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Abstract

While CPU speed has been improved by a factor of 6400 over the past twenty years,

memory bandwidth has increased by a factor of only 139 during the same period.

Consequently, on modern machines the limited data supply simply cannot keep a

CPU busy, and applications often utilize only a few percent of peak CPU performance.

The hardware solution, which provides layers of high-bandwidth data cache, is not

effective for large and complex applications primarily for two reasons: far-separated

data reuse and large-stride data access. The first repeats unnecessary transfer and

the second communicates useless data. Both waste memory bandwidth.

This dissertation pursues a software remedy. It investigates the potential for

compiler optimizations to alter program behavior and reduce its memory bandwidth

consumption. To this end, this research has studied a two-step transformation strat-

egy: first fuse computations on the same data and then group data used by the same

computation. Existing techniques such as loop blocking can be viewed as an appli-

cation of this strategy within a single loop nest. In order to carry out this strategy

to its full extent, this research has developed a set of compiler transformations that

perform computation fusion and data grouping over the whole program and during

the entire execution. The major new techniques and their unique contributions are

Maximal loop fusion: an algorithm that achieves maximal fusion among all

program statements and bounded reuse distance within a fused loop.

Inter-array data regrouping: the first to selectively group global data struc-

tures and to do so with guaranteed profitability and compile-time optimality.

Locality grouping and dynamic packing: the first set of compiler-inserted

and compiler-optimized computation and data transformations at run time.



These optimizations have been implemented in a research compiler and evaluated

on real-world applications on SGI Origin2000. The result shows that, on average,

the new strategy eliminates 41% of memory loads in regular applications and 63% in

irregular and dynamic programs. As a result, the overall execution time is shortened

by 12% to 77%.

In addition to compiler optimizations, this research has developed a performance

model and designed a performance tool. The former allows precise measurement

of the memory bandwidth bottleneck; the latter enables effective user tuning and

accurate performance prediction for large applications: neither goal was achieved

before this thesis.
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Chapter 1

Introduction

“In science there is only Physics; all the rest is stamp collecting” – Ernest

Rutherford (1871-1937)

1.0 Thesis

At the dawn of the 21st century, the computing world is witnessing two powerful

but diverging trends of hardware and software. On the hardware side, single-chip

microprocessors have become the dominant platform for most applications simply

because of their tremendous computing power, which has increased by an astonishing

6400 times in the past twenty years. However, in sharp contrast to the rapid on-chip

improvement is the much slower rate of growth for off-chip memory bandwidth, which

has increased by merely 139 times over the same period of time. To close the memory

gap, all modern machines provide high-bandwidth on-chip data caches in the hope

that most data can be cached so that applications can largely avoid direct access to

memory.

Although caches have been successful for programs with small data sets and sim-

ple access patterns, their effectiveness has become increasingly problematic as the

software community has been relentlessly pushing into ever larger and more complex

systems. Not only do today’s programs employ a massive amount of data that is far

too large to fit in cache, they also access memory in a complex and dynamically chang-

ing manner that leads to extremely poor utilization of the available cache resource.

The problem of poor cache utilization is further compounded by the use of module-

or component-based programming styles that fragment both computation and data

that could be otherwise cached together. As a result of the poor cache utilization and

consequently poor memory performance, many applications can achieve only a few

percent of peak CPU performance on modern machines, leaving room for a potential

improvement of an order of magnitude if only caches could be better utilized.
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The purpose of this thesis is to bridge the diverging trends of software and hard-

ware by developing a compiler strategy that automatically transforms programs to

fully utilize machine cache. Specifically, this work demonstrates that

Global and run-time transformations can substantially improve the

overall performance of large, dynamic applications on machines

built from modern microprocessors; furthermore, these transforma-

tions can be automated and combined into a coherent compiler strat-

egy.

The rest of this chapter first explains the problem of memory bottleneck and the

solution of cache reuse. Then it presents the overall compiler strategy for maximizing

cache reuse and compares this strategy with previous work. The succeeding chapters

will then flesh out the various components of the new compiler strategy.

1.1 Problem of Memory Performance

The problem of memory performance is rooted in the diverging trends of hardware

and software, in particular in the growing mismatch between the insufficient mem-

ory bandwidth supplied by machines and the massive memory transfer demanded

by applications. This section first defines a few key concepts of memory hierarchy.

The main part then studies the fundamental balance between computation and data

transfer on computing systems, formulates a performance model based on the con-

cept of balance, and finally uses the model to identify the performance bottleneck on

modern machines.

1.1.0 Definitions

All modern machines built from microprocessors have data transferred through several

levels of storage. The closest to CPU is a set of registers, then one or more levels

of cache, and finally the main memory. This layered memory organization is called

memory hierarchy.

Memory bandwidth is the data bandwidth between CPU and main memory, that is,

how much data is communicated between them in each second. The communication is

two-way: data is fetched into CPU through memory reads and sent back to memory by

memory writebacks. The memory bandwidth of a program is called effective memory

bandwidth, which is the number of memory reads and writebacks a program performs
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in each second. Since CPU and main memory are on different computer chips, the

effective memory bandwidth of a program is constrained by the physical memory

bandwidth of a machine, which is the cross-chip or off-chip hardware bandwidth

between CPU and main memory.

Cache is a data buffer between CPU and main memory. It serves memory re-

quests for the buffered data without accessing main memory. Cache is organized as a

collection of non-unit cache blocks or cache lines. If a data item is buffered in cache,

the whole block of the adjacent data is also loaded into the same cache block. A

memory reference is a cache hit if the requested data is in a cache block; otherwise it

is a cache miss, and the data is loaded directly from memory.

A repeated memory reference to the same data is a data reuse. If the requested

data item is in cache, the data access is a cache reuse. Cache reuse may happen

directly when the same data is requested twice, in which case the reuse is called a

temporal cache reuse. Cache reuse may happen indirectly when a fresh data request

hits in cache because the requested data has been brought in by the block transfer of

a formerly requested data item, in which case the reuse is called a spatial cache reuse.

Since large cache blocks are more efficient for contiguous data access and less costly for

cache coherence, the size of cache blocks on modern machines is fairly large, ranging

from 32 bytes to 128 bytes. Large cache blocks make cache spatial reuse extremely

important for good cache utilization.

In the literature, cache spatial reuse is often defined differently in that it includes

the fuzzy property that cache blocks do not unnecessarily conflict with each other to

cause premature eviction from cache. This dissertation uses cache spatial reuse to

denote only the reuse within a cache block; the conflicts among different cache blocks

are referred to as cache interference.

1.1.1 Conflicting Trends of Software and Hardware

Since the advent of microprocessors in late 1970s, the capacity gap between off-chip

memory bandwidth and on-chip CPU power has been steadily widening. Historical

figures on processor performance and off-chip bandwidth have shown that over the

past twenty years, the average annual increase in CPU power is 55%, but the average

improvement in off-chip data bandwidth is merely 28%1. In other words, as CPU

1Estimation based on the historical figures compiled by Burger et al [BGK96].
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power increased by 6,400 times in the past, memory bandwidth increased by no more

than 139 times.

To bridge the memory gap, all modern machines provide high-bandwidth on-chip

data cache in the hope that most memory reads and writebacks can be served by

cache without consuming the valuable memory bandwidth. Although machine cache

has been successful for programs with small data sets and simple access patterns, its

effectiveness has become increasingly problematic because of the following directions

pursued by modern software:

• Large data sets: A major goal in computing is to model the physical world, from

a galaxy to a DNA, from an airplane to a robot, and from molecular dynamics

to electromagnetism. Since we desire as large scope and as high precision as

possible, the demand for larger data representations is insatiable.

• Dynamic computation: Most real-world events are non-uniform and evolving,

such as that of a car crash or a drug injection. Consequently, both their compu-

tation structure and data representation are irregular and dynamically changing.

Even in simpler cases where data stays the same, the order of data access may

still change radically in different parts of a program. For example, a physical

model can be traversed first top-down and then inside out.

• Modularized programming: To manage the complexity of developing software

systems with sophisticated capabilities, modern software development must

practice modularization along with computation and data abstraction. A com-

puting task is frequently divided into a hierarchy of sub-steps, and a complex

object broken into many sub-components.

Since large programs perform computation in many phases and access data in

many different places, accesses to the same data item are far separated in time, and

these accesses are often non-contiguous with large strides. When the reuse of a data

item is far separated by a large amount of other data access, the value may be evicted

from cache before it is reused, causing unnecessary data transfer from memory. Large-

stride accesses, on the other hand, waste cache capacity by causing useless data to be

transferred to cache. Furthermore, low utilization of cache blocks leads to an under-

utilized cache, effectively reducing its size and causing even more memory transfer.

Moreover, the extensive use of function and data abstraction aggravates the problem

by fragmenting computations and data that could be otherwise cached together.
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On parallel machines such as high-end servers and supercomputers, the problem of

excessive memory transfer is as serious as it is on uni-processor machines. In fact, the

bandwidth problem may cause even worse consequences for such machines because

memory bandwidth is shared by a potentially large number of processors and conse-

quently is a more critical resource. A single memory module can become the point of

contention and the bottleneck of the whole parallel system. Recently, cache-coherent

shared-memory multiprocessors have become increasingly popular because of their

ease of programming. On such machines, a cache block is the basis of cache co-

herence and consequently the unit of inter-processor communication. Therefore, low

cache-block utilization wastes not only memory bandwidth but also network band-

width.

In summary, the analysis of hardware and software trends has revealed an alarming

tension between the excessive demand of memory transfer and the limited supply

of memory bandwidth. The next section examines the effect of this mismatch on

performance.

1.1.2 Memory Bandwidth Bottleneck

This section quantifies the memory bandwidth constraint by modeling and measuring

the fundamental balance between computation and data transfer.

Balance between Computation and Data Transfer

To understand the supply and demand of memory bandwidth as well as other com-

puter resources, it is necessary to go back to the basis of computing systems, which

is the balance between computation and data transfer. This section first formulates

a performance model based on the concept of balance and then uses the model to

examine the performance bottleneck on current machines.

Both a program and a machine have balance. Program balance is the amount

of data transfer (including both data reads and writes) that the program needs for

each computation operation; machine balance is the amount of data transfer that the

machine provides for each machine operation. Specifically, for a scientific program,

the program balance is the average number of bytes that must be transferred per

floating-point operation (flop) in the program; the machine balance is the number

of bytes the machine can transfer per flop in its peak flop rate. On machines with
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multiple levels of cache memory, the balance includes the data transfer between all

adjacent levels.

The table in Figure 1.1 compares program and machine balance. The upper half

of the table lists the balance of six representative scientific applications2, includ-

ing four kernels—convolution, dmxpy, matrix multiply, FFT—and two application

benchmarks—SP from the NAS benchmark suite and Sweep3D from DOE. For ex-

ample, the first row shows that for each flop, convolution requires transferring 6.4

bytes between the level-one cache (L1) and registers, 5.1 bytes between L1 and the

level-two cache (L2), and 5.2 bytes between L2 and memory. The last row gives the

balance of SGI Origin20003, which shows that for each flop at its peak performance,

the machine can transfer 4 bytes between registers and cache, 4 bytes between L1

and L2, but merely 0.8 bytes between cache and memory.

As the last column of the table shows, with the exception of mm(-O3), all appli-

cations demand a substantially higher rate of memory transfer than that provided by

Origin2000. The demands are between 2.7 to 8.4 bytes per flop, while the supply is

only 0.8 byte per flop. The striking mismatch clearly confirms the fact that memory

bandwidth is a serious performance bottleneck. In fact, memory bandwidth is the

least sufficient resource because its mismatch is much larger than that of register and

Programs Program/machine Balance
L1-Reg L2-L1 Mem-L2

convolution 6.4 5.1 5.2
dmxpy 8.3 8.3 8.4
mm (-O2) 24.0 8.2 5.9
mm (-O3) 8.08 0.97 0.04
FFT 8.3 3.0 2.7
NAS/SP 10.8 6.4 4.9
Sweep3D 15.0 9.1 7.8
Origin2000 4 4 0.8

Figure 1.1 Comparison between program and machine balance

2Program balances are calculated by measuring the number of flops, register loads/stores and cache
misses/writebacks through hardware counters on SGI Origin2000.
3The machine balance is calculated by taking the flop rate and register throughput from hardware
specification and measuring memory bandwidth through STREAM[McC95] and cache bandwidth
through CacheBench[ML98].
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cache bandwidth, shown by the second and the third column in Figure 1.1. The next

section will take a closer look at this memory bandwidth bottleneck.

The reason matrix multiply mm (-O3) requires very little memory transfer is that

at the highest optimization level of -O3, the compiler performs advanced computa-

tion blocking, first developed by Carr and Kennedy[CK89]. The dramatic change of

results from -O2 to -O3 is clear evidence that a compiler may significantly reduce the

application’s demand for memory bandwidth; nevertheless, the current compiler is

not effective for all other programs. I will return to compiler issues in a moment and

for the rest of this dissertation.

Memory Bandwidth Bottleneck

The precise ratios of the demand of data bandwidth to its supply can be calculated by

dividing the program balances with the machine balance of Origin2000. The results

are listed in Figure 1.2. They show the degree of mismatch for each application at

each memory hierarchy level. The last column shows the largest gap: the programs

require 3.4 to 10.5 times as much memory bandwidth as that provided by the machine,

verifying that memory bandwidth is the most limited resource. The data bandwidth

on the other two levels of memory hierarchy is also insufficient by factors between 1.3

to 6.0, but the problem is comparatively less serious.

The insufficient memory bandwidth compels applications into unavoidable low

performance simply because data from memory cannot be delivered fast enough to

keep CPU busy. For example, the Linpack kernel dmxpy has a ratio of 10.5, which

means an average CPU utilization of no more than 1/10.5, or 9.5%. One may argue

Applications Ratios of demand over supply
L1-Reg L2-L1 Mem-L2

convolution 1.6 1.3 6.5
dmxpy 2.1 2.1 10.5
mmjki (-O2) 6.0 2.1 7.4
FFT 2.1 0.8 3.4
NAS/SP 2.7 1.6 6.1
Sweep3D 3.8 2.3 9.8

Figure 1.2 Ratios of bandwidth demand to its supply
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that a kernel does not contain enough computation. However, the last two rows show

a grim picture even for large applications: the average CPU utilization can be no

more than 16% for NAS/SP and 10% for Sweep3D. In other words, over 80% of CPU

capacity is left unused because of the memory bandwidth bottleneck.

The memory bandwidth bottleneck exists on other machines as well. To fully

utilize a processor of comparable speed as MIPS R10K on Origin2000, a machine

would need 3.4 to 10.5 times of the 300 MB/s memory bandwidth of Origin2000.

Therefore, a machine must have 1.02 GB/s to 3.15GB/s of memory bandwidth, far

exceeding the capacity of current machines such as those from HP and Intel. As

CPU speed rapidly increases, future systems will have even worse balance and a more

serious bottleneck because of the lack of memory bandwidth.

So far, the balance-based performance model has not considered the effect of the

latency constraint and, in particular, the effect of memory latency. It is possible that

memory access incurs such a high latency that even the limited memory bandwidth is

scarcely used. To verify that this is not the case, an additional study was performed

to measure the actual bandwidth consumption of a group of program kernels and a

full benchmark application, as reported in [DK00]. It found that these applications

consume most of the available memory bandwidth. Therefore, memory bandwidth is

a more limiting factor to performance than is memory latency.

In conclusion, the empirical study has shown that for most applications, machine

memory bandwidth is between one third and one tenth of that needed. As a result,

over 80% of CPU power is left un-utilized by large applications, indicating a significant

performance potential that may be realized if the applications can better utilize the

limited memory bandwidth. The next section introduces the solution developed by

this dissertation: improving effective memory bandwidth through global and dynamic

cache reuse.

1.2 Solution through Cache Reuse

This section starts with the general strategy of cache reuse, illustrates its power in

exploiting global and dynamic cache reuse, demonstrates the necessity for its compiler

automation, and finally presents the overall compiler strategy that systematically

applies this strategy to maximize cache performance.
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1.2.1 Two-Step Strategy of Cache Reuse

Cache reuse can be maximized by the following two-step strategy.

• Step 1. fuse all the computation on the same data

• Step 2. group all the data used by the same computation

The first step, computation fusion, groups all the uses of the same data so that

when a data item is loaded into cache, the program performs all computation on that

data before moving it out. The second step, data grouping, gathers all data used by

the same computation so that during the computation, all cache blocks are utilized

to the greatest extent possible. Both temporal and spatial cache reuse are maximized

as a result of these steps.

Both steps have an implicit pre-step of separation before fusion and regroup-

ing. The first step breaks computations into the smallest units before fusion so that

unrelated computations are separated. Similarly, the second step divides data into

the smallest pieces before regrouping so that unrelated data parts are disjointed.

Therefore, the two-step strategy can be viewed as having four steps if the separation

steps are made explicit.

The strategy is a direct solution to the problems caused by far-separated reuse and

large-stride access common in data-intensive programs. The fusion step minimizes

the distance of data reuse, and the grouping step optimizes the stride of data access.

As a result, computation fusion eliminates repeated memory transfer of the same data

while data grouping fully utilizes each memory transfer. Together they minimize the

total number of transferred cache blocks and therefore the total amount of memory

bandwidth consumption.

The two steps of this strategy are inherently related: they are inseparable and

they must proceed in order. The second step depends on the first because without

fusion, data reuses remain far-separated and the repeated data access would miss

in cache regardless of data grouping. On the other hand, the first step should be

followed by the second because without data grouping, the cache and cache blocks

may be polluted with useless data to the extent that only a few percent of cache is

useful, and the effective memory bandwidth can be reduced by an order of magnitude.

Therefore, neither step can work well without the other. This strategy and its benefits

are especially evident when optimizing large and dynamic programs, as described in

the next two sections and validated in the later chapters.
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Global Cache Reuse

The strategy of cache reuse can be applied at the global level to improve data reuse

across all program segments and in all data structures. Figure 1.3 illustrates global

cache reuse. The example in (a) is a typical program written by a typical programmer.

It starts with data initialization and then proceeds with several steps of computation.

Although clear and simple logically, the program suffers from far-separated data reuse.

For example, none of the input data is used until all other inputs are processed.

Computation fusion merges the computations on the same data, as shown in

Figure 1.3(b). In the fused function Fused Step 1, each data element is used imme-

diately after its initialization, thus having a minimal reuse distance. Therefore, each

element can be now buffered and reused with a fixed-size cache.

  ...

}

...

