 times speedup. The |, this work, we demonstrate the strong connection between time
significantly greater speedup compared to data element reuse is dug,q |ocality with a novel statistical model to approximate program
to the decrease of the number of counting units and the range of ¢4 ity from easily-obtained time distance histograms. The experi-
distances. Figure 3 shows the reuse distance hlstogrgms of element,ants show 17 times speedup over the state-of-the-art locality mea-
reuse and cache line reuse. The distance range shrinks from 16Mg,rement. The approximation accuracy is over 99% for cache block
to 512K. reuse and over 94% for element reuse. The model is generallenoug
322 Approximation Accuracy to allow reuse distance histograms of any scale and data reuse of
different granularity to be approximated. The new levels of effi-

Table 2 shows the aCCUI’aCy_ of the reuse distance appl’.OXimationciency and generality open up opportunities for performance pre-
on both element and cache line level for the test and train runs of giction, debugging, and optimizations.

the SPEC CPU2000 benchmarks. A bar in linear-scale histogram

covers the reuse distance of 1K; the bars in a log-scale histogramg Acknowledgments

have the range as [0 1K), [1K, 2K), [2K, 4K), [4K, 8K),.. The o

accuracy calculation is through Equation 5. We thank Hans Boehm for his insightful comments and valuable
The approximation accuracy for cache line reuses is 99.3% and Suggestions on this paper. Yutao Zhong, Kristof Beyls, and the

99.4% for linear and log scale respectively. The lowest accuracy anonymous referees also helped improve the presentation. This

is 96.5% and 96.6% on benchmasknmp Nine out of the 12 research is supported in part by grants from The College of William
The accuracy for element reuses is 91.8% and 94.1% on aver-0pinion, findings, and conclusions contained in this document are

the histograms afcfreuses. The largest error of element reuse ap-

proximation happens in bars of [128K, 256K) and [256K, 512K). References

The estimated bar in the range [256K, 512K) matches well withthe [1] G. Aimasi, C. Cascaval, and D. Padua. Calculating stastadces

real bar in the range [128K, 256K). A possible reason for that mis- efficiently. InProceedings of the first ACM SIGPLAN Workshop on

match is the independence assumption of the statistical model: we Memory System Performandgerlin, Germany, June 2002.

assume that the probability for_a variable to appear in an interval [2] M. Amold and B. G. Ryder. A framework for reducing the cast

is independent of the other variables. However, a larger granular- instrumented code. IRroceedings of ACM SIGPLAN Conference

ity removes the error almost completely, as shown in the result of on Programming Language Design and Implementat®mowbird,

cache line reuses in Figure 3 (b). Progragquakehas the similar Utah, June 2001.

Benchmark Instrument Data element level Cache line level
overhead | Reuse | Time Time to Speedup|| Reuse | Time Time to Speedup
dist. dist. approximate| times dist. dist. approximate| times
measure| measure measure| measure
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

CINT | crafty 423 15654 1162 5 205X 9946 1030 2 15.6 X
gcc 135 1333 223 7 126X 926 212 1 101X
gzip 12 254 28 1 142X 159 23 1 123X
mcf 131 3856 534 61 80X 2585 257 2 192X
twolf 138 4262 403 2 154X 2859 292 2 174X
vortex 236 8142 601 6 21.3X 5142 548 2 156X

CFP | ammp 354 20175 1333 4 20.2 X 12923 997 2 195X
applu 170 9806 534 9 258X 5718 447 2 199X
equake 127 13182 766 3 203X 7773 489 1 211X
mesa 1363 45316 3131 5 248X 31191 2955 2 187X
mgrid 206 17336 823 2 277X 10358 677 2 215X
wupwise || 406 21145 1374 1 214X 10876 1075 2 156X

[Average [194X [172X
Table 1. Comparison of the time of reuse distance approximation and measuremen
Benchmark Lang. | Description Input | Number of Number of Accuracy (%)
data elements mem. accesse§ Element Cacheline
linear | Tog linear | Tog

CINT | crafty C Game playing: chess test | 484K 2.8B 93.2 | 93.2 | 100 100

train | 484K 17.8B 93.4 | 93.4] 100 100

gcc ¢} GNU C programming test 916K 675M 99.3 | 99.4| 99.9 | 99.9
language compiler train | 3.46M 1.5B 99.2 [9941 99.9 | 99.9

gzip C GNU compression test 69.8K 94.1M 98.9 [99.8] 99.5 | 99.5
using Lempel-Ziv coding | train | 79.6K 273M 98.5 [99.3] 99.6 | 99.6

mcf C Combinatorial optimization| test 349K 53.5M 82.7 189.0] 99.0 | 99.1
for vehicle scheduling train | 10.IM 3.4B 679 | 7241 97.7 | 984

twolf C Place and route simulator | test 29.1K 109M 99.0 | 99.0 100 100
train | 435K 4.8B 895 [90.2| 975 | 975

vortex C Object-oriented Database | test 2.92M 5.3B 93.0 | 93.1] 100 100
train | 2.76M 9.6B 93.2 [93.2| 100 100

CFP | ammp C Computational chemistry: | test | 3.16M 2.5B 89.2 | 96.5| 96.5 | 96.6
Modeling molecule system| train | 3.16M 22.8B 959 [96.2] 99.2 | 99.5

applu F77 Parabolic/Elliptic Partial test 212K 207M 94.0 [9951 99.8 | 99.9
Differential Equations train | 2.00M 10.5B 925 [99.9] 99.3 | 994

equake C Seismic wave test 2.30M 478M 919 | 928 995 | 99.5
propagation simulation train | 2.30M 13.0B 75.7 | 77.9] 985 | 985

mesa C 3-D graphics library test 1.63K 57.6B 954 19541 99.9 | 99.9
train | 1.63K 62.1B 96.8 | 98.6 | 99.9 | 100

mgrid Fr7 Multi-grid solver: test 10.0M 14.0B 89.8 | 97.1] 99.6 | 100
3-D potential field train | 1.39M 17.9B 90.5 | 97.6] 99.7 [99.8

wupwise || F77 Physics/Quantum test 38.4M 5.09B 92.8 | 93.2] 99.7 | 99.7
Chromodynamics train | 38.4M 24.9B 91.2 | 916 99.6 | 99.6