Fused_Step_2(...) {
For i
  initial[i].data2 <-

  tmp2[i].data1 <-
     initial[i].data2

End for

Fused_Step_1(...) {
For i
  initial[i].data1 <-

  tmp1[i].data1 <-
     initial[i].data1

  tmp1[i].data2 <-
    tmp1[i].data1

End for

}

(b) Computation fusion (c) Data grouping

  ...

}

...

Fused_Step_1(...) {
For i

  Data_Group_1[i].data1 <- ...

End for

          Data_Group_1[i].data2
  Data_Group_1[i].data3 <-

          Data_Group_1[i].data1
  Data_Group_1[i].data2 <- 

}

Fused_Step_2(...) {
For i

  Data_Group_2[i].data1 <- ...

End for
          Data_Group_2[i].data1
  Data_Group_2[i].data2 <-

  ...

Initialize(...) {

}

  Step_1(...) {
Process(...) {

  }

  Step_2(...) {

  }

  ...
  }

  initial[i].data1 <-

  initial[i].data2 <-

End for

For i

For i

  tmp1[i].data1 <-

     initial[i].data1

  tmp1[i].data2 <-

End for

For i

  tmp2[i].data1 <-

     initial[i].data2

End for

    tmp1[i].data1

(a) Original program

...

...
...

...

...

Figure 1.3 Example of global cache reuse

The fused program is not perfect because it makes scattered data access to different

arrays. The second step, data grouping, gathers data used by the same computation

into the same data array, as shown in Figure 1.3(c). After data grouping, not only are

related data elements used together, they also locate together in physical memory. In
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combination, the fusion shortens temporal reuse between global computations, and

the grouping increases spatial reuse among global data.

As shown by the example program, computation fusion and data grouping promise

significant global benefit but also impose drastic changes to the whole program.

Unlike localized techniques, a global transformation may move a piece of compu-

tation or data far away from its original place. New challenges immediately arise on

maintaining correctness and estimating profitability. Interestingly, computation and

data transformations follow different restrictions and cause different concerns. They

raise different sets of questions.

Computation fusion is limited by data dependence. Given the widespread and

complex dependences in real programs, how much fusion can a program have, or

equivalently, how close can the uses of the same data be? Starting from that, how

much can be achieved by a source-level transformation through a compiler? Since

computation fusion may produce loops of a huge size, what is the overhead of fusion

and how to eliminate or reduce that overhead? Chapter 2 will study computation

fusion and address these challenging questions.

Unlike computation fusion, data grouping is not constrained by correctness be-

cause it does not violate any data dependence as long as a single storage is maintained

for each program data. However, while fusion has no side effect on the unaltered pro-

gram parts, data grouping uniformly affects every program segment that accesses the

transformed data. In particular, data grouping in one place may not be beneficial

for another place and may in fact be detrimental to overall performance. Therefore,

the crucial problem of data grouping is evaluating its profitability: how to address

the conflicting requirements of different program segments, and ultimately, how to

find an optimal data layout for the whole program? Chapter 3 will study solutions

to these problems.

Dynamic Cache Reuse

A large class of applications is dynamic, where some data structures and their access

pattern remain unknown until run time and may change during the computation. An

example is a car-crash simulation where the shape of the car remains unknown until

the simulation starts, and the shape may change radically during the simulation.

To optimize a dynamic application, the strategy of cache reuse must be applied

at run time after the computation and its data access are determined. Figure 1.4
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illustrates dynamic data grouping. The example computation sequence traverses

random elements of array f . The stride of access is large and varied. Data grouping

first records the random data access and then gathers simultaneously used data into

contiguous memory locations. If the data is accessed in the same or similar order

multiple times, the overhead of grouping can be amortized effectively. With the

transformed array shown in Figure 1.4, the dynamic access becomes more contiguous

and obtains a better utilization of cache.

Figure 1.4 Example of dynamic cache reuse

Because of the unpredictable and dynamic nature of the computation and data,

both analysis and transformation have to be performed at run time and probably be

performed multiple times. Questions immediately arise on the feasibility, legality and

profitability of such transformations. How to insert run-time analysis and code gener-

ation? What methods are cost-effective at run time? How to ensure their correctness,

especially in the presence of repeated data layout changes? How much overhead do

they incur, and can it be reduced through additional compiler optimizations? These

questions will be addressed in Chapter 4.

1.2.2 The Need for Compiler Automation

Applying the strategy of cache reuse leads to radical program changes: computation

fusion rewrites the whole program structure, and data grouping re-shuffles the entire

data layout. In general, a program transformation may be carried out through three
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different agents: programmers, compilers, or hardware/operating systems. However,

the global scope and extensive scale of computation fusion and data grouping suggest

that an automatic compiler is the most viable approach. To demonstrate, Figure 1.5

lists the characteristics of all three options.

approaches advantages disadvantages

hardware or
√

precise run-time × very limited scope
operating systems information × run-time overhead of analysis

and transformation
programmers

√
domain knowledge × loss of function and data abstraction

× inter-dependence between function
and data

compilers
√

global scope × imprecise program and√
off-line analysis machine information

and transformation

Figure 1.5 Comparison among hardware/OS, programmers and compilers

Hardware and operating systems have precise knowledge of the operations be-

ing executed and the data being accessed. However, they cannot anticipate future:

they can foresee at most a limited number of instructions down the executing path.

Furthermore, because of the run-time overhead, they cannot afford extensive analysis

and large-scale transformation, both of which are necessary for computation fusion

and data grouping.

Programmers have domain knowledge of their applications. But manual com-

putation fusion and data grouping render program abstraction and modularization

impossible. Indeed, various functions must be mixed together if they access the

same data; similarly, different data structures must be merged if they belong to the

same computation. Furthermore, data layout now depends on computation structure.

Whenever a memory access is added or deleted, the entire data layout may have to be

reorganized. Therefore, if software development is to be scalable and maintainable,

manual fusion and grouping should be mostly avoided.

Among all three approaches, only a compiler can afford the global scope and the

extensive scale of computation fusion and data grouping. Given a source program,

a compiler can analyze and transform the structure of both global computation and

global data. The analysis and transformation are off-line without incurring any run-
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time overhead. A compiler, however, has its limitations. Its source-level analysis

may not always accurate, and it cannot quantify the machine-dependent effect of a

transformation. Despite its limitations, a compiler is currently the only viable choice

to apply the strategy of cache reuse. If it succeeds, the benefit is enormous. The next

section outlines such a compiler.

1.2.3 A Unified Compiler Strategy

This section presents a unified compiler strategy that maximizes memory hierarchy

performance. It has four phases, as shown in Figure 1.6. The first two phases minimize

overall memory transfer by maximizing cache reuse. The third phase schedules the

remaining memory and cache access to tolerate its latency. The last phase engages

user’s help in identifying additional optimization opportunities that have been missed

by automatic methods. The last column of Figure 1.6 lists the suitable techniques.

Those developed by this dissertation are marked with a ?.

main phases sub-steps suitable techniques

(? developed by this research)
temporal reuse global (multi-loop) ? maximal loop fusion

in local (single loop) unroll-and-jam, loop blocking,
cache and register allocation
registers dynamic ? locality grouping,

space partitioning, curve ordering
cache-block inter-array spatial reuse ? inter-array data regrouping
reuse and intra-array spatial reuse memory-order loop permutation,

cache array reshaping, combined schemes
utilization dynamic spatial reuse ? dynamic data packing

cache non-interference array padding, array copying,
cache-conscious placement

latency local (single loop) data prefetching,
tolerance instruction scheduling

user tuning global (whole-program) ? model of machine & program balance
? bandwidth-based performance tool

Figure 1.6 The overall compiler strategy
for maximizing memory performance
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The first phase converts data reuse into cache and register reuse. The primary

method is computation fusion, which is first carried out at the global level across

multiple loops, then at the local level within a single loop nest, and finally at run

time for dynamic applications.

On an ideal machine with unit-size cache blocks, the first phase is sufficient for

minimizing memory transfer. On a real machine, however, the second phase is needed

to fully utilize non-unit cache blocks as well as memory pages. The first step of this

phase exploits spatial reuse among global arrays. The succeeding steps improve spatial

reuse within a single array both statically for regular programs and dynamically for

dynamic applications. Finally, the last step adjusts the placement of large arrays to

avoid the remaining cache interference.

After minimizing the amount of memory access by the first two phases, the third

phase schedules the expensive memory and cache accesses so that their latency can be

hidden as much as possible. The scheduling includes source-level data prefetching for

high-latency memory access and assembly-level instruction scheduling for low-latency

cache access. It should be noted that although latency tolerance is important, it does

not help in ameliorating the memory bandwidth bottleneck as the previous phases

do. In fact, data prefetching exacerbates the memory bandwidth problem because it

causes additional memory transfer.

Compiler transformations, however, may still miss optimization opportunities or

make imperfect transformations. When this happens, user tuning is necessary to

achieve top performance. The last phase provides effective and efficient user tuning

though a bandwidth-based performance tool. The tool can also provide accurate

compile-time performance prediction, which is crucial for subsequent parallelization

and run-time scheduling.

The global and dynamic techniques developed by this work play a vital role in

the overall compiler strategy. The later chapters will describe these techniques and

demonstrate their importance. The next section discusses existing local techniques

and their limitations, as well as previous attempts at global and dynamic optimiza-

tions.

1.3 Related Work

This section surveys the techniques related to the overall compiler strategy, especially

the previous work on global and dynamic transformations. Their limitations are first
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discussed individually and then summarized in the last section from three aspects:

narrower purpose, lack of integrated transformation, and lack of compiler automation.

1.3.1 Complementary Techniques

Loop blocking and data prefetching are two widely used optimizations for memory

hierarchy. They complement but cannot achieve the effect of global computation

fusion and data grouping.

Loop Blocking

Loop blocking is a transformation that groups computations on sub-blocks of data

that are small enough to fit in registers or in cache. A comprehensive study of block-

ing techniques can be found in Carr’s dissertation[Car92]. The recent developments

include the work by Kodukula et al[KAP97] and by Song and Li[SL99]. Since the

new studies can implicitly optimize beyond a single loop nest, they will be discussed

in the next section with the explicit work on loop fusion.

The primary limitation of loop blocking is its local scope: blocking is applied

only to a single loop nest at a time. Consequently, it cannot exploit data reuse

among disjoint loops. To overcome this limitation, we have to fuse multiple loops

and determine how to interleave their iterations. This is precisely the process of loop

fusion, which is discussed in the next section. Another limitation of blocking is that it

cannot block computations and data that are unknown at compile time. Section 1.3.2

discusses related dynamic transformations.

Data Prefetching

Data prefetching is another widely studied technique. Unlike loop blocking or loop

fusion, the goal of data prefetching is to tolerate or hide memory latency rather

than to eliminate the memory access. Data prefetching identifies memory references

that are cache misses and then dispatches them early enough in execution so that

their latency can be overlapped with useful computation. Porterfield first developed

software prefetching[Por89]. Mowry designed and evaluated a complete algorithm

that later gained wide acceptance[Mow94].

Data prefetching, however, cannot hide memory latency imposed by the memory

bandwidth bottleneck. Indeed, data prefetching does not reduce a single byte of

memory transfer. On the contrary, it incurs additional memory transfer because it
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may prefetch the wrong data or prefetch too early or too late. Since actual memory

latency is the reciprocal of the consumed memory bandwidth, data prefetching cannot

completely hide memory latency unless the memory bandwidth bottleneck has been

alleviated by other optimizations.

1.3.2 Global and Dynamic Optimizations

This section discusses previous work on global loop fusion, global data placement and

dynamic optimizations.

Global Loop Fusion

Many researchers have studied loop fusion. Allen and Cocke first published the

transformation[AC72]. The first significant role of fusion is to improve data reuse in

a virtual memory system, studied by Abu-Sufah et al[ASKL81]. Wolfe gave a simple

test for the legality of fusion[Wol82]. Two loops cannot be fused if they have fusion-

preventing dependences, which are those forward dependences that are reversed after

loop fusion. In the same work, Wolfe demonstrated through a few examples how loop

fusion improves register reuse and reduces data storage on vector machines.

The first implementation of fusion in a compiler is by Allen[All83], who used loop

fusion to improve register reuse in a legendary compiler that was later adopted by all

vector supercomputers[AK87]. In its implementation, Allen required that fusible

loops must have the same lower bound, upper bound and increment, no fusion-

preventing dependence, and no true dependence on any intervening statements. Since

the improvement by fusion is not as large as by other transformations such as loop

interchange, Allen used fusion as a “cleanup” operation.

Loop fusion later took a prominent role in the work of Callahan, who used it

to detect and construct coarse-grain parallelism[Cal87]. He gave a greedy fusion

algorithm that runs in linear time to the number of loops and produces the minimal

number of fused loops. The restriction for correctness is the same as in earlier studies,

and the criterion for profitability is parallelism rather than cache reuse. So Callahan’s

method may fuse loops of no data sharing.

To enable more loop fusion, Porterfield introduced a transformation called peel-

and-jam, which can fuse loops with fusion-preventing dependences by peeling off some

iterations of the first loop and then applying fusion on the remaining parts[Por89].

While Porterfield considered only a pair of loops, Manjikian and Abdelrahman later
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extended peel-and-jam to find the minimal peeling factor for a group of fusible

loops[MA97]. They evaluated their fusion scheme for parallel programs. Also enabled

by peel-and-jam, Song and Li developed a new tiling method that blocks multiple

loops within a time-step loop with the goal of improving cache reuse[SL99]. However,

these methods are not a complete global strategy because they did not address the

cases where not all loops in a program are fusible. In addition, peel-and-jam is a lim-

ited form of loop alignment because it can only shift the first loop up (or the second

loop down), but not the reverse. So it does not always minimize the distance of data

reuse in fused loops. Finally, peel-and-jam cannot fuse loops that have intervening

statements that use the same data.

To find a solution for global loop fusion, a graph-partitioning formulation was stud-

ied independently both by Gao et al.[GOST92] and by Kennedy and McKinley[KM93].

Both their aims were to improve temporal reuse in registers, and they modeled the

benefit of register reuse as weighted edges between a pair of loops. The goal was

to partition all loops into legal fusible groups so that the inter-group edge weight

(unrealized data reuse) is minimal. Kennedy and McKinley proved that the general

fusion problem is NP-Complete. Both approaches used the heuristic that recursively

applies min-cut algorithm to bi-partition the graph. Both avoided fusing loops with

fusion-preventing dependences. However, a weighted-edge between two loops does

not correctly model data sharing. Therefore, the partitioning method on normal

graphs does not minimize the bandwidth consumption of the whole program. In an-

other study of loop fusion, Darte considered the added complexity of loop shifting

and proved that even loop fusion for single types (e.g. parallel loops) is strongly NP-

complete in the presence of loop shifting[Dar99]. Recently, Kennedy developed a fast

algorithm that always fuses along the heaviest edge[Ken99]. His algorithm allows ac-

curate modeling of data sharing as well as the use of fusion enabling transformations.

But none of these algorithms has been implemented or evaluated.

The first implementation for general fusion and its evaluation on non-trivial pro-

grams were accomplished by McKinley et al[MCT96]. They fused only loops with an

equal number of iterations and with no fusion-preventing dependences. As a result,

only 80 out of 1400, or 6% of tested loops were fused. The effect on full applica-

tions was mixed: fusion improved the hit rate for four out of 35 programs by 0.24%

to 0.95%, but it also degraded performance of other three programs. Singhai and

McKinley improved the fusion heuristic by considering the register pressure and by

approximating graph partitioning with optimal tree partitioning[hSM97]. Since they
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fused only loops with no fusion-preventing dependences, the improvement to whole-

program performance is modest except for two programs running on DEC Alpha. The

potential of global data reuse is much larger, as demonstrated by a simulation study

by McKinley and Temam[MT96]. They found that majority of program misses are

inter-loop temporal reuses. Therefore, the important question remains open on the

potential of global fusion, especially when aggressive fusion-enabling transformations

are used.

To enable more aggressive loop fusion, some researchers have taken a radically dif-

ferent approach. Instead of blocking loops, Kodukula et al. tiled data and “shackled”

computations on each data tile[KAP97]. Similarly, Pugh and Rosser sliced compu-

tations on each data element or data block[PR99]. Although effective for blocking

single loops, data-oriented approaches are not yet practical as a global strategy for

three reasons. First, without regular loop structures, it is not clear how to formu-

late and direct a global transformation. The shape of the transformed program is

highly dependent on the choice of not only the shackled or sliced data but also of its

starting loop. Furthermore, to maintain correctness, these methods need to compute

all-to-all transitive dependences, whose complexity is cubic in the number of memory

references in a program. Even when the dependence information is available, it is

still not clear how to derive the best partitioning and ordering of the computations

on different data elements, especially in the face of a large amount of unstructured

computation. Finally, it is not clear how data-oriented transformations interact with

traditional loop-based transformations, and how the side effect of fusion can be tack-

led. Kodukula et al. did not apply their work beyond a single loop nest[KAP97]. Pugh

and Rosser tested Swim and Tomcatv and found mixed results. On SGI Octane, the

first program was improved by 10% but the second “interacted poorly with the SGI

compiler”[PR99].

The previous work on loop fusion did not combine it with data transformations

with one exception. Manjikian and Abdelrahman, who applied padding to reduce

cache conflicts[MA97]. Array padding at large data granularity is not a direct solution

to cache utilization and has several important shortcomings compared to fine-grain

data optimization, as discussed in the next section.
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Global Data Placement

Once computation is optimized, data layout still needs careful arrangement because

it affects the utilization within cache blocks and the interference among cache blocks.

Thabit studied the packing of scalars into cache blocks[Tha81]. He proved that

finding the optimal packing for non-unit cache blocks is NP-complete.

The primary method for exploiting spatial reuse in arrays is to make data ac-

cess contiguous. Instead of rearranging data, the early studies reordered loops so

that the innermost loop traverses data contiguously within each array. Various loop

permutation schemes were studied for perfect loop nests or loops that can be made

perfect, including those by Abu-Sufah et al.[ASKL81], Gannon et al.[GJG88], Wolf

and Lam[WL91], and Ferrante et al.[FST91]. McKinley et al. developed an effec-

tive heuristic that permutes loops into memory order for both perfect or non-perfect

nested loops[MCT96]. Loop reordering, however, cannot always achieve contiguous

data traversal because of data dependences. This observation led Cierniak and Li to

combine data transformation with loop reordering[CL95], a technique that was sub-

sequently expanded by Kandemir et al[KCRB98]. Regardless of the form of transfor-

mation, all these techniques are limited by their goal, which is to improve data reuse

within a single array, or intra-array spatial reuse.

Data reuse within a single array is not adequate because not all data access to

the same array can be made contiguous. One example is a dynamic application,

where the data access within the same array is unpredictable at compile time, making

it impossible to obtain contiguous memory access. Another example is a regular

application, where the computation traverses high-dimensional data through different

directions. Again, data access to a single array cannot always be made contiguous.

Data reuse among multiple arrays presents a promising alternative when data ac-

cess can not be made contiguous. By combining multiple arrays and increasing the

granularity of data access, the portion of useful data in each cache block can be signif-

icantly increased. In fact for large programs with many data arrays, inter-array reuse

may fully utilize cache blocks without the need for contiguous data access. Inter-

array data transformations, however, have not been attempted except for the work

by Eggers and Jeremiassen[JE95]. They grouped all arrays accessed by a parallel

thread to reduce false sharing among parallel processors. However, blindly grouping

local data pollutes cache and cache blocks with useless data because not all local

data objects are used at once. Besides the work on arrays, many researchers stud-
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ied data placement optimizations for cache spatial reuse among pointer-based data

structures. Seidl and Zorn clustered frequently referenced objects[SZ98], and Calder

et al. reordered objects based on their temporal relations[CCJA98]. Chilimbi et

al. clustered frequently used attributes within each object class[CDL99]. The basic

approach shared by these methods is to place frequently used or closely referenced ob-

jects in close by memory locations. However, that two objects being either frequently

accessed or for one time together accessed does not mean that they are always simul-

taneously accessed. Hence, their methods may place useless data into cache blocks

and therefore degrade actual performance. In a large program where different data

structures are used at different times, greedy grouping can seriously degrade cache-

block reuse rather than improving it. Furthermore, these methods are static and

therefore cannot fully optimize dynamic programs whose data access pattern changes

during execution. For example, in a sparse-matrix code, the matrix may be iterated

first by rows and then by columns. In scientific simulations, the computation order

changes as the physical model evolves. In these cases, a fixed static data layout is

not likely to perform well throughout the computation.

In addition to the reuse within the same cache block, attention needs to be paid to

the interference among multiple cache blocks. A program can rearrange the location

of whole arrays or array fragments in two ways: make them either well separated

by padding, studied by Bailey[Bai92], or fully contiguous by copying, first used by

Lam et al[LRW91]. Reducing cache interference, however, is not an approach as di-

rect and effective as improving cache-block reuse. The best way to eliminate any

cache interference is to place simultaneously used data into the same cache block,

not by arranging them into multiple cache blocks. The large granularity used by

packing precludes data reordering within the data object and across multiple data

objects. Furthermore, padding cannot be applied to arrays of unknown size or ma-

chines with different cache parameters. It can reduce only cache interference but not

the page-table working set. Moreover, both padding and copying carry a run-time

cost, especially copying. Therefore, a compiler should first organize data within the

same cache block and then use techniques such as data padding and copying to reduce

cache interference if necessary.

Kremer developed a general formulation for finding the optimal data layout that is

either static or dynamic for a program at the expense of being an NP-hard

problem[Kre95]. He also showed that it is practical to use integer programming

to find an optimal solution for normal programs. However, Kremer’s formulation
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requires the estimation on the overhead and the benefit of a data transformation,

which is not readily available to a compiler. He and others demonstrated that run-

time communication and computation performance could be approximated through

the use of training sets[BFKK91]. However, it is yet to be seen how well memory

hierarchy performance can be predicted.

Dynamic Transformations

Researchers have long been studying dynamic applications such as molecular simula-

tions. The best-known scheme is called inspector-executor, pioneered by Saltz and his

colleagues[DUSH94]. At run time, the inspector analyzes the computation and pro-

duces an efficient parallelization scheme. Then the executor carries out the parallel

execution.

Various specific schemes were also developed for optimizing cache performance.

Saltz’s group extended the inspector-executor model and used a reverse Cuthill Mcgee

ordering to improve locality in a multi-grid computation[DMS+92]. Another method,

domain partitioning, has been used to block computation for cache by Tomko and

Abraham[TA94]. Al-Furaih and Ranka examined graph-based clustering of irregular

data for cache[AFR98]. Mellor-Crummey et al. employed space-filling curve ordering

to block N-body type computations for multi-level memory hierarchy[MCWK99]. The

above methods are powerful, but they incur a cost higher than linear to the number

of data objects. Such cost becomes significant on large data sets and may not be cost

effective for run-time readjustments. In addition, these transformations rely on the

user knowledge. For example, the computation consists of interactions of either near

by particles in a physical domain or neighboring nodes in an irregular graph.

Han and Tseng used a general scheme of grouping parallel computations accessing

the same data object onto the same processor[HT98]. Although their transformation

can be done in linear time and may be cost-effective for cache, they did not extend it

to optimize cache performance. Mitchell et al. studied single non-affine memory ref-

erences and used a more powerful method for partitioning, which is to sort irregular

data access into “buckets”[MCF99]. Mitchell et al. discussed methods for automat-

ically detecting opportunities for their optimization, but they did not show how to

preserve the correctness by an automatic compiler.

A common limitation shared by all previous run-time techniques is the lack of

general-purpose compiler automation. They targeted either a specific application do-
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main or a very simplified computation model. The insufficient automation support

limits the type of programs that can be handled and optimizations that can be used.

As a result, large dynamic applications had to be transformed partially or wholly by

hand. Since both the order of computation and the layout of data may be reorga-

nized multiple times at run time, the code transformation process is extremely labor

intensive and error prone. Even if a hand-optimized version is possible, it will be

very difficult to maintain when new functions are added. Moreover, switching among

and experimenting with different optimization schemes are even harder. Therefore,

if run-time optimizations are to be practical and prevalent, they must be sufficiently

automated.

1.3.3 Performance Model and Tool for Memory Hierarchy

Callahan et al. first used the concept balance to model whether register throughput

can keep up with the CPU speed for scientific applications[CCK88]. However, they

did not consider other levels of memory hierarchy.

In the past, monitoring memory hierarchy performance has to rely on machine

simulators to gauge the exposed memory latency. Callahan et al. first used a compiler-

based approach to analyze and visualize memory hierarchy performance with a mem-

ory simulator[CKP90] . Goldberg and Hennessy measured memory stall time by com-

paring actual running time with the simulation result of running the same program on

a perfect memory[GH93]. Simulators, however, are inconvenient in practice because

they are much slower than actual execution, and they are architecture-dependent. In

addition, simulation-based approaches cannot be used for predicting memory hierar-

chy performance because it has to run the program before collecting its performance

data.

Static or semi-static methods can be used to approximate run-time behavior and

thus predict program performance. Bala et al. used training sets, which construct a

database for the cost of various communication operations, to model communication

performance in data-parallel programs [BFKK91]. They did not consider cache per-

formance, although the same idea applies to cache. In another work, Clements and

Quinn predicted cache performance by multiplying the number of cache-misses with

memory latency[CQ93]. Their method is no longer accurate on modern machines,

where memory transfers proceed in parallel with each other as well as with CPU
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computations. Moreover, they did not extend their work to support performance

tuning.

Recently, researchers began to use bandwidth to measure machine memory perfor-

mance. Examples are the STREAM benchmark by McCalpin [McC95] and CacheBench

by Mucci and London [ML98]. However, neither of them explored the possibility of

full-program tuning and performance prediction.

1.3.4 Summary of Limitations

No previous work has taken the goal of minimizing the total amount of data transfer

between memory and CPU, nor has anyone explored the compiler strategy of global

and dynamic computation fusion and data grouping. As a result, previous work shares

the following three limitations:

Narrower purpose Previous techniques were not designed to solve the memory

bandwidth problem, where single-loop based cache reuse is inadequate and latency

tolerance is of no help. Therefore, global and dynamic cache reuse is the only software

alternative to alleviate the memory bandwidth bottleneck. Failing to recognize this,

existing techniques either do not address global and dynamic optimization or are not

aimed at improving cache reuse. The former includes loop blocking; the latter, loop

fusion and dynamic parallelization. Furthermore, none of previous studies addressed

the problem of minimizing memory writebacks because they focused only on the

latency of memory reads, not the bandwidth consumption of all memory access.

Lack of integrated transformation No previous work has successfully de-

veloped aggressive forms of computation fusion and data grouping, in part because

these two steps have not been studied as a combined strategy. Without global data

grouping, computation fusion may lead to extreme low cache utilization because the

fused loop accesses too many dispersed data items. On the other hand, without ag-

gressive fusion, data grouping may find little opportunity for combining global data

structures since their accesses are separated in different parts of a program.

Lack of automation Because of the focus on memory latency, previous tech-

niques are burdened with improving each memory reference individually, while ne-

glecting the final goal of overall cache reuse of long computations on large data struc-

tures. These limitations lead to a preference of programmer-supplied or domain-
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specific transformations over compiler automation because of the possible compiler

overhead. Unfortunately, manual or semi-manual techniques not only cannot master

the scope and the scale of global computation fusion and data grouping, but they also

lead to programming styles that are not maintainable and not portable. Furthermore,

the focus on the latency of individual memory access makes performance modeling

and debugging impractical, leading to ineffective user assistance for monitoring and

tuning memory hierarchy performance.

1.4 Overview

To overcome the limitations of previous work, this dissertation has developed a new

set of techniques that unleash the power of global and dynamic cache reuse. Chapter 2

describes global computation fusion, which exploits cache temporal reuse for the whole

program. Chapter 3 presents inter-array data regrouping, which maximizes spatial

reuse for the entire data. The dynamic transformations are described in Chapter 4,

which include locality grouping for computation fusion and dynamic packing for data

grouping. Chapter 5 complements these automatic techniques with a performance

tool. The implementation and evaluation of all these techniques are described in

Chapter 6. Finally, Chapter 7 summarizes the techniques having been developed and

outlines their possible extensions.

“as long as there were no machines, programming was no problem at all; when

we had a few weak computers, programming became a mild problem, and

now that we have gigantic computers, programming has become an equally

gigantic problem.” – Edsger W. Dijkstra, 1972
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Chapter 2

Global Computation Fusion

“I hate quotations. Tell me what you know.” – Ralph Waldo Emerson ( 1803-

1882)

2.1 Introduction

As the first step to address the bandwidth limitation, this chapter explores the po-

tential of global fusion in improving cache reuse over whole programs. The chapter

investigates the following three problems. How is data reused in real programs? How

beneficial is global fusion? And how much benefit can be realized by automatic

transformations?

The chapter first defines reuse distance, a concept which precisely measures data

reuse in a program before and after transformations. The chapter then studies two

fusion transformations—one at the machine level and one at the program level. The

machine-level model, reuse-driven execution, examines the potential of global fusion

on an ideal machine, which always executes next the instructions that carry data

reuse. More important is the source-level transformation, maximal loop fusion, which

realizes the benefit of fusion on real machines. The main part of the chapter describes

the algorithm of maximal loop fusion and shows that the new algorithm fuses loops

whenever possible and achieves bounded reuse distance within a fused loop.

Although maximal fusion is the most aggressive in fusing global computations, it

is not optimal. It does not minimize reuse distance within the fused loop, nor does

it minimize the amount of data sharing among fused loops. The chapter formulates

these problems and examines their complexity.

By bringing together all uses of the same data, global computation fusion shortens

its live range. The localized data usage allows for aggressive storage transformations.

The last part of the chapter describes two: storage reduction reduces the size of arrays,

and store elimination removes memory writebacks to arrays.
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2.2 Analysis of Data Reuse

This section first defines the concept of reuse distance and then explores the potential

for minimizing reuse distances through reuse-driven execution.

2.2.1 Reuse Distance

In a sequential execution, the reuse distance of a data reference is the number of

the distinctive data items appeared between this reference and the closest previous

reference to the same data. The example in Figure 2.1(a) shows four data reuses and

their reuse distance. On a perfect cache (fully associative with LRU replacement), a

data reuse hits in cache if and only if its reuse distance is smaller than the cache size.

(a) Example sequence and

its reuse distances

(b) Transformed data access sequence.

All reuse distances are zero.

a a a b b c ca b c a a c b

rd=2 rd=0

rd=1 rd=2

Figure 2.1 Example reuse distances

To avoid cache misses due to long reuse distances, a program can fuse computa-

tions on the same data. Figure 2.1(b) shows the computation sequence after fusion,

where all reuse distances are reduced to zero. In general, the problem of finding min-

imal reuse distance can be reduced from the problem of weighted k-way cut4. The

next section studies the use of heuristic-based fusion on real programs.

2.2.2 Reuse-Driven Execution

This section presents and evaluates reuse-driven execution, a machine-level strategy

which fuses run-time instructions accessing the same data. In a sense, it is the inverse

of Belady policy. While Belady evicts data that has the furthest reuse, reuse-driven

execution executes the instruction that has the closest reuse. The insight gained in

4Section 2.4.1 studies this problem and demonstrates that a polynomial-time solution is unlikely
because even the problem of unweighted 3-way cut is NP-complete.
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this study will provide the motivation for the source-level transformation presented

in the next section.

Given a program, its reuse-driven execution is constructed as follows. First, the

source program is instrumented to collect the run-time trace of all source-level in-

structions as well as all their data access. The trace is re-run on an ideal parallel

machine where an instruction is executed as soon as all its operands have been com-

puted. The trace of an ideal execution gives the ordering of instructions and their

minimal time difference. Finally, reuse-driven execution is carried out by the algo-

rithm given in Figure 2.2. It is reuse-driven because it gives priority of execution to

later instructions that reuse the data of the current instruction. It employs a FIFO

queue to sequentialize the execution of instructions.

The effect of reuse-driven execution is shown in Figure 2.3 for a kernel program

ADI and an application benchmark NAS/SP (Serial version 2.3); the former has 8

loops in 4 loop nests, and the latter has over 218 loops in 67 loop nests. In each

figure, a point at (x, y) indicates that y thousands of memory references have a reuse

distance between [2(x−1), 2x). The figure links discrete points into a curve to emphasize

the elevated hills, where large portions of memory references reside. The important

measure is not the length of a reuse distance, rather it is whether the length increases

with the input size. If so, the data reuse will become a cache miss when data input is

sufficiently large. We call those reuses whose reuse distance increases with the input

size evadable reuses.

The upper two figures of Figure 2.3 show the reuse distances of ADI on two input

sizes. The two curves in each figure show reuse distances of the original program

and that of reuse-driven execution. In the original program, over 40% of memory

references (25 thousand in the first and 99 thousand in the second) are evadable reuses.

However, reuse-driven execution not only reduced the number of evadable reuses

by 33% (from 40% to 27%), but also slowed the lengthening rate of the remaining

evadable reuses.

A similar improvement is seen on NAS/SP, where reuse-driven execution reduced

the number of evadable reuses by 63% and slowed the rate of lengthening of reuse

distances.

We also tested two other programs—a FFT kernel and a full application,

DOE/Sweep3D, shown in Figure 2.4. Reuse-driven execution did not improve FFT

(where the number of evadable reuses was increased by 6%), but it reduced evadable

reuses by 67% in DOE/Sweep3D. In addition, other heuristics of reuse-driven execu-
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function Main
for each instruction i in the ideal parallel execution order

enqueue i to ReuseQueue
while ReuseQueue is not empty

dequeue instruction i from ReuseQueue
if (i has not been executed)

ForceExecute(i)
end while

end for
end Main

function ForceExecute(instruction j)
while there exists un-executed instruction i that produces operands for j

ForceExecute(i)
end while
execute j
for each variable t used by j

find the next instruction m that uses t
enqueue m into ReuseQueue

end for
end ForceExecute

Figure 2.2 Algorithm for reuse-driven execution
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Figure 2.3 Effect of reuse-driven execution (I)

tion were also evaluated. For example, that of not executing the next reuse if it is

too far away (in the ideal parallel execution order). But the result was not improved.

The experiment with reuse-driven execution demonstrates the potential of fusion as

a global strategy for reducing the number of evadable reuses in large applications

with multiple loop nests. The next section studies aggressive loop fusion as a way to

realize this benefit. The effect of loop fusion on reuse distances will be measured in

Chapter 6.

2.3 An Algorithm for Maximal Loop Fusion

Since loops contain most data access and data reuse, loop fusion is obviously a promis-

ing solution for shortening reuse distances. The first half of this section presents an
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Figure 2.4 Effect of reuse-driven execution (II)

efficient algorithm that achieves maximal loop fusion and bounded reuse distance.

The second half formulates the problem of optimal loop fusion and then studies its

complexity. Although the following discussion assumes that a program is structured

in loops and arrays, the formulation and solution to loop fusion apply to programs in

other language structures such as recursive functions and object-based data.

The example program in Figure 2.5(a) has two loops sharing the access to array

A. They cannot be fused directly because of the two intervening statements that also

access part of A. To enable loop fusion, we need three supporting transformations.

The first is statement embedding, which fuses the two non-loop statements into the

first loop. It schedules A[2]=0.0 in the second iteration, where A[2] is last used.

Similarly, it puts A[1]=A[N] in the last iteration, where A[N ] is last computed.
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  A[i] = f(A[i-1])

end for

for i=2,N

for i=2,N

  A[i] = f(A[i-1])

end for

A[1] = A[N]

(b) example of loops that
cannot be fused

A[1] = A[N]

A[2] = 0.0

(a) fusion by statement embedding,
loop alignment and loop splitting

s3
s4

  B[i] = g(A[i-2])

end for

for i=3, N

  A[i] = f(A[i-1])

end for

A[i] = f(A[i-1])

end for

B[3] = g(A[1])

  B[i+1] = g(A[i-1])
end if

for i=2, N

for i=2, N

if (i>2 and i<N)

  A[2] = 0.0
else if (i == N)
  A[1] = A[N]
end if

if (i==3)

Figure 2.5 Examples of loop fusion

After statement embedding, two loops are still not directly fusible because the

first iteration of the second loop depends on the last iteration of the first loop. The

second transformation, iteration reordering, splits the second loop and peels off its

first iteration so that the remaining iterations can be fused with the first loop.

When two loops are fused, the third transformation, loop alignment, ensures that

their iterations are properly aligned. The second loop is shifted up by one iteration

so that the reuse of A[i− 1] happens within the same iteration. Otherwise, the reuse

would be one iteration apart, unnecessarily lengthening reuse distance. The fused

program is shown in Figure 2.5(a), where array A is closely reused.

Loop fusion introduces instruction overhead to the fused program because of

the inserted branch statements. Although this overhead was prohibitively high for

previous-generation machines, today’s fast processors on modern machines can eas-

ily offset this additional cost. Chapter 6 will measure the effect of fusion on real

machines.

Although the supporting transformations enable loop fusion in this example, they

do not always succeed. For example, the two loops in Figure 2.5(b) can never be

fused because all iterations of the second loop depend on all iterations of the first

loop. The dependences caused by the intervening statements make fusion impossible.