Average 918 | 941 | 993 | 994

Table 2. Approximation accuracy of data element and cache line reuse didtéstograms

O Real MEstimated

Reference%
w
o
|

10 4‘1 |
0 om [n Ml T r—l II_I_Jr—I’_L!_I_

oot o A
AEar %‘k_\/b@ﬁj_bb*';{b’fyé'%g SRR

N

Reuse distance

(a) mcfelement reuse histogram

[BReal mEstimated]
100
90
80 H
70 1+
60 1+
50 1+
40 H
30 1+
20 1+
10
0+ . T T T T |
1 2 4 8 16 32 64 128 256 512
Reuse distance (K)

Reference%

(bmcfcache line reuse histogram

Figure 3. The actual and estimated reuse distance histogramsbthe benchmark with the largest approximation error. The X-axes ar

on log scale.

[3] B. T. Bennett and V. J. Kruskal. LRU stack processit§\ Journal
of Research and Developmepages 353-357, 1975.

[4] K. Beyls and E. D’'Hollander. Reuse distance as a metricémhe
behavior. InProceedings of the IASTED Conference on Parallel and
Distributed Computing and Systeyiaigust 2001.

K. Beyls and E. D’'Hollander. Generating cache hints foproved
program efficiencyJournal of Systems Architectyr&l(4):223-250,
2005.

K. Beyls and E. D'Hollander. Discovery of locality-impring
refactoring by reuse path analysis.Rroceedings of HPCC. Springer.
Lecture Notes in Computer Science Vol. 4288yes 220-229, 2006.

C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. iévisiki.
Multiple page size modeling and optimization. Pmoceedings of
International Conference on Parallel Architectures andngjlation
TechniquesSt. Louis, MO, 2005.

D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting mte
thread cache contention on a chip multi-processor ardiitec In
Proceedings of the International Symposium on High Peréorce
Computer Architecture (HPCA2005.

[9] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefieing
for general-purpose programs. Rroceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementat
Berlin, Germany, June 2002.

[10] C. Ding and M. Orlovich. The potential of computation regping
for improving locality. InProceedings of SC2004 High Performance
Computing, Networking, and Storage ConfererRigtsburgh, PA,
November 2004.

[11] C. Ding and Y. Zhong. Predicting whole-program loagalitith reuse
distance analysis. IRroceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementat®an Diego, CA,
June 2003.

[12] C. Fang, S. Carr, S. Onder, and Z. Wang. Instruction thase
memory distance analysis and its application to optimizatitm.
Proceedings of International Conference on Parallel Arebiures
and Compilation TechniqueSt. Louis, MO, 2005.

[13] S. A. Huang and J. P. Shen. The intrinsic bandwidth nespénts
of ordinary programs. IrProceedings of the 7th International
Conferences on Architectural Support for Programming Lizages
and Operating System€ambridge, MA, October 1996.

[14] Y. H. Kim, M. D. Hill, and D. A. Wood. Implementing stack simu-
lation for highly-associative memories. Rroc. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems
pages 212-213, May 1991.

[5

—

[6

—_

[7

—

8

—_

[15] Z. Li, J. Gu, and G. Lee. An evaluation of the potentiah&fts of
register allocation for array references. Workshop on Interaction
between Compilers and Computer Architectures in conjonatiith
the HPCA-2 San Jose, California, February 1996.

[16] C.-K. Luk et al. Pin: Building customized program anadytools
with dynamic instrumentation. IRroceedings of ACM SIGPLAN
Conference on Programming Language Design and Implemnientat
Chicago, lllinois, June 2005.

[17] G. Marin and J. Mellor-Crummey. Cross architecture perfance
predictions for scientific applications using parametetiz®dels. In
Proceedings of Joint International Conference on Measermand
Modeling of Computer Systentdew York City, NY, June 2004.

[18] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Eetion
techniques for storage hierarchi¢BM System Journab(2):78-117,
1970.

[19] F. Olken. Efficient methods for calculating the succasscfion
of fixed space replacement policies. Technical Report LBR7IR
Lawrence Berkeley Laboratory, 1981.

[20] X. Shen, J. Shaw, and B. Meeker. Accurate approximatfdaaality
from time distance histograms. Technical Report TR902, Coerput
Science Department, University of Rochester, 2006.

[21] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality appration
using time. Technical Report TR901, Computer Science Depatime
University of Rochester, 2006.

[22] X. Shen, Y. Zhong, and C. Ding. Locality phase predictioln
Proceedings of the Eleventh International Conference arhifect
ural Support for Programming Languages and Operating Syste
(ASPLOS Xl)Boston, MA, 2004.

[23] A.J. Smith. On the effectiveness of set associative pageping and
its applications in main memory managementPhoceedings of the
2nd International Conference on Software Engineerit@y/6.

[24] R. A. Sugumar and S. G. Abraham. Multi-configuration sirtioka
algorithms for the evaluation of computer architecture desig
Technical report, University of Michigan, 1993.

[25] Y. Zhong, S. G. Dropsho, X. Shen, A. Studer, and C. Dingissv
rate prediction across program inputs and cache configmstiEEE
Transactions on Computen® appear

[26] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regmog
and structure splitting using whole-program referencenyfi
In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementatjdune 2004.