Since the feasibility test of fusion has to consider the effect of non-loop statements,

the cost can be too high if loop fusion is tested for every pair of loops. To avoid this

cost, the following algorithm employs incremental fusion, which examines only the

closest pair of data-sharing loops for fusion.
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2.3.1 Single-Level Fusion

The following discussion of loop fusion makes several assumptions as listed in Figure 2.6.

At the beginning, we consider only single-dimensional loops accessing single-dimensional

arrays. Later we will use the same algorithm to fuse multi-dimensional loops level by

level. The other restrictions in Figure 2.6 can also be relaxed, however, at the cost

of a more complex fusion algorithm. For example, index expressions like A(d ∗ i+ c)

can be considered by projecting the sparse index set into a dense index set.

• a program is a list of loop and non-loop statements

• all loops are one-dimensional and so are all variables

• all data accesses are in one of the two forms: A[i+ t] and A[t], where A is the
variable name, i is the loop index, and t is a loop-invariant constant

Figure 2.6 Assumptions on the input program

The fusion algorithm is given in Figure 2.7, which incrementally fuses all data-

sharing loops. For each statement p[i], subroutine GreedilyFuse tries to fuse it upwards

with the closest predecessor p[j] that accesses the same data. If p[i] is a statement, it

can be embedded into p[j]. Otherwise, subroutine FusibleTest is called to test whether

the two loops can be fused. If p[i] is fused with p[j], GreedilyFuse is recursively applied

on p[j] because it now accesses a larger set of data.

Subroutine FusibleTest determines whether two loops can be fused, and if so,

what reordering is needed and what the minimal alignment factor is. An alignment

factor of k means to shift the iterations of the second loop down by k iterations. The

alignment factor can be negative, when the second loop is shifted up to bring together

data reuses. For each data array, the subroutine determines the smallest alignment

factor that both satisfies data dependence and has the closest data reuse. To avoid

unnecessarily increasing the alignment factor, the algorithm does not allow positive

alignment factors for read-read data reuse. The final alignment factor is the largest

found among all arrays. The algorithm avoids repeated FusibleTest by remembering

infusible loop pairs.

A fused loop is represented as a collection of loop and non-loop statements, where

loops are aligned with each other, and non-loop statements are embedded in some

iteration of the fused loop. The data footprint of a loop includes the access to all
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SingleLevelFusion
let p be the list of program statements, either loop or non-loop statements
iterate p[i] from the first statement to the last in the program

GreedilyFuse(p[i])
end SingleLevelFusion

Subroutine GreedilyFuse(p[i])
search from p[i] to find the most recent predecessor p[j] sharing data with p[i]
if p[j] does not exist, exit and return
if (p[i] is not a loop)

embed p[i] into p[j]
make p[i] an empty statement

else if (FusibleTest(p[i], p[j]) finds a constant alignment factor)
if (no splitting is required)

fuse p[i] into p[j] by aligning p[i] by the alignment factor
make p[i] an empty statement
GreedilyFuse(p[j])

end if
if (splitting is required)

split p[i] and/or p[j] and fuse p[i] into p[j] by aligning p[i]
make p[i] an empty statement
GreedilyFuse(p[j])
for each remaining pieces t’ after splitting

GreedilyFuse(t’)
end if

end if
end FuseStatement

Subroutine FusibleTest(p[i], p[j])
if (p[i] p[j]) has been marked as not fusible

return false
end if
for each array accessed in both p[i] and p[j]

find the smallest alignment factor that
(1) satisfies data dependence, and
(2) has the closest reuse

apply iteration reordering if necessary and possible
end for
find the largest of all alignment factors
if (the alignment factor is a bounded constant)

return the alignment factor
else

mark (p[i] p[j]) as not fusible
return false

end if
end FusibleTest

Figure 2.7 Algorithm for one-level fusion
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arrays. For each array, the data access consists of loop-invariant array locations and

loop-variant ranges such as [i+ c1, i+ c2], where i is the loop index and c1 and c2 are

loop-invariant constants. Data dependences and alignment factors are calculated by

checking for non-empty intersections among footprints.

2.3.2 Properties

Maximal Fusion The three transformations achieve maximal fusion. Statement

embedding can always fuse a non-loop statement into a loop. Loop alignment avoids

conflicting data access between two loops by delaying the second loop by a sufficient

factor. When a bounded alignment factor cannot be found, iteration reordering is

used to extracts fusible iterations and arranges them in a fusible order. Examples of

iteration reordering include loop splitting and loop reversal. By employing these three

transformations, the algorithm in Figure 2.7 fuses two loops whenever (1) they share

data and (2) their fusion is permitted by data dependence. Therefore, the algorithm

achieves maximal fusion.

Bounded Reuse Distance The length of reuse distances are bounded after loop

fusion, as proved in the following theorem. The restrictions listed in Figure 2.6 are

implicitly assumed throughout this section.

Theorem 2.1 In a fused loop, if the effect of loop-invariant data accesses

is excluded, the reuse distance of all other data accesses is not evadable,

that is, the reuse distance of all loop-variant accesses does not increase

when the input size grows.

Proof The reuse distance between two uses of the same data is bounded by the

product of the number of iterations between the two uses and the amount of data

accessed in each iteration. Next we examine the maximal value of these two terms.

The iteration difference between two data-sharing statements increases only be-

cause of loop alignment. Since the alignment factor between each pair of loops is a

constant, the total iteration difference between any two fusible loops is at most O(L),

where L is the number of loops in the program.

Excluding loop-invariant accesses, a fused loop accesses a collection of loop-variant

ranges. A loop has at most O(A) such ranges, where A is the number of arrays in

the program. In a given iteration, a loop-variant range includes a constant number
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of data elements (because of the restrictions made in Figure 2.6). Therefore, each

iteration accesses at most O(A) data elements.

Since two uses of the same data is at most O(L) iterations apart with at most

O(A) elements in each iteration, the upper bound on the reuse distance is O(A ∗ L),

which is independent of the sizes of arrays.

The upper bound on reuse distance,O(A∗L), is tight because a worst-case example

can be constructed as follows: the first loop is B(i)=A(i+1), then are L loops of

B(i)=B(i+1), finally is A(i)=B(i). Since the two accesses to A(i) must be separated

by L iterations, the reuse distance can be no less than L. Therefore, the fusion

algorithm achieves the tightest asymptotic upper bound on reuse distances.

Fast Algorithm The following theorem gives the time complexity of the fusion

algorithm in Figure 2.7. The cost is in fact smaller in practice because a restricted

version of loop fusion suffices for all tested programs, as explained after the theorem.

Theorem 2.2 The time complexity for the algorithm is O(V ∗V ′ ∗ (T +

A)), where V is the number of program statements before fusion, V ′ is

the number of fused loops after fusion, T is the cost of FusibleTest, and

A is the number of data arrays in the program.

Proof The complexity of the fusion algorithm is the number of invocations of

GreedilyFuse times its cost. GreedilyFuse is called for each program statements first

and then for each new loop generated by fusion. In a program of V program state-

ments, fusion generates at most V new loops (each successful fusion decreases the

number of loops by one). Therefore, the number of invocations of GreedilyFuse is

O(V ).

The cost of each GreedilyFuse includes the cost of (1) finding the most recent data-

sharing loop, (2) fusing two statements, and (3) checking the fusibility by FusibleTest.

The data-sharing loop can be found by a backward search through fused loops. The

cost is O(V ′∗A), where V ′ is the number of loops after fusion. Fusing two statements

requires updating the data footprint information, the cost of which is O(A). When

examining a fusion candidate, FusibleTest is invoked at most once for each fused loop,

so the number of invocations is O(V ∗ V ′), discounting the additional loops created

by iteration reordering. Each invocation of FusibleTest takes O(A) to check all arrays

of a footprint. The cost of iteration reordering is assumed to be T . Hence, the total
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cost of FusibleTest is O(V ∗ V ′ ∗ (A + T )). The remaining cost of GreedilyFuse is

O(V ∗ (V ′ ∗A+A)). Therefore, the total cost of the algorithm is O(V ∗V ′ ∗ (A+T )).

The implementation in Chapter 6 makes two simplifications. It assumes that all

loop-invariant array accesses are on bordering elements, and it reorders iterations only

by splitting at boundary loop iterations. As shown in the evaluation chapter, these

two assumptions are sufficient to capture all possible fusion in the programs we tested.

In the simplified algorithm, the cost of each FusibleTest is O(A). Therefore, the time

complexity of fusion is O(V ∗V ′∗A). In a typical program where the number of fused

loops and the number of arrays are orders of magnitude smaller than the number of

program statements, the cost of simplified loop fusion is approximately linear to the

size of the program.

2.3.3 Multi-level Fusion

The previous sections have assumed loops and arrays of a single dimension. For

programs with multi-dimensional loops and arrays, the same fusion algorithm can

be applied level by level as long as the ordering of loop and data dimensions is

determined. Figure 2.8 gives the algorithm for multi-level fusion, which maximizes

the overall degree of fusion by favoring loop fusion at outer loop levels.

While all data structures and loop levels are used to determine the correctness of

fusion, only large data structures are considered in determining the profitability of

fusion because the sole concern is the overall data reuse. In the following discussion,

the term data dimension denotes a data dimension of a large array, and the term loop

level denotes a loop that iterates a data dimension of a large array.

For each loop level starting from the outermost (i.e., level 1), MultiLevelFusion

determines loop fusion at a given level in three steps. The first step tries loop fusion

for each data dimension and picks the data dimension that would have the smallest

number of fused loops. The second step applies loop fusion for the chosen data

dimension. Note that loops of the current level that traverse other data dimensions

are also fused if they access the same data dimension. The third step recursively

applies MultiLevelFusion at a higher level for each fused loop generated at the current

level. Since loops can be fused on a data dimension other than the chosen dimension,

the dimension s in this step is not always the dimension s′ found in the second step

of the algorithm.
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Since at all data dimensions are examined at most once at each loop level, the

cost of MultiLevelFusion is O(D2 ∗M), where D is the number of data dimensions

and M is the cost of SingleLevelFusion given in Figure 2.7.

After loop levels and array dimensions are ordered, one issue that still remains

is to choose between the choice of fusing two loops and that of embedding one loop

into another. Loop embedding is the equivalent of statement embedding in a multi-

dimensional program. The resolution is as follows. Given two loops, if they iterate

the same data dimension, loop fusion is applied. If, however, the data dimensions

iterated by one loop is a subset of data dimensions iterated by another, the former

loop is embedded into the latter. In all other cases, two loops are considered as not

sharing data, and neither loop fusion nor statement embedding is attempted.

2.4 Optimal Loop Fusion

The maximal fusion presented in the previous section is not optimal because it does

not minimize the reuse distance within a fused loop and the data sharing among fused

loops. This section formulates these two problems, examines their complexity, and

discusses special cases that are polynomial-time solvable.

2.4.1 Loop Fusion for Minimal Reuse Distance

The alignment of loops during fusion determines the reuse distance in the fused loop.

The problem for finding the minimal reuse distance can be formulated as a scheduling

problem, defined as follows.

Problem 2.1 Scheduling for Minimal Live Range (MLR) is a

triple of (D = (V,E), A), where D is a directed acyclic graph (dag) with

a vertex set V and edge set E, and A is a set of variables. Each node is in

fact an operation which accesses a subset of A. The task is to schedule all

operations at some time slot. The correctness of the schedule is specified

by the directed edges of the dag. For each edge, the sink node cannot be

scheduled until w time slots after the execution of the source node. The

quality of the schedule is measured by the live range of variables. Given

a schedule, the live range of a variable is the time difference between its

first and last use in the schedule.
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MultiLevelFusion(S: set of data dimensions,
L: current loop level)

/* Step 1. find the best data dimension for loop level L */
for each data dimension s
LoopInterchange(s, L)
apply SingleLevelFusion and count the number of fused loops

end for

chose the data dimension s’ that has the fewest fused loops

/* Step 2. fuse loops for level L */
LoopInterchange(s’, L)
apply loop fusion at level L by invoking SingleLevelFusion

/* Step 3. for each loop of level L, continue fusion at level L+1 */
for each loop nest
recursively apply MultiLevelFusion(S - {s}), where s is the

data dimension iterated by the loop of level L
end for

end MultiLevelFusion

Subroutine LoopInterchange(s: data dimension, L: loop level)
for each loop nest

if (loop level t (>=L) iterates data dimension s)
apply loop interchange to make level t into level L if possible

end if
end for

end LoopInterchange

Figure 2.8 Algorithm for multi-level fusion
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Given a machine with an unlimited number of processors, the problem of

MLR is to find a schedule such that

• (Correctness) for each edge of E, the sink node is scheduled at least

w time slots after the source node, where w is the weight of the edge,

and

• (Optimality) the sum of the live range of all variables is minimal.

The problem of scheduling for minimal live range differs from traditional problems

of task scheduling because the latter group uses a machine of a fixed number of

processors. The classical problem, Precedence Constrained Scheduling (PCS), asks

whether a dag of tasks can be scheduled in three machine time slots. PCS is NP-

complete because it can be reduced from another NP-complete problem of finding a

size-k clique in a graph. Because the reduction relies on the fact that the machine

resources are limited, the same proof cannot be applied to MLR.

A possible formulation of MLR is as a graph-partitioning problem where opera-

tions scheduled at the same time slot are grouped in the same partition of a graph.

The graph-based formulation reflects unlimited resources because each partition can

contain arbitrarily many operations. A related partitioning problem is k-way cut,

defined as follows.

Problem 2.2 Given a graph G = (V,E) where each edge has a unit

weight but each node can connect any number of edges. Also designate

k nodes in V as terminals. The k-way cut problem is to find a set of

edges of minimal total weight such that removing these edges renders all

k terminals disconnected from each other.

The k-way cut problem is NP-hard, as proved by Dahlhaus et al.[DJP+92]. They

showed that k-way cut is NP-hard even when k is equal to 3. Their proof used a

reduction from the problem of MAX-cut, which finds a maximal number of edges

separating two nodes in a graph.

MLR can be reduced from a problem similar to k-way cut. In particular, given a

k-way cut problem, one possible way to convert it into a MLR problem is as follows.

First, we create a list of k unit-time, sequential operations. Then for each node in

the problem of k-way cut, we create an independent operation that can be executed

with any of the sequential operations. For example, node u and v in k-way cut
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become operation u′ and v′ in MLR. Finally for each edge in k-way cut, we add a

new variable that is accessed by the corresponding operations. For example, if a edge

connects u and v, we add a variable t that is accessed by u′ and v′. After conversion,

every possible schedule corresponds to a k-partitioning and vice versa. Note that

this reduction process builds a scheduling problem with an unlimited number of data

variables.

The data-sharing relationship in MLR can be modeled by the cross-partition

weight in k-way cut. One complication, however, is that the data sharing between

operations of far apart time slots contributes a longer live range than does the data

sharing between operations of close by time slots. For example, the live range be-

tween a variable accessed in the first and third time slots is twice the length of the

live range of a variable shared between the first and second time slot. Therefore, the

goal of minimization for MLR slightly differs from the k-way cut. For the reduction

to be correct, MLR should be reduced from the following modified problem of k-way

cut.

Problem 2.3 Weigted k-way cut is a graph G = (V,E). V includes

a set of k terminals, v1, . . . , vk. Each edge is of unit weight, and each

node connects to an arbitrary number of edges. Let p be a partitioning of

graph nodes so that vi (i=1,. . . ,k) are in different partitions. Let ni,j be

the number of edges between the nodes of the partition containing vi and

those of the partition containing vj (i, j = 1, . . . , k). The problem is to find

the k-way partitioning so that the function Σj>i and i,j=1,...,k(ni,j ∗ (j − i))
is minimized.

The modified problem is weighted because the objective function has been changed

from minimizing Σni,j to minimizing Σ(ni,j ∗ (j − i)). The weighted k-way cut

problem is not known to be NP-hard. However, considering the complexity of un-

weighted k-way cut, the weighted version is not likely to be polynomial-time solvable.

Section 2.4.3 will revisit this problem and explore a better formulation of loop fusion.

2.4.2 Loop Fusion for Minimal Data Sharing

Maximal loop fusion is not optimal because it does not minimize the amount of data

reloading among fused loops. Therefore, it does not minimize the amount of total

memory transfer for the whole program. This section first formulates the problem
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of loop fusion for minimal memory transfer, then gives a polynomial solution to a

restricted form of this problem, and finally proves that the complexity of the un-

restricted form is NP-complete. In the process, it also points out the inadequacy

of the popular fusion model given by Gao et al.[GOST92] and by Kennedy and

McKinley[KM93].

Formulation

Given a sequence of loops accessing a set of data arrays, we can model both the

computation and the data in a fusion graph. A fusion graph consists of nodes—

each loop is a node— and two types of edges—directed edges for modeling data

dependences and undirected edges for fusion-preventing constraints. Although this

definition of a fusion graph looks similar to that of previous work, the objective of

fusion is radically different as stated below.

Problem 2.4 Bandwidth-minimal fusion problem: Given a fusion

graph, how can we divide the nodes into a sequence of partitions such that

• (Correctness) each node appears in one and only one partition; the

nodes in each partition have no fusion preventing constraint among

them; and dependence edges flow only from an earlier partition to a

later partition in the sequence,

• (Optimality) the sum of the number of distinct arrays in all partitions

is minimal.

The correctness constraint ensures that loop fusion obeys data dependences and

fusion-preventing constraints. Assuming arrays are large enough to prohibit cache

reuse among disjoint loops, the second requirement ensures optimality because for

each loop, the number of distinct arrays is the number of arrays the loop reads from

memory during execution. Therefore, the minimal number of arrays in all partitions

means the minimal memory transfer and minimal bandwidth consumption for the

whole program.

For example, Figure 2.9 shows the fusion graph of six loops. Assuming that loop

5 and loop 6 cannot be fused, but either of them can be freely fused with any other

four loops. Loop 6 depends on loop 5. Without fusion, the total number of arrays in

the six loops accessed is 20. The optimal fusion leaves loop 5 alone and fuses all other
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loops. The number of distinct arrays is 1 in the first partition and 6 in the second,

thus the total memory transfer is reduced from 20 arrays to 7.

Loop 1

Loop 2

Loop 3

Loop 4

Data Arrays: A, B, C, D, E, F

A, D, E, F

A, D, E, F

A, D, E, F

B, C, D, E, F

B, CLoop 5 Loop 6A sumsum

fusion preventing constraint

data sharing

Scalar Data: sum

data dependence

Figure 2.9 Example of bandwidth-minimal loop fusion

The optimality of bandwidth-minimal fusion is different from previous work on

loop fusion. Both Gao et al.[GOST92] and Kennedy and McKinley[KM93] con-

structed a fusion graph in a similar way but modeled data reuse as weighted edges

between graph nodes. For example, the edge weight between loop 1 and 2 would be 4

because they share four arrays. Their goal is to partition the nodes so that the total

weight of cross-partition edges is minimal.

The sum of edge weights does not correctly model the aggregation of data reuse.

For example, in Figure 2.9, loop 1 to 3 each has a single-weight edge to loop 5. But

the aggregated reuse between the first three loops and loop 5 should not be 3; on the

contrary, the amount of data sharing is 1 because they share access to only one array,

A.

To show that weighted-edge formulation is not optimal, it is suffice to give a

counter example, which is the real purpose of Figure 2.9. The optimal weighted-edge

fusion is to fuse the first five loops and leave loop 6 alone. The total weight of cross-

partition edges is 2, which lies between loop 4 and 6. However, this fusion has to load

8 arrays (6 in the first partition and 2 in the second), while the previous bandwidth-

minimal fusion needs only 7. Reversely, the total inter-partition edge weight of the
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bandwidth-minimal fusion is 3, clearly not optimal based on the weighted-edge formu-

lation. Therefore, the weighted-edge formulation does not minimize overall memory

transfer.

To understand the effect of data sharing and the complexity of bandwidth-minimal

fusion, the remaining part of this section studies a model based on a different type of

graphs, hyper-graphs.

Solution Based On Hyper-graphs

The traditional definition of an edge is inadequate for modeling data use because the

same data can be shared by more than two loops. Instead, we should use hyper-edges

because a hyper-edge can connect any number of nodes in a graph. A graph with

hyper-edges is called a hyper-graph. The optimality requirement of loop fusion can

now be restated as follows.

Problem 2.5 Bandwidth-minimal fusion problem (II): Given a

fusion graph as constructed by Problem 2.4, add a hyper-edge for each

array in the program, which connects all loops that access the array. How

can we divide all nodes into a sequence of partitions such that

• (Correctness) criteria are the same as Problem 2.4, but

• (Optimality) for each hyper-edge, let the length be the number of

partitions the edge connects to after partitioning, then the goal is to

minimize the total length of all hyper-edges.

The next part first solves the problem of optimal two-partitioning on hyper-graphs

and then proves the NP-completeness of multi-partitioning.

Two-partitioning is a special class of the fusion problem where the fusion graph has

only one fusion-preventing edge and no data dependence edge among non-terminal

nodes. The result of fusion will produce two partitions where any non-terminal node

can appear in any partition. The example in Figure 2.9 is a two-partitioning problem.

Two-partitioning can be solved as a connectivity problem between two nodes.

Two nodes are connected if there is a path between them. A path between two nodes

is a sequence of hyper-edges where the first edge connects one node, the last edge

connects the other node, and consecutive ones connect intersecting groups of nodes.

Given a hyper-graph with two end nodes, a cut is a set of hyper-edges such that

taking out these edges would disconnect the end nodes. In a two-partitioning problem,
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any cut is a legal partitioning. The size of the cut determines the total amount of

data loading, which is the total amount of data plus the size of the cut (which is the

total amount of data reloading). Therefore, to obtain the optimal fusion is to find a

minimal cut.

The algorithm given is Figure 2.10 finds a minimal cut for a hyper-graph. At the

first step, the algorithm transforms the hyper-graph into a normal graph by converting

each hyper-edge into a node, and connecting two nodes in the new graph when the

respective hyper-edges overlap. The conversion also constructs two new end nodes for

the transformed graph. The problem now becomes one of finding minimal vertex cut

on a normal graph. The second step applies standard algorithm for minimal vertex

cut, which converts the graph into a directed graph, splits each node into two and

connects them with a directed edge, and finally finds the edge cut set by the standard

Ford-Fulkerson method. The last step transforms the vertex-cut to the hyper-edge

cut in the fusion graph and constructs the two partitions.

Although algorithm in Figure 2.10 can find minimal cut for hyper-edges with

non-negative weights, we are only concerned with fusion graphs where edges have

unit-weight. In this case, the first step of the minimal-cut algorithm in Figure 2.10

takes O(E + V ); the second step takes O(V ′(E′ + V ′)) if breadth-first search is used

to find augmenting paths; finally, the last step takes O(E + V ). Since V ′ = E in the

second step, the overall cost is O(E(E′ + E) + V ), where E is the number of arrays,

V is the number of loops and E′ is the number of the pair of arrays that are accessed

by the same loop. In the worst case, E′ = E2, and the algorithm takes O(E3 + V ).

What is surprising is that although the time is cubic to the number of arrays, it is

linear to the number of loops in a program.

By far the solution method has assumed the absence of dependence edges. The

dependence relation can be enforced by adding hyper-edges to the fusion graph. Given

a fusion graph with N edges and two end nodes s and t, assume the dependence

relations form an acyclic graph. Then if node a depends on b, we can add three sets

of N edges connecting s and a, a and b, and b and t. Minimal-cut will still find the

minimal cut although each dependence adds a weight of N to the total weight of

minimal cut. Any dependence violation would add an extra N to the weight of a cut,

which makes it impossible to be minimal. In other words, any minimal cut will not

place a before b, and the dependence is observed. However, adding such edges would

increase the time complexity because the number of hyper-edges will be in the same

order as the number of dependence edges.
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Input A hyper-graph G = (V,E).
Two nodes s and t ∈ V .

Output A set of edges C, which is a minimal cut between s and t.
Two partitions V1 and V2, where s ∈ V1, t ∈ V2, V1 = V − V2, and
a edge e connects V1 and V2 iff e ∈ C.

Algorithm
/* Initialization */
let C, V1 and V2 be empty sets

/* Step 1: convert G to a normal graph */
construct a normal graph G’=(V’,E’)

let array map be the one-to-one map between V’ and E
add a node v to V’ for each hyper-edge e in E; let map[v] = e
add edge (v1, v2) in G’ iff map[v1] and map[v2] overlap in G

/* add in two end nodes */
add two new nodes s’ and t’ to V’
for each node v in V’

add edge (s’, v) if map[v] contains s in G
add edge (t’, v) if map[v] contains t in G

/* Step 2: find the minimal vertex cut in G’ between s’ and t’ */
convert G’ into a directed graph
split each node in V’ and add in a directed edge in between
use For-Fulkerson method to find the minimal edge cut
convert the minimal edge cut into the vertex cut in G’

/* Step 3: construct the cut set and the partitions in G*/
let C be the node cut set of G’ found in the previous step
delete all edges of G corresponding to nodes in C
let V1 be the set of nodes connected to s in G; let V2 be V-V1
return C, V1 and V2

Figure 2.10 Minimal-cut algorithm for a hyper-graph
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The Complexity of General Loop Fusion

Although the two-partitioning problem can be solved in polynomial time, the multi-

partitioning form of bandwidth-minimal fusion is NP-complete.

Theorem 2.3 Multi-partitioning of bandwidth-minimal fusion is NP-

complete when the number of partitions is greater than two.

Proof The fusion problem is in NP because loops or nodes of a fusion graph can

be partitioned in a non-deterministic way, and the legality and optimality can be

checked in polynomial time.

The fusion problem is also NP-hard. To prove this, we reduce k-way cut problem,

defined in Problem 2.2, to the fusion problem. Given a graph G = (V,E) and k nodes

to be designated as terminals, k-way cut is to find a set of edges of minimal total

weight such that removing the edges renders all k terminals disconnected from each

other. To convert a k-way cut problem to a fusion problem, we construct a hyper-

graph G′ = (V ′, E′) where V ′ = V . We add in a fusion preventing edge between each

pair of terminals, and for each edge in E, we add a new hyper-edge connecting the two

end nodes of the edge. It is easy to see that a minimal k-way cut in G is an optimal

fusion in G′ and vice versa. Since k-way cut is NP-complete, bandwidth-minimal

fusion is NP-hard when the number of partitions is greater than two. Therefore, it is

NP-complete.

2.4.3 An Open Question

The previous two sections formulated the problem of optimal loop fusion as a graph-

partitioning problem, in particular, as unweighted and weighted k-way cut. However,

the formulation is not entirely precise for the following two reasons.

On the one hand, optimal loop fusion is simpler than k-way cut because the fusion

graph usually has a limited number of edges. The problem of k-way cut assumes that

a node can connect to an unbounded number of edges. The number of edges in a

fusion graph corresponds to the number of data structures in the program. Although

this number is not bounded, it is usually not proportional to the size of the program.

Therefore, the cost of optimal k-way cut may not be very high for real programs

where the number of data structures is small.

On the other hand, optimal fusion is more complex than k-way cut because of the

dependence relations among program statements. Unlike k-way cut in which every
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node can be grouped with any terminal, a loop can be fused with another only if

no dependence is violated. For a real program, a loop can be fused with a subset of

loops, and the members of this subset are determined by how other loops are fused.

Considering these two differences, the question therefore remains open on how

should loop fusion be formulated and what the complexity is in terms of both the

number of loops and data structures.

2.5 Advanced Optimizations Enabled by Loop Fusion

Aggressive fusion enables other optimizations. For example, the use of an array can

become enclosed within one or a few loops. The localized use allows aggressive storage

transformations that are not possible otherwise. This section describes the idea of

two such storage optimizations: storage reduction, which replaces a large array with a

small section or a scalar; and store elimination, which avoids writing back new values

to an array. Both save a significant more amount of memory bandwidth than loop

fusion.

2.5.1 Storage Reduction

After loop fusion, if the live range of an array is shortened to stay within a single

loop nest, the array can be replaced by a smaller data section or even a scalar. In

particular, two opportunities exist for storage reduction. The first case is where the

live range of a data element (all uses of the data element) is short, for example,

within one loop iteration. The second case is where the live range spans the whole

loop, but only a small section of data elements have such a live range. The first

case can be optimized by array shrinking, where a small temporary buffer is used to

carry live ranges. The second case can be optimized by array peeling, where only a

reduced section of an array is saved in a dedicated storage. Figure 2.11 illustrates

both transformations.

The example program in Figure 2.11(a) uses two large arrays a[N,N ] and b[N,N ].

Loop fusion transforms the program into Figure 2.11(b). Not only does the fused loop

contain all accesses to both arrays, the definitions and uses of many array elements are

very close in computation. The live range of a b-array element is within one iteration

of the inner loop. Therefore, the whole b array can be replaced by a scalar b1. The

live range of an a-array element is longer, but it is still within every two consecutive

j iterations. Therefore, array a[N,N ] can be reduced into a smaller buffer a3[N ],
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For i=1, N
 b[i,N] = g(b[i,N],
            a[i,1])

// Check results

// Computation

b[i,j] = f(a[i,j-1],
           a[i,j])

For j=2, N

sum += a[i,j]+b[i,j]

read(a1[i])

read(a2)

if (j=2)

  b1 = f(a1[i],a2)
else

b1 = f(a3[i],a2)

For j=2, N

b[i,j] = f(a[i,j-1],
           a[i,j])

read(a[i,j])

read(a[i,1])

For j=2, N

if (j<=N-1)

sum += a[i,j]+b[i,j]

else
 b[i,N] = g(b[i,N],

end if

            a[i,1])

sum += b[i,N]+a[i,N]

end if

if (j<=N-1)

  sum += b1+a2
a3[i] = a2

else

b1 = g(b1,a1[i])

end if

  sum += b1+a2

(a) Original program (c) After array shrinking and peeling(b) After loop fusion

For j=2, N

// Initialization of data
For j=1, N

read(a[i,j])

For i=1, N

End for

End for

For i=1, N

For i=1, N

End for

End for

End for

End for

End for

sum = 0.0

print sum

sum = 0.0

End for

For i=1, N

End for

End for

print sum

sum = 0.0

End for

For i=1, N

End for

End for

print sum

For i=1, N
For i=1, N

Figure 2.11 Array shrinking and peeling

which carries values from one j iteration to the next. A section of a[N,N ] array has

a live range spanning the whole loop because a[1 . . .N, 1] is defined at the beginning

and used at the end. These elements can be peeled off into a smaller array a1[N ] and

saved throughout the loop. After array shrinking and peeling, the original two arrays

of size N2 have been replaced by two arrays of size N plus two scalars, achieving a

dramatic reduction in storage space.

Storage reduction directly reduces the bandwidth consumption between all levels

of memory hierarchy. First, the optimized program occupies a smaller amount of

memory, resulting in less memory-CPU transfer. Second, it has a smaller footprint

in cache, increasing the chance of cache reuse. When an array can be reduced to a

scalar, all its uses can be completed in a register, eliminating cache-register transfers

as well.
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2.5.2 Store Elimination

While storage reduction optimizes only localized arrays, the second transformation,

store elimination, improves bandwidth utilization of arrays whose live range spans

multiple loop nests. The transformation first locates the loop containing the last

segment of the live range and then finishes all uses of the array so that the program

no longer needs to write new values back to the array.

For i=1, N

sum = 0.0

For i=1, N

End for

print sum

End for

  res[i] = res[i]+data[i]

  sum += res[i]

  res[i] = res[i]+data[i]

For i=1, N

sum = 0.0

  sum += res[i]

End for

print sum

End for

print sum

sum += res[i]+data[i]

For i=1, N

sum = 0.0

(a) Original program (b) After loop fusion (c) After store elimination

Figure 2.12 Store elimination

The program in Figure 2.12 illustrates this transformation. The first loop in

Figure 2.12(a) assigns new values to the res array, which is used in the next loop.

After the two loops are fused in (b), the writeback of the updated res array can

be eliminated because all uses of res are already completed in the fused loop. The

program after store elimination is shown in Figure 2.12(c).

The goal of store elimination differs from all previous cache optimizations because

it changes only the behavior of data writebacks and it does not affect the performance

of memory reads at all. Store elimination has no benefit if memory latency is the

main performance constraint. However, if the bottleneck is memory bandwidth, store

elimination becomes extremely useful because reducing memory writebacks is as im-

portant as reducing memory reads. The following experiment verifies the benefit of

store elimination on two of today’s fastest machines: HP/Convex Exemplar and SGI

Origin2000 (with R10K processors).

The table in Figure 2.13 lists the reduction in execution time by loop fusion and

store elimination. Fusion without store elimination reduces running time by 31% on

Origin and 13% on Exemplar; store elimination further reduces execution time by
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27% on Origin and 33% on Exemplar. The combined effect is a speedup of almost 2

on both machines, clearly demonstrating the benefit of store elimination.

machines original fusion only store elimination
Origin2000 0.32 sec 0.22 sec 0.16 sec
Exemplar 0.24 sec 0.21 sec 0.14 sec

Figure 2.13 Effect of store elimination

2.6 Summary

The central task of chapter is to minimize the distance of data reuse. It first used the

ideal reuse-driven execution to measure the potential of global computation fusion.

Then it developed a new fusion algorithm, maximal loop fusion, which fuses all data-

sharing program statements whenever possible and achieves bounded reuse distance

within a fused loop. The new algorithm employs statement embedding, loop align-

ment, and iteration reordering to support single-level loop fusion. For programs with

multi-dimensional loops and arrays, the new algorithm always minimizes the number

of outer loops. Under reasonable assumptions, the time complexity of maximal fusion

is O(V ∗ V ′ ∗ A ∗D2), where V is the number of program statements before fusion,

V ′ is the number of fused loops after fusion, A is the number of data arrays, and D

is the number of dimensions of the largest array in a program.

Maximal fusion is not optimal because it does not minimize reuse distance within

a fused loop and it does not minimize the amount of data sharing among fused loops.

The chapter formulated the first problem as weighted k-way cut and the second

problem as unweighted k-way cut. It used hyper-graphs to model data sharing and

proved that fusion for minimal data sharing is NP-complete.

Loop fusion enables advanced storage optimizations. This chapter described two:

storage reduction reduces the size of arrays by array shrinking and array peeling,

and store elimination removes memory writebacks by finishing all uses of the data in

advance. Store elimination is the first program transformation in the literature that

exclusively targets memory bandwidth. These two techniques are not fully developed

here and are part of the future work.

One main reason that loop fusion and storage optimizations become profitable on

modern machines is that their additional instruction overhead is compensated by fast
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processors. In general, the dramatically increased computing power has allowed much

more aggressive ways of program optimization. However, one question we should not

forget to ask is whether we want to optimize programs manually or automatically.

Loop fusion is an example of complex program transformation that can and should

be automated by a compiler.

In addition to instruction overhead, loop fusion has a side effect on memory hier-

archy performance because it may merge too much data access in a fused loop. The

next chapter will show how to mitigate this problem by optimizing data layout and

exploiting spatial reuse among the global data.



53

Chapter 3

Global Data Regrouping

3.1 Introduction

Since cache consists of non-unit cache blocks, sufficient use of cache blocks becomes

critically important because low cache-block utilization leads directly to both low

memory-bandwidth utilization and low cache utilization. For example, for cache

blocks of 16 numbers, if only one number is useful in each cache block, 15/16 or 94%

of memory bandwidth is wasted, and furthermore, 94% of cache space is occupied by

useless data and only 6% of cache is available for data reuse.

A compiler can improve cache-block utilization, or equivalently, cache-block spa-

tial reuse, by packing useful data into cache blocks so that all data elements in a cache

block are consumed before it is evicted. Since a program employs many data arrays,

the useful data in each cache block may come from two sources: the data within

one array, or the data from multiple arrays. Cache-block reuse within a single array

is not always possible because not all access to an array can be made contiguous.

Common examples are programs with regular, but high dimensional data, and pro-

grams with irregular and dynamic data. Furthermore, even in the case of contiguous

access within single arrays, cache reuse can still be seriously hindered by excessive

cache interference when too many arrays are accessed simultaneously, as for example,

after loop fusion. Therefore, a compiler needs to combine useful data from multiple

arrays to address the limitations of single-array data reuse.

This chapter presents inter-array data regrouping, a global data transformation

that first splits and then selectively regroups all data arrays in a program. Figure 3.1

gives an example of this transformation. The left-hand side of the figure shows the

example program, which traverses a matrix first by rows and then by columns. One

of the loops must access non-contiguous data and cause low cache-block utilization

because only one number in each cache block is useful. Inter-array data regrouping

combines the two arrays by putting them into a single array that has an extra di-

mension, as shown in the right-hand side of Figure 3.1. Assuming that the first data
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dimension is contiguous in memory, the regrouped version guarantees at least two

useful numbers in each cache block regardless of the order of traversal.

For j=1, N
For i=1, N

F( a[i,j], b[i,j] )
End for

End for

// row-by-row traversal

// column-by-column traversal

End for
End for

For j=1, N
For i=1, N

Array a[N,N], b[N,N] Array c[2,N,N]

// row-by-row traversal

// column-by-column traversal

End for
End for

For j=1, N
For i=1, N

For j=1, N
For i=1, N

End for
End for

F( c[1,i,j], c[2,i,j] )

G( c[1,i,j], c[2,i,j] )G( a[i,j], b[i,j] )

Figure 3.1 Example of inter-array data regrouping

In addition to improving cache spatial reuse, data regrouping also reduces the

page-table (TLB) working set of a program because it merges multiple arrays into

a single one. On modern machines, the cost of TLB overflow is very harmful to

performance because CPU cannot continue program execution during a TLB miss.

Inter-array data regrouping can also improve communication performance of shared-

memory parallel machines. On these machines, cache blocks are the basis of data

consistency and consequently the unit of communication among parallel processors.

Good cache-block utilization enabled by inter-array data regrouping can amortize the

latency of communication and fully utilize communication bandwidth. However, the

use of data regrouping on parallel machines is outside the scope of this dissertation.

The rest of the chapter formulates the problem of inter-array data regrouping,

presents its solution and discusses its extensions.

3.2 Program Analysis

Given a program, a compiler identifies in two steps all opportunities of inter-array

data regrouping. The first step partitions the program into a sequence of computation

phases. A computation phase is defined as a segment of the program that accesses

data larger than cache. A compiler can estimate the amount of data access in loop

structures. The related compiler analysis techniques will be discussed in Chapter 5,
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which designs a data analysis tool that estimates the total amount of memory transfer.

In places of insufficient information, a compiler can assume that the unknown loop

counts are large and unknown data references iterate the whole array. The purpose

of these conservative assumptions is to guarantee profitability. The correctness is not

affected regardless of compiler assumptions.

The second step of the analysis identifies the sets of compatible arrays. Two

arrays are compatible if their sizes differ by at most a constant, and if they are

always accessed in the same order in each computation phase. For example, the

size of array A(3, N) is compatible with B(N) and with B(N − 3) but not with

C(N/2) or D(N,N). The access order from A(1) to A(N) is compatible with B(1)

to B(N) but not with the order from C(N) to C(1) or from D(1) to D(N/2). The

second criterion does allow compatible arrays to be accessed differently in different

computation phases, as long as they have the same traversal order in the same phase5.

The second step requires identifying the data access order within each array.

Regular programs can be analyzed with various forms of array section analysis. For

irregular or dynamic programs, a compiler can use the data-indirection analysis de-

scribed in Section 4.3.2 of Chapter 4.

The other important task of the second step is the separation of arrays into the

smallest possible units, which is done by splitting constant-size data dimensions into

multiple arrays. For example, A(2, N) is converted into A1(N) and A2(N).

After the partitioning of computation phases and compatible arrays, the task of

data regrouping becomes clear. First, data regrouping transforms each set of com-

patible arrays separately because grouping incompatible arrays is either impossible or

too costly. Second, a program is now modeled as a sequence of computation phases,

each of which accesses a subset of compatible arrays. The goal of data regrouping is

to divide the set of compatible arrays into a set of new arrays such that the overall

cache-block reuse is maximized in all computation phases.

5In general, the traversal orders of two arrays need not to be the same as long as they maintain a
consistent relationship. For example, array A and B have consistent traversal order if whenever A[i]
is accessed, B[f(i)] is accessed, where f(x) is a one-to-one function.
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3.3 Regrouping Algorithm

3.3.1 One-Level Regrouping

This section illustrates the problem and the solution of data regrouping through an

example—the application Magi from DOD, which simulates the shock and material

response of particles in a three-dimensional space (based on smoothed particle hydro-

dynamics method). The table in Figure 3.2 lists the six major computation phases

of the program as well as the attributes of particles used in each phase. Since the

program stores an attribute of all particles in a separate array, different attributes do

not share the same cache block. Therefore, if a computation phase uses k attributes,

it needs to load in k cache blocks when it accesses a particle.

Computation phases Attributes accessed
1 constructing interaction list position
2 smoothing attributes position, speed, heat, derivate, viscosity
3 hydrodynamic interactions 1 density, momentum
4 hydrodynamic interactions 2 momentum, volume, energy, cumulative totals
5 stress interaction 1 volume, energy, strength, cumulative totals
6 stress interaction 2 density, strength

Figure 3.2 Computation phases of a hydrodynamics simulation program

Combining multiple arrays can reduce the number of cache blocks accessed and

consequently improve cache-block reuse. For example, we can group position and

velocity into a new array such that the ith element of the new array contains the

position and velocity of the ith particle. After array grouping, each particle reference

of the second phase accesses one fewer cache blocks since position and velocity are

now loaded by a single cache block. In fact, we can regroup all five arrays used

in the second phase and consequently merge all attributes into a single cache block

(assuming a cache block holds five attributes).

However, excessive grouping in one phase may hurt cache-block reuse in other

phases. For example, grouping position with speed wastes a half of each cache block

in the first phase because the speed attribute is never referenced in that phase.

The example program shows two requirements for data regrouping. The first is

to fuse as many arrays as possible in order to minimize the number of loaded cache

blocks, but at the same time, the other requirement is not to introduce any useless
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data through regrouping. In fact, the second requirement mandates that two arrays

should not be grouped unless they are always accessed together. Therefore, the goal

of data regrouping is to partition data arrays such that (1) two arrays are in the same

partition only if they are always accessed together, and (2) the size of each partition

is the largest possible. The first property ensures no waste of cache, and the second

property guarantees the maximal cache-block reuse.

Although condition (1) might seem a bit restrictive in practice, many applications

use multiple fields of a data structure array together. The algorithm will split each

field as a separate array. In addition, aggressive loop fusion often gathers data access

of a large number of arrays in a fused loop. Therefore, it should be quite common

for two or more arrays to always be accessed together. Later, Section 3.4 discusses

methods for relaxing condition (1) at the cost of making the analysis more complex.

The problem of optimal regrouping is equivalent to a set-partitioning problem. A

program can be modeled as a set and a sequence of subsets where the set represents

all arrays and each subset models the data access of a computation phase in the

program.

Given a set and a sequence of subsets, we say two elements are buddies if for any

subset containing one element, it must contain the other one. The buddy relation is

reflexive, symmetric, and transitive; therefore it is a partition. A buddy partitioning

satisfies the two requirements of data regrouping because (1) all elements in each

partition are buddies, and (2) all buddies belong to the same partition. Thus the

data-regrouping problem is the same as finding a partitioning of buddies. For example

in Figure 3.2, array volume and energy are buddies because they are always accessed

together.

The buddy partitioning can be solved with efficient algorithms. For example,

the following partitioning method uses set memberships for each array, that is, a bit

vector whose entry i is 1 if the array is accessed by the ith phase. The method uses a

radix sort to find arrays with the same set memberships, i.e. arrays that are always

accessed together. Assuming a total of N arrays and S computation phases, the time

complexity of the method is O(N ∗ S). If a bit-vector is used for S in the actual

implementation, the algorithm runs in O(N) vector steps. In this sense, the cost of

regrouping is linear to the number of arrays.
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3.3.2 Optimality

Qualitatively, the algorithm groups two arrays when and only when it is always prof-

itable to do so. To prove, consider on the one hand, data regrouping never includes

any useless data into cache, so it is applied only when profitable; on the other hand,

whenever two arrays can be merged without introducing useless data, they are re-

grouped by the algorithm. Therefore, data regrouping exploits inter-array spatial

reuse when and only when it is always profitable.

Under reasonable assumptions, the optimality can also be defined quantitatively

in terms of the amount of memory access and the size of TLB working set. The

key link between an array layout and the overall data access is the concept called

iteration footprint, which is the number of distinct arrays accessed by one iteration of

a computation phase. Assuming an array element is smaller than a cache block but

an array is larger than a virtual memory page, then the iteration footprint is equal to

the number of cache blocks and the number of pages accessed by one iteration. The

following lemma shows that data regrouping minimizes the iteration footprint.

Lemma 3.1 Under the restriction of no useless data in cache blocks,

data regrouping minimizes the iteration footprint of each computation

phase.

Proof After buddy partitioning, two arrays are regrouped when and only when they

are always accessed together. In other words, two arrays are combined when and only

when doing so does not introduce any useless data. Therefore, for any computation

phase after regrouping, no further array grouping is possible without introducing

useless data. Thus, the iteration footprint is minimal after data regrouping.

The size of a footprint directly affects cache performance because the more arrays

are accessed, the more active cache blocks are needed in cache, and therefore, the more

chances of premature eviction of useful data caused by either limited cache capacity

or associativity. For convenience, we refer to both cache capacity misses and cache

interference misses collectively as cache overhead misses. It is reasonable to assume

that the number of cache overhead misses is a non-decreasing function on the number

of active arrays. Intuitively, a smaller footprint should never cause more overhead

misses because a reduced number of active cache blocks can always be arranged so

that their conflicts with cache capacity and with each other do not increase. With this
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assumption, the following theorem proves that a minimal footprint leads to minimal

cache overhead.

Theorem 3.1 Given a program of n computation phases, where the

total number of cache overhead misses is a non-decreasing function on the

size of its iteration footprint k, then data regrouping minimizes the total

number of overhead misses in the whole program.

Proof Assuming the number of overhead misses in the n computation phases is

f1(k1), f2(k2), . . . , fn(kn), then the total amount of memory re-transfer is proportional

to f1(k1) + f2(k2) + . . .+ fn(kn). According to the previous lemma, k1, k2, . . . , kn are

the smallest possible after regrouping. Since all functions are non-decreasing, the sum

of overhead misses is therefore minimal after data regrouping.

The assumption made by the theorem covers a broad range of data access patterns

in real programs, including two extreme cases. The first is the worst extreme, where

no cache reuse happens, for example, in random data access. The total number

of cache misses is linear to the size of the iteration footprint since each data access

causes a cache miss. The other extreme is perfect cache reuse where no cache overhead

miss occurs, for example, in contiguous data access. The total number of repeated

memory transfer is zero. In both cases, the number of cache overhead misses is a non-

decreasing function on the size of the iteration footprint. Therefore, data regrouping

is optimal in both cases according to the theorem just proved.

In a similar way, data regrouping minimizes the overall TLB working set of a

program. Assuming arrays do not share the same memory page, the size of the

iteration footprint, i.e. the number of distinct arrays accessed by a computation

phase, is in fact the size of its TLB working set. Since the size of TLB working set is

a non-decreasing function over the iteration footprint, the same proof can show that

data regrouping minimizes the overall TLB working set of the whole program.

A less obvious benefit of data regrouping is the elimination of useless data by

grouping only those parts that are used by a computation phase of a program. The

elimination of useless data by array regrouping is extremely important for applications

written in languages with data abstraction features, as in, for example, C, C++, Java

and Fortran 90. In these programs, a data object contains many attributes, but only

a fraction of them is used in a given computation phase. Data regrouping will break

each attribute into a separate location and group only those that are used in a way

that is compile-time optimal for the whole program.
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In summary, the regrouping algorithm is optimal because it minimizes all iteration

footprints of a program. With the assumption that cache overhead is a non-decreasing

function over the size of iteration footprints, data regrouping achieves maximal cache

reuse and minimal TLB working set.

3.3.3 Multi-level Regrouping

The previous sections have been aimed at improving cache-block reuse and therefore

did not group data at granularity larger than an array element. This section overcomes

this limitation by grouping arrays at higher levels. The extension is beneficial because

optimizing the layout of array segments reduces cache interference and the page-table

working set.

The example program in Figure 3.3 illustrates multi-level data regrouping. Array

A and B are grouped at the element level to improve spatial reuse in cache blocks.

In addition, the columns of all three arrays are grouped so that each outer-loop

iteration accesses a contiguous segment of memory. Consider, for example, the data

access of the first iteration of the outer loop. The first inner loop iterates through

the first column D[1− 2, 1 . . . N, 1, 1]. Then the second inner loop traverses through

the second column D[1 . . . N, 2, 1]. Therefore, each outer-loop iteration accesses a

contiguous section of memory. Indeed, multi-level regrouping achieves contiguous

data access even for non-perfectly nested loops.

It should be noted that popular programming languages such as Fortran do not

allow arrays of non-uniform dimensions like those of array D. However, this is not a

problem when regrouping is applied by a back-end compiler. In addition as revealed

later in the evaluation chapter, source-level regrouping may negatively affect register

allocation of the back-end compiler. However, data regrouping does not change the

relationship of temporal reuse of any variable. The problem must be the confusion

caused solely by source-level changes. Therefore, the problem should be easily solved

if data regrouping is applied by the back-end compiler itself.

The algorithm for multi-level regrouping is shown in Figure 3.4. The first step of

MultiLevelRegrouping collects simultaneous data access at all array dimensions. Two

criteria are used to find the set of arrays accessed at a given dimension. The first is

necessary for the algorithm to be correct. The second criterion does not affect correct-

ness, but it make sure that the algorithm considers only those memory references that

access the whole array. The sets of arrays found for each data dimension correspond
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for i

  for j

    g( A[j,i], B[j,i] )

  end for

  for j

    t( C[j,i] )

  end for

end for

A[j,i] -> D[1,j,1,i]

B[j,i] -> D[2,j,1,i]

C[j,i] ->   D[j,2,i]

Figure 3.3 Example of multi-level data regrouping

to the computation phases for that dimension. The second step of the algorithm then

applies one-level regrouping for each data dimension. Subroutine OneLevelRegrouping

uses the partitioning algorithm discussed in Section 3.3.1 to regroup arrays at a single

data dimension. The correctness of multi-level regrouping is proved in the following

theorem. The purpose of the proof is to show that the grouping decision at a lower

level (e.g., grouping array a with b) does not contradicts the decision at a higher level

(e.g., separating a and b).

Theorem 3.2 If the algorithm in Figure 3.3 merges two arrays at data

dimension d, the algorithm must also group these two arrays at all dimen-

sions higher than d.

Proof It suffices to prove that if the algorithm groups two arrays at d, the two

arrays are always accessed together at dimensions higher than d. Suppose a loop l

exists where the two arrays are not accessed together at an outer dimension. Among

all references (of these two arrays) that are considered for dimension d, some of them

must be enclosed by loop l because l iterates through a dimension higher than d.

Since the two arrays are not always accessed together under loop l, the first step

of the algorithm must find a set for dimension d that contains only one of the two

arrays. Therefore, the two arrays will not be grouped at dimension d by the algorithm.

Contradiction.

3.4 Extensions

The previous section makes two restrictions in determining data regrouping. The first

is disallowing any useless data, and the second is assuming a static data layout with-

out dynamic data re-mapping. This section relaxes these two restrictions and gives
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Assumptions
arrays are stored in column-major order
only memory references to compatible arrays are considered

MutiLevelRegrouping
/* Step 1. find the subsets of arrays accessed in all loop levels */
for each loop i

examine all array references inside this loop, and
for each data dimension d, find the set s of arrays such that

(1) each array of s is accessed at all dimensions higher than or
equal to d by loop i and its outer loops, and

(2) each array of s is accessed at all other dimensions by the
inner loops of i

end for

/* Step 2. partition arrays for each data dimension */
for each data dimension d

let S be the collection of sets found in Step 2 for dimension d
let A be the set of all arrays
OneLevelRegrouping(A, S, d)

end for
end MultiLevelRegrouping

OneLevelRegrouping(A: all arrays, S: subsets of A, d: current dimension)
let N be the size of A

/* construct a bit vector for each subset */
for each subset s in S

construct a bit vector b of length N
for i from 1 to N

if (array i is in s) b[i]=1 otherwise b[i]=0
end for

end for

/* partition arrays */
sort all bit vectors using radix sort
group arrays that have the same bit vector at dimension d

end OneLevelRegrouping

Figure 3.4 Algorithm for multi-level data regrouping
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modified solutions. In addition, this section expands the scope of data regrouping to

minimizing not only memory reads but also memory writebacks.

3.4.1 Allowing Useless Data

Sometimes allowing useless data may lead to better performance. An example is the

first program in Figure 3.5. Since the first loops is executed 100 times more often

than the second loop, it is very likely that the benefit of grouping A and B in the

first loop exceeds the overhead of introducing useless data in the second loop.

Allowing useless data

for step=1, t
for i=1, N

Foo(A[i], B[i])

for i=1, N
Bar(A[i])

end for

end for
end for

Allowing dynamic data remapping

Foo(A[i], B[i])

for step=1, t
for i=1, N

end for
end for

for step=1, t
for i=1, N

Bar(A[i])
end for

end for

Figure 3.5 Examples of extending data regrouping

However, the tradeoff depends on the exact performance gain due to data re-

grouping and the performance loss due to useless data. Both the benefit and cost

are machine dependent. Therefore, not to include useless data is in fact compile-time

optimal because otherwise regrouping cannot guarantee profitability. In practice, the

implementation of data regrouping considers only frequently executed computation

phases. It applies data regrouping only on loops that are inside a time-step loop.

When the exact run-time benefit of regrouping and the overhead of useless data

are known, the problem of optimal regrouping can be formulated with a weighted,

undirected graph, called a data-regrouping graph. Each array is a node in the graph.

The weight of each edge is the run-time benefit of regrouping its two end nodes minus

the overhead of such grouping. The goal is to pack arrays that are most beneficial

into the same cache block. However, the packing problem on a data-regrouping graph

is NP-hard because it can be reduced from the G-partitioning problem[KH78].
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3.4.2 Allowing Dynamic Data Regrouping

Until now, data regrouping uses a single data layout for the whole program. An

alternative strategy is to allow dynamic regrouping of data between computation

phases so that the data layout of a particular phase can be optimized without worrying

about the side effects in other phases. An example is the program in the right-hand

side of Figure 3.5. The best strategy may be to group A and B at the beginning of

the program and then separate these two arrays after the first time-step loop.

As in the case of allowing useless data, the profitability of dynamic regrouping

depends on the exact benefit of data grouping and the overhead of run-time read-

justment, both of which are machine dependent. Therefore, not to use dynamic

regrouping is compile-time optimal because it never causes negative performance im-

pact. A possible extension is to apply data regrouping within different time-step loops

and insert dynamic data regrouping in between.

When the precise benefit of regrouping and the cost of dynamic re-mapping

is known, the problem can be formulated in the same way as the one given by

Kremer[Kre95]. In his formulation, a program is separated into computation phases.

Each data layout results in a different execution time for each phase plus the cost of

changing data layouts among phases. The optimal layout, either dynamic or static, is

the one that minimizes the overall execution time. Without modification, Kremer’s

formulation can model the search space of all static or dynamic data-regrouping

schemes. However, as Kremer has proved, finding the optimal layout is NP-hard.

Since the search space is generally not large, he successfully used 0-1 integer pro-

gramming to find the optimal data layout. The same method can be used to find the

optimal data regrouping when dynamic regrouping is allowed.

3.4.3 Minimizing Data Writebacks

On machines with insufficient memory bandwidth, data writebacks impede memory

read performance because they consume part of the available memory bandwidth.

To avoid unnecessary writebacks, read-only data should not be in the same cache

block as modified data otherwise read-only data will be unnecessarily written back.

Therefore, data regrouping should not combine arrays unless they are all read-only or

all modified in any computation phase. This new requirement can be easily enforced

as follows. For each computation phase, split the accessed arrays into two disjoint

subsets: the first is the set of read-only arrays and the second is the modified arrays.
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Treat each subset as a distinctive computation phase and then apply the partitioning.

As a result, two arrays are grouped if and only if they are always accessed together,

and the type of the access is either both read-only or both modified. With this

extension, data regrouping finds the largest subsets of arrays that can be grouped

without introducing useless data or redundant writebacks. Note that two arrays are

grouped does not mean they must be read-only or modified throughout the whole

program. They can be both read-only in some phases and both modified in other

phases.

The above extension can be easily included into the multi-level data regrouping

algorithm given in Figure 3.4. In its first step, if the data dimension is the innermost

dimension, the algorithm will split each set s into two sets, one with all read-only

arrays and one with modified arrays. The regroupings at higher dimensions are not

affected because they cannot interleave data into the same cache block. All other

aspects of the algorithm are also unchanged.

When redundant writebacks are allowed, data regrouping can be more aggressive

by first combining data solely based on data access and then separating read-only and

modified data within each partition. The separation step is not easy because different

computation phases read and write a different set of arrays. The general problem can

be modeled with a weighted, undirected graph, in which each array is a node and

each edge has a weight labeling the combined effect of both regrouping and redundant

writebacks. The goal of regrouping is to pack nodes into cache blocks to maximize

the benefit. As in the case of allowing useless data, the packing problem here is also

NP-hard because it can be reduced from the G-partitioning problem[KH78].

3.5 Summary

This chapter has developed inter-array data regrouping, a global data transformation

that first splits and then regroups all arrays to achieve maximal inter-array spatial

reuse. The compiler first divides a program into computation phases and then par-

titions arrays into compatible sets. Data regrouping is applied within a compatible

set. Two arrays are grouped if and only if they are always accessed together. The

algorithm for regrouping is efficient; its time complexity is O(V ∗A), where V is the

length of the program and A is the number of data structures in the program. In the

case of high dimensional data arrays, data grouping is applied at a hierarchy of levels

to maximize the degree of contiguous access at each loop level.
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The regrouping method is conservative because it never interleaves useful data

with useless data at any moment of computation. Therefore it guarantees profitabil-

ity. When useless data and dynamic regrouping are prohibited, the regrouping algo-

rithm is also optimal. The relaxation of either constraint makes optimal data layout

dependent on the exact run-time effect of a data transformation, which makes the

result machine dependent. In contrast, the conservative regrouping achieves the best

machine-independent data layout, that is, the compile-time optimal solution. In ad-

dition, the chapter proved that relaxing either constraint leads to NP-hard problems.

Data regrouping can be extended to avoid unnecessary memory writebacks by

separating read-only access and read-write access into different cache blocks. The

extension has been incorporated in the overall algorithm of multi-level, inter-array

data regrouping.

Global data regrouping enables users to define data structures in their own style

without worrying about their impact on performance. Programmers should not at-

tempt data optimizations because the optimal array layout depends on the computa-

tion structure of the program. Manual transformation would have to readjust every

time the program changes. With inter-array data regrouping described in this chap-

ter, a compiler can now derive the optimal data layout regardless of the initial choice

of users. Indeed, data regrouping is a perfect job for an automatic compiler and a

compiler can do it perfectly.
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Chapter 4

Run-time Cache-reuse Optimizations

4.1 Introduction

The previous chapters have assumed that both the data structure and its access

pattern are fixed and are known to a compiler. A large class of applications, however,

employs extensible data structures whose shape and content are constructed and

changed at run time. An example is molecular dynamics simulation, which models the

movement of particles in some physical domain (e.g. a 3-D space). The distribution

of molecules remains unknown until run time, and the distribution itself changes

during the computation. Another example is sparse linear algebra, where the non-

zero entries in a sparse matrix change dynamically. Because of their non-uniform and

unpredictable nature, they are called irregular and dynamic applications.

Irregular and dynamic applications pose two new problems for cache optimization.

First, since a compiler knows neither the data and its access, optimizations cannot be

applied at compile-time. In addition, since the computation evolves during the exe-

cution, no fixed program organization is likely to perform well at all times. Therefore,

a program may have to be transformed multiple times during the execution.

This chapter studies run-time optimizations for improving cache reuse in irregular

and dynamic applications. Specifically, it presents the run-time version of compu-

tation fusion and data grouping—locality grouping and data packing. The first half

of the chapter describes and evaluates these two transformations. The second half

is devoted to the compiler support for dynamic data packing. It first presents the

compiler analysis that automatically detects all opportunities of data packing. Since

switching among different data layouts at run time carries a significant overhead, two

compiler optimizations are then introduced to eliminate most of this overhead.
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4.2 Locality Grouping and Data Packing

This section describes two run-time transformations: locality grouping, which fuses

dynamic computations on the same data item; and dynamic data packing, which

then groups data items that are used together. Both transformations are evaluated,

individually and combined, through various access sequences on simulated caches.

4.2.1 Locality Grouping

The effectiveness of cache is predicated on the existence of locality and good compu-

tation structure exploiting that locality. In a dynamic application such as molecular

dynamics simulation, the locality comes directly from its physical model in which

a particle interacts only with its neighbors. A set of neighboring particles forms a

locality group in which most interactions occur within the group. In most programs,

however, locality groups are not well separated. Although schemes such as domain

partitioning and space-fitting curve ordering exist for explicitly extracting locality,

they are time-consuming and may therefore not be cost-effective in improving cache

performance of a sequential execution. Another limitation of previous work is that it

relies on user knowledge and manual program transformation. To pursue a faster al-

gorithm and a general program transformation model, this section presents the most

efficient, yet also most general reordering scheme, locality grouping.

Given a sequence of independent computations, locality grouping clusters those

sharing access to the same data. Figure 4.1(a) shows an example input to a N-body

simulation program. Graph (a) draws three example objects and their interactions

and Graph (b) is the example sequence of all interactions, which are independent

computations. Assuming a cache of 3 objects, the example sequence incurs 10 misses.

Locality grouping reorders the sequence so that all computations on the same object

are clustered. The new sequence starts with all interactions on object a, then b, until

the last object g. The locality-grouped access sequence incurs only 6 misses.

Locality grouping incurs minimal run-time overhead. It consists of a two-pass

radix sort: the first pass collects a histogram and the second pass produces the

locality-grouped sequence. Locality grouping is widely applicable and can optimize

any set of independent computations. A compiler can automate locality grouping

by identifying parallel computations and inserting a call to a run-time library. The

legality and profitability of locality grouping can be determined either by compiler
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Figure 4.1 Example of locality grouping

analysis or user directives. One example use of user directive is presented in detail in

the second half of this chapter.

The remainder of the section evaluates locality grouping on a data set from mesh,

a structural simulation. The data set is a list of edges of a mesh structure of some

physical object such as an airplane. Each edge connects two nodes of the mesh. This

specific data set, provided by the Chaos group at University of Maryland, has 10K

nodes and 60K edges. The experiment simulates only the data accesses on a fully

associative cache in order to isolate the inherent cache reuse behavior from other

factors. In fact, the simulation is very similar to the one used in Section 2.2, which

measures the reuse distance of repeated data access. The cache misses are the reuses

whose reuse distance is greater than or equal to cache size. The specific cache sizes

measured are 2K and 4K objects. The cache uses unit-length cache lines.

Figure 4.2 gives the miss rate ofmesh with and without locality grouping. Locality

grouping eliminates 96.9% of cache misses in the 2K cache and 99.4% in the 4K cache.

The miss rates after locality grouping are extremely low, especially in the 4K cache

(0.37%). Further decreasing miss rate with more powerful reordering schemes in this

case is unlikely to be cost-effective if the overhead of extra execution time does not

out-weigh the additional gain.

Original After locality grouping
miss rate 2K cache 4K 2K cache 4K
of mesh 93.2% 63.5% 2.93% 0.37%

Figure 4.2 Effect of locality grouping
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4.2.2 Dynamic Data Packing

Correct data placement is critical to effective use of available memory bandwidth.

Dynamic data packing is a run-time optimization that groups data accessed at close

intervals in the program into the same cache line. For example, if two objects are

always accessed consecutively in a computation, placing them adjacent to each other

increases bandwidth utilization by increasing the number of bytes on each line that

are used before the line is evicted.

Figure 4.3 will be used as an example throughout this section to illustrate the

packing algorithms and their effects. Figure 4.3(a) shows an example access sequence.

The objects are numbered by their location in memory. In the sequence, the first

object interacts with the 600th and 800th object and subsequently the latter two

objects interact with each other. Assume that the cache size is limited and the access

to the last pair of the 600th and 800th objects cannot reuse the data loaded at the

beginning. Since each of these three objects is on different cache lines, the total

number of cache misses is 5. A transformed data layout is shown in Figure 4.3(b),

where the three objects are relocated at positions 0 to 2. Assuming a cache line can

hold three objects, the transformed layout only incurs two cache misses, a significant

reduction from the previous figure of 5 misses.

Runtime data

packing

(0 800)
(0 600)

...

(600 800)

(0 1)
(0 2)

...

(2 1)

same cache line

(1 2) fall into the
data set 

larger than

cache

(a) Example interaction list

before packing

(b) Interaction list

after packing

5 cache misses 2 cache misses

Figure 4.3 Example of data packing

The rest of this section presents three packing algorithms and a comparison study

of their performance on different types of run-time inputs.
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Packing Algorithms

The simplest packing strategy is to place data in the order they first appear in the

access sequence. I call this strategy consecutive packing or first-touch packing. The

packing algorithm is shown in Figure 4.4. To ensure that each object has one and

only one location in the new storage, the algorithm uses a tag for each object to label

whether the object has been packed or not.

initializing each tag to be false (not packed)
for each object i in the access sequence

if i has not been packed
place i in the next available location
mark its tag to be true (packed)

end if
end iteration
place the remaining unpacked objects

Figure 4.4 Algorithm of consecutive data packing

Consecutive packing carries a minimal time and space overhead because it tra-

verses the access sequence and object array once and only once. For access sequences

in which each object is referenced at most once, consecutive packing yields optimal

cache line utilization because the objects are visited in stride-one fashion during the

computation. Achieving an optimal packing in the presence of repeated accesses, on

the other hand, is NP-complete, as this problem can be reduced to the G-partition

problem[KH78] following a similar reduction by Thabit[Tha81]. The packing algo-

rithms presented in this section are therefore based on heuristics.

One shortcoming of consecutive packing is that it does not take into account the

different reuse patterns of different objects. Group packing attempts to overcome

this problem by classifying objects according to their reuse pattern and applying

consecutive packing within each group. In the example in Figure 4.3(b), the first

object is not reused later but the 600th and 800th object are reused after a similar

interval. Based on reuse patterns, group packing puts the latter two objects into a

new group and packs them separately from the first object. If we assume a cache line

of two objects, consecutive packing fails to put the latter two objects into one cache

line but group packing succeeds. As a result, consecutive packing yields four misses

while group packing incurs only three.
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The key challenge for group packing is how to characterize a reuse pattern. The

simplest approach is to use the average reappearance distance of each object in the

access sequence, which can be efficiently computed in a single pass. More complex

characterizations of reuse patterns may be desirable if a user or compiler has addi-

tional knowledge on how objects are reused. However, more complex reuse patterns

may incur higher computation costs at run time.

The separation of objects based on reuse patterns is not always profitable. It is

possible that two objects with the same reuse pattern are so far apart in the access

sequence so that they can never be in cache simultaneously. In this case, we do

not want to pack them together. To solve this problem, we need to consider the

distance between objects in the access sequence as well as their reuse pattern. This

consideration motivates the third packing algorithm, consecutive-group packing.

Consecutive-group packing groups objects based on the position of their first ap-

pearance. For example, it first groups the objects appeared in the first N positions

in the access sequence, then the objects in the next N positions, and so on until the

end of the access sequence. The parameter N is the consecutive range. Within each

range group, objects can then be reorganized with group packing.

The length of the consecutive range determines the balance between exploiting

closeness and exploiting reuse patterns. When the consecutive range is 1, data packing

is the same as consecutive packing. When the range is the full sequence, the packing is

the same as group packing. In this sense, these three packing algorithms are actually

one single packing heuristic with different parameters.

Evaluation of Packing Algorithms

All three packing algorithms are evaluated on mesh and another input access stream

which is extracted from moldyn, a molecular dynamics simulation program. The

Moldyn program initializes approximately 8K molecules with random positions. As

before, the experiment simulated only the data access on a fully associative cache.

The group packing classifies objects by their average reappearance distance; it is

parameterized by its distance granularity. A granularity of 1000 means that objects

whose average reappearance distance fall in each 1000-element range are grouped

together. Consecutive-group packing has two parameters: the first is the consecutive

range, and the second is the grouping packing algorithm used inside each range.
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Figure 4.5 Moldyn and Mesh, on 2K and 4K cache

The four graphs in Figure 4.5 show the effect of packing on the moldyn and

mesh data sets. The upper-left graph draws the miss rate on a 4K-sized cache for

different cache line sizes from 1 to 16 molecules long. The miss rate of the original data

layout, shown by the first bar of each cluster, increases dramatically as cache lines get

longer. The cache with 16-molecule cache lines incurs 6 times the number of misses

of the unit-line cache. Since the total amount of memory transfer is the number

of misses times cache line size, the 16-molecule cache lines result in 96 times the

memory transfer volume of the unit cache line case—it is wasting 99% of the available

memory bandwidth! Even 2-molecule cache lines waste over 80% of available memory

bandwidth. After various packing algorithms are applied, however, the miss rates drop

significantly, as indicated in the remaining four bars in each cluster. Consecutive

packing reduces the miss rate by factors ranging from 7.33 to over 26. Because

of the absence of consistent reuse pattern, group and consecutive-group packing do

not perform as well as consecutive packing but nevertheless reduce the miss rate

by a similar amount. The upper-right graph shows the effect of packing on a 2K
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cache, which is very similar to the 4K cache except that the improvement is smaller.

Consecutive packing still performs the best and reduces the miss rate by 27% to a

factor of 3.2.

The original access sequence of the mesh data set has a cyclic reuse pattern and

a very high miss rate; see, for example, 64% on the 4K cache, shown in the lower-

left graph of Figure 4.5. Interestingly, the cyclic data access pattern scales well on

longer cache lines, except at the size of 8. Data packing, however, evenly reduces

miss rate on all cache line sizes, including the size of 8. At that size, packing im-

proves from 29% to 46%. On other sizes, consecutive packing and group packing

yield slightly higher miss rates than the original data layout. One configuration,

consecutive-group(1K,group(150)), is found to be the best of all; it achieves the low-

est miss rate in all cases, although it is only marginally better on sizes other than

8. Similar results are seen on a 2K cache, shown by lower-right graph in Figure 4.5.

The same version of consecutive-group packing reduces miss rate by 1% to 39%. It

should be noted that the result of consecutive-group packing is very close to the ideal

case where the miss rate halves when cache line size doubles. As shown in the next

section, dynamic packing, when combined with locality grouping, can reduce the miss

rate to as low as 0.02%.

4.2.3 Combining Computation and Data Transformation

When locality grouping is combined with data packing on mesh (moldyn was already

in locality-grouped form), the improvement is far greater than when they are individ-

ually applied. Figure 4.6 shows miss rates of mesh after locality grouping. On a 4K

cache, the miss rate on a unit-line cache is reduced from 64% to 0.37% after locality

grouping. On longer cache-line sizes, data packing further reduces the miss rate by

15% to a factor of over 6. On the 16-molecule cache line case, the combined effect is

a reduction from a miss rate of 4.52% (shown in Figure 4.5) to 0.02%, a factor of 226.

On a 2K cache with 16-molecule cache lines, the combined transformations reduce

miss rate from 7.48% to 0.25%, a factor of 30. Although not shown in the graph,

group and consecutive-group packing do not perform as well as consecutive packing.

In summary, the simulation results show that locality grouping effectively extracts

computation locality, and data packing significantly improves data locality. The effect

of data packing becomes even more pronounced in caches with longer cache lines. In

both programs, simple consecutive packing performs the best after locality grouping,
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Figure 4.6 Mesh after locality grouping

and the combination of locality grouping and consecutive packing yields the lowest

miss rate.

4.3 Compiler Support for Dynamic Data Packing

Run-time data transformations, dynamic data packing in particular, involve redi-

recting memory accesses to each transformed data structure. Such run-time changes

complicate program transformations and induce overhead during the execution. This

section first illustrates the process of data packing and the two optimizations that

reduce packing overhead. More important is the compiler analysis that identifies all

opportunities for data packing and its optimizations. The compiler analysis itself can

guarantee correctness, but it still relies on a user to hint on profitability. The last

section extends the compiler framework to collect run-time feedback and to automate

the profitability analysis.

4.3.1 Packing and Packing Optimizations

The core mechanism for supporting packing is a run-time data map, which maps from

the old location before data packing to the new location after data packing. Each

access to a transformed array is augmented with the indirection of the corresponding

run-time map. Thus the correctness of packing is ensured regardless the location

and the frequency of packing. Some existing language features such as sequence

and storage association in Fortran prevent a compiler from accurately detecting all
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accesses to a transformed array. However, this problem can be safely solved in a

combination of compile, link and run-time checks described in[CCC+97].

Although the compiler support can guarantee the correctness of packing, it needs

additional information to decide on the profitability of packing. Our compiler cur-

rently relies on a one-line user directive to specify whether packing should be applied,

when and where packing should be carried out and which access sequence should

be used to direct packing. The packing directive provides users with full power of

controlling data packing, yet relieves them from any program transformation work.

The last part of this section will show how the profitability analysis of packing can

be automated without relying on any user-supplied directive.

A simplified dynamic program is given in Figure 4.7 to illustrate our compiler

support for data packing. The kernel of Moldyn has two computation loops: the first

loop calculates cumulative forces on each object, and the second loop calculates the

new location of each object as a result of those forces. The packing directive specifies

that packing is to be applied before the first loop.

Packing Directive: apply packing using interactions

for each pair (i,j) in interactions
calculate_force( force[i], force[j] )

end for

for each object i
update_location( location[i], force[i] )

end for

Figure 4.7 Moldyn kernel with a packing directive

The straightforward (unoptimized) packing produces the code shown in Figure 4.8.

The call to apply packing analyzes the interactions array, packs force array and

generates the run-time data map, inter$map. After packing, indirections are added

in both loops.

The cost of data packing includes both data reorganization during packing and

data redirection after packing. The first cost can be balanced by adjusting frequency

of packing. Thus the cost of reorganizing data is amortized over multiple computation

iterations. A compiler can make sure that this cost does not outweigh any performance
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apply_packing( interactions[*], force[*], inter$map[*])
for each pair (i,j) in the interaction array

calculate_force( force[ inter$map[i] ],
force[ inter$map[j] ] )

end for

for each object i
update_location(location[i], force[ inter$map[i] ])

end for

Figure 4.8 Moldyn kernel after data packing

gain by either applying packing infrequently or making it adjustable at run time. As it

will be shown in Chapter 6, data reorganization incurs negligible overhead in practice.

Data indirection, on the other hand, can be very expensive, because its cost is

incurred on every access to a transformed array. The indirection overhead comes

from two sources: the instruction overhead of indirection and the references to run-

time data maps. The indirection instructions have a direct impact on the number of

memory loads but the overhead becomes less significant in deeper memory hierarchy

levels. However, the cost of run-time data maps has an consistent effect on all levels

of cache, although this cost is likely to be small in cases where the same data map

is shared by many data arrays. In addition, as shown next, the cost of indirection

can be almost entirely eliminated by two compiler optimizations, pointer update and

array alignment.

Pointer update modifies all references to transformed data arrays so that the

indirections are no longer necessary. In the above example, this means that the

references in interactions array are changed so that the indirections in the first loop

can be completely eliminated. To implement this transformation correctly, a compiler

must (1) make sure that every indirection array is associated with only one run-time

data map and (2) when packing multiple times, maintain two maps for each run-time

data map, one maps from the original layout and the other maps from the most recent

data layout.

The indirections in the second loop can be eliminated by array alignment, which

reorganizes the location array in the same way as the force array, that is, aligns the

i’s element of both arrays. Two requirements are necessary for this optimization to

be legal: (1) the loop iterations can be arbitrarily reordered, and (2) the range of
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loop iterations is identical to the range of re-mapped data. The second optimization,

strictly speaking, is more than a data transformation because it reorders loop itera-

tions. However, the reordering preserves all data dependences and therefore preserves

full numerical accuracy of an application.

The example code after applying pointer update and array alignment is shown in

Figure 4.9. The update map array is added to map data from the last layout to the

current layout. After the two transformations, all indirections through the inter$map

array have been removed.

apply_packing( interactions[*], force[*],
inter$map[*], update_map[*] )

update_indirection_array( interactions[*],
update_map[*] )

transform_data_array(location[*], update_map[*])

for each pair (i,j) in interactions
calculate_force( force[i], force[j] )

end for

for each object i
update_location( location[i], force[i] )

end for

Figure 4.9 Moldyn kernel after packing optimizations

The overhead of array alignment can be further reduced by avoiding packing those

data arrays that are not live at the point of data packing. In the above example, if

the location array does not carry any live values at the point of packing, then the

third call, which transforms location array, can be removed.

4.3.2 Compiler Analysis and Instrumentation

The first step of the compiler support is to find what I call primitive packing groups.

A primitive packing group contains two sets of arrays: the set of access arrays, which

hold the indirect access sequence, and the set of data arrays, which are either indi-

rectly accessed through the first set of arrays or alignable with some arrays that are

indirectly accessed.
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Primitive packing groups are identified as follows. For each indirect access, the

compiler finds the two arrays that are involved. They are an indirect access pair, and

they form a primitive packing group. For each loop, if its iterations can be arbitrarily

reordered, all accessed arrays are in an alignment group, and they form a primitive

packing group where the access array set is empty. An indirect access pair and an

alignment group of the Moldyn kernel are shown in Figure 4.10.

Figure 4.10 Primitive packing groups in Moldyn

After finding all primitive packing groups, the compiler partitions these groups

into disjoint packing partitions. Two primitive packing groups are disjoint if they do

not share any array between their access array sets and between their data array sets.

A union-find algorithm can efficiently perform the partitioning.

After partitioning, each disjoint packing partition is a packing candidate. The

compiler then chooses those candidates that contain arrays specified in user directives.

The two packing optimizations are readily applied on any packing candidate, should

it become the choice of packing. Pointer update changes all arrays in the access array

set; array alignment transforms all arrays in the data array set and reorders the loops

that access aligned arrays.

The use of packing optimizations needs to be restricted if a packing candidate

has inconsistent requirements for array alignment and pointer update. The checks

for correctness are as follows. A data array can be reordered if all optimizations

agree on a single layout; an access array can be updated if all its indirections point

to data arrays of the same layout, or equivalently, if all its update requirement are
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the same. The optimizations are disabled for arrays with conflicting transformation

requirements.

The correctness of array alignment requires one additional check, which is that

any reordered loop must traverse the full range of all transformed arrays within the

loop. If a compiler knows the exact bounds of such loops, it can restrict packing to

reorder only within that range. Otherwise, a compiler must check at run time whether

the range requirement is met before a loop, and if not, fall back to the unoptimized

version with data indirections.

Whenever the packing optimizations are not applicable or are disabled, the com-

piler inserts indirections through run-time maps to all accesses to the transformed

data. The overall process of compiler analysis and instrumentation is summarized in

Figure 4.11.

Figure 4.11 Compiler indirection analysis and packing optimization

The compiler analysis does not assume any outside knowledge of a program and

its data structures. Yet it is powerful enough to identify all data indirections. In fact,

the packing candidates form an indirect access graph, which identifies all data arrays

as well as pointer arrays at different levels. For example, in a program with two-level

indirections, an array of first-level pointers is not only an access array in one packing

candidate but also a data array in another packing candidate. Both data and pointer

arrays can be packed, and packing at one level is independent from all other levels.
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4.3.3 Extensions to Fully Automatic Packing

Although the one-line packing directive is convenient when a user knows how to apply

packing, the mandatory requirement for such a directive is not desirable in situations

when a user cannot make an accurate judgement on the profitability of packing.

This section discusses several straightforward extensions that can fully automate the

profitability analysis, specifically, extensions that decide whether, where, and when

to apply packing.

With the algorithm described in the previous section, a compiler can identify all

packing candidates. For each candidate, the compiler can record the access sequence

at run time and determine whether it is non-contiguous and, if so, whether packing

can improve its spatial reuse. Such decisions depend on program inputs and must

be made with some sort of run-time feedback system. In addition, the same data

may be indirectly accessed by more than one access sequence, each may demand a

different reorganization scheme. Again, run-time analysis is necessary to pick out the

best packing choice.

Once the compiler chooses a packing candidate, it can place packing calls right

before the place where the indirect data accesses begin. The placement requires

finding the right loop level under which the whole indirect access sequence is iterated.

The frequency of packing can also be automatically determined. One efficient

scheme is to monitor the average data distance in an indirect access sequence and

only invoke packing routines when adjacent computations access data that are too far

apart in memory. Since the overhead of data reorganization can be easily monitored

at run-time, the frequency of packing can be automatically controlled to balance the

cost of data reorganization.

4.4 Summary

This chapter has presented two new techniques, locality grouping and data packing,

which are the run-time version of computation fusion and data grouping. Two goals

have been achieved: to find the optimizations that are cost-effective at run time, and

to use a compiler to automate these optimizations and to reduce their overhead.

Locality grouping brings together all the computation units involving the same

data element. Its time and space cost is linear to the number of computation units.

It is the least expensive among all existing reordering schemes, yet it is shown to be

very powerful in a simulation study, leaving little room for additional improvement by
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more expensive methods. Furthermore, locality grouping is vital for the subsequent

data transformation to be effective.

Data packing clusters simultaneously used data elements into adjacent memory

locations. Since optimal data packing is NP-complete, the chapter presented and

evaluated three heuristic-based packing algorithms and found that simple consecutive

packing (at linear time and space cost) performs best when carried out after locality

grouping. When evaluated on a real data set, the combined computation and data

transformation reduced memory traffic by a factor of over 200.

More importantly, this chapter described a general compiler support for run-time

data transformations such as data packing. The core is an analysis algorithm for

detecting the structure of indirect data access in a program. This compiler analysis

serves two important purposes. The first is to automatically identify all opportunities

for data packing. The second is to enable two optimizations, pointer update and array

alignment, which eliminate data indirections after run-time data relocation. After a

new data layout is constructed by data packing, pointer update modifies the content

of an access array to redirect it to point to the new data layout. Array alignment

transforms other related arrays into the same data layout as the packed arrays so

that the full traversal of both groups of arrays can be made contiguous.
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Chapter 5

Performance Tuning and Prediction

5.1 Introduction

The preceding chapters have developed automatic compiler transformations that min-

imize the overall memory transfer. Although effective, automatic optimizations are

not fully satisfactory for two reasons. First, a compiler may fail to optimize some

part of a program because of either imprecise analysis or imperfect transformations.

As compilers are taking an increasingly important role in optimizing the deep and

complex memory hierarchy, their failure also becomes more dangerous and may lead

to serious performance slowdown. The second limitation of compiler optimizations is

their inability to provide estimation for program execution time, although such esti-

mates would be extremely helpful in subsequent parallelization and task scheduling.

To overcome these two limitations, a compiler needs to provide support for perfor-

mance tuning and prediction. The former detects and locates performance problems

and therefore allows effective user tuning; the latter estimates the execution time of

various program units and thus enables efficient concurrent execution.

In the past, various performance tools have been developed to support user tun-

ing and performance prediction. However, existing tools have not been effective in

practice because they either do not consider memory hierarchy or do so by pursuing

the difficult measurement of memory latency. Since the exposed latency of a mem-

ory reference is determined by many factors of a machine and a program, previous

tools have to rely on detailed machine simulations. Not only are simulations expen-

sive, machine-specific and error-prone, but they also cannot predict memory hierarchy

performance.

To provide a practical performance tool, this chapter investigates a bandwidth-

based approach. Because memory bandwidth is the bottleneck, program performance

is largely determined by its memory bandwidth utilization. On the one hand, mem-

ory bandwidth utilization determines machine utilization because the consumption

of the bottleneck resource determines the consumption of the whole system. On the



84

other hand, memory transfer time determines program execution time because the

time spent on crossing the bottleneck is the time spent on crossing the whole system.

Therefore, we can monitor program performance based on its memory bandwidth uti-

lization, and we can predict its performance based on its memory transfer time. Based

on these two observations, the following sections present the design of a bandwidth-

based performance tool, describe its use in performance tuning and predictions, and

discuss several extensions for more accurate analysis.

5.2 Bandwidth-based Performance Tool

The bandwidth-based performance tool takes as input, a source program along with

its inputs and parameters for the target machine. It first estimates the total amount of

data transfer between memory and cache. This figure is then used to either predict the

performance without running the program or locate memory hierarchy performance

problems given the actual running time. Figure 5.1 shows the structure of the tool,

as well as its inputs and outputs.

5.2.1 Data Analysis

The core support of the tool is the data analysis that estimates the total amount of

data transfer between memory and cache. First, a compiler partitions the program

into a hierarchy of computation units. A computation unit is defined as a segment of

the program that accesses data larger than cache. Given a loop structure, a compiler

can automatically measure the bounds and stride of array access through, for example,

interprocedural bounded-section analysis developed by Havlak and Kennedy[HK91].

The bounded array sections is then used to calculate the total amount of data access

and to determine whether the amount is greater than the size of the cache. The

additional amount of memory transfer due to cache interference can be approximated

by the technique given by Ferrante et al[FST91]. Once a program is partitioned into

a hierarchy of computation units, a bottom-up pass is needed to summarize the total

amount of memory access for each computation unit in the program hierarchy until

the root node—the whole program.

Since exact data analysis requires precise information on the bounds of loops and

coefficients of array access, the analysis step needs to have run-time program input

to make the correct estimation, especially for programs with varying input sizes. In

certain cases, however, the number of iterations is still unknown until the end of
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Figure 5.1 Structure of the performance tool

execution. An example is an iterative refinement computation, whose termination

point is determined by a convergence test at run time. In these cases, the analysis

can represent the total amount of memory access as a symbolic formula with the

number of iterations as an unknown term. A compiler can still successfully identify

the amount of data access within each iteration and provide performance tuning and

prediction at the granularity of one computation iteration.

5.2.2 Integration with Compiler

Since all data-analysis steps are performed statically, the performance tool can be

integrated into the program compiler. In fact, an optimizing compiler may already

have these analyses built in. So including this tool into the compiler is not only feasible

but also straightforward. Although the tool requires additional information about the

run-time program inputs, the data analysis can proceed at compile time with symbolic

program inputs and then re-evaluate the symbolic results before execution.

The integration of the tool into the compiler is not only feasible but also prof-

itable for both the tool and the compiler. First, the tool should be aware of certain

compiler transformations such as data-reuse optimizations because they may change

the actual amount of memory transfer. The most notable is global fusion and data

grouping, presented in previous chapters, which can radically change the structure of

both the computation and data of a program and can reduce the overall amount of

memory transfer by integral factors. The performance tool must know these high-level

transformations for it to obtain an accurate estimate of memory transfer.
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In addition to helping data analysis, the integration of the tool helps the compiler

to make better optimization decisions. Since the tool has the additional knowledge

of the program inputs, it can supply this information into the compiler. The precise

knowledge of run-time data and machine parameters is often necessary to certain

compiler optimizations such as cache blocking and array padding. Therefore, the

integration of the compiler and the performance tool improves not only the accuracy

of the performance tool but also the effectiveness of the compiler.

5.3 Performance Tuning and Prediction

Performance Tuning

In bandwidth-based performance tuning, a compiler searches for computation units

that have abnormally low memory bandwidth utilization. Because of memory band-

width bottleneck, a low bandwidth utilization implies a low utilization of all other

hardware resources, therefore signaling an opportunity for tuning. A compiler can

automatically identify all such tuning opportunities in the following two steps.

1. The first step executes the program and collects the running time of all its com-

putation units. The achieved memory bandwidth is calculated by dividing the

data transfer of each computation unit with its execution time. The achieved

memory bandwidth is then compared with machine memory bandwidth to ob-

tain the bandwidth utilization.

2. Second, the tool singles out the computation units that have low memory band-

width utilization as candidates for performance tuning. For each candidate, the

tool calculates the potential performance gain as the difference between the cur-

rent execution time and the predicted execution time assuming full bandwidth

utilization. The tuning candidates are ordered by their potential performance

gain and then presented to a user.

Bandwidth-based performance tuning requires no special hardware support or

software simulation. It is well suited for different machines and compilers because the

use of actual running time includes the effect of all levels of compiler and hardware

optimizations. Therefore, it is not only automatic, but also accurate and widely

applicable.
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Bandwidth-based performance tuning does not necessarily rely on compiler-directed

data analysis when applied on machines with hardware counters such as MIPS R10K

and Intel Pentium III. The hardware counters can accurately measure the number

and the size of memory transfers. With these counters, bandwidth-based tuning can

be applied to programs that are not amenable to static compiler analysis. However,

compiler analysis should be used whenever feasible for three reasons. First, source-

level analysis is necessary to partition a program into computation units and help

a user to understand the performance at the source level. Second, static analysis

is more accurate for tuning because it can identify the problem of excessive conflict

misses, while hardware counters cannot distinguish different types of misses. Third,

the compiler-directed analysis is more portable because it can be applied to all ma-

chine architectures including those with no hardware counters.

Performance Prediction

When a program uses all or most of machine memory bandwidth, its execution time

can be predicted by its estimated memory-transfer time, that is, by dividing the total

amount of memory transfer with the available memory bandwidth. This bandwidth-

based prediction is simple, accurate and widely applicable to different machines, ap-

plications and parallelization schemes.

The assumption that a program utilizes all available bandwidth is not always

true—some parts of the program may have a low memory throughput even after

performance tuning. However, low memory throughput should happen very infre-

quently and it should not seriously distort the overall memory bandwidth utilization.

The variations in the overall utilization should not introduce large errors into per-

formance prediction. Otherwise, the program must have a performance bottleneck

other than memory bandwidth. The next section discusses techniques for detecting

other resource bottlenecks such as loop recurrence or bandwidth saturation between

caches.

5.4 Extensions to More Accurate Estimation

Although the latency of arithmetic operations on modern machines is very small

compared to the time of memory transfer, it is still possible that computations in a

loop recurrence may involve so many operations that they become the performance
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bottleneck. So the tool should identify such cases with the computation-interlock

analysis developed by Callahan et al[CCK88].

Excessive misses at other levels of memory hierarchy can be more expensive than

memory transfer. The examples are excessive register loads/stores, higher-level cache

misses, and TLB misses. To correctly detect these cases, the performance tool needs

to measure the resource consumption on other levels of memory hierarchy. In fact,

the tool can extend its data analysis to measure the number of higher-level cache

misses and TLB misses, which are in fact special cases of the existing data analysis.

On a machine with distributed memory modules, memory references may incur

remote data access. When a remote access is bandwidth limited, the tool can esti-

mate its access time with the same bandwidth-based method except that it needs

to consider the communication bandwidth in addition to memory bandwidth. The

bandwidth-based method also needs to model bandwidth contention either at a mem-

ory module or in the network. When a remote access is not bandwidth-constrained,

we can train the performance estimator to recognize cases of long memory latency

using the idea of training sets[BFKK91]. The bandwidth-based tuning tool can au-

tomatically collect such cases from applications because they do not fully utilize

bandwidth.

Coherence misses in parallel programs should also be measured if they carry a

significant cost. A compiler can detect coherence misses, especially for compiler par-

allelized code[McI97].

5.5 Summary

This chapter has presented a design of a bandwidth-based tool for performance tuning

and prediction. The central part of the tool is the compiler analysis that divides a

program into computation phases and estimates the total amount of memory transfer

for each computation phase on a given machine. For performance tuning, the tool

uses the data estimation and program execution time to calculate memory bandwidth

utilization. Then it picks out those computation phases with low memory bandwidth

utilization for further tuning. For performance prediction, the tool approximates pro-

gram execution time by dividing the total amount of memory transfer with machine

memory bandwidth. To improve the accuracy of bandwidth-based method and to

consider cases where memory bandwidth is not the critical resource, the proposed
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tool is augmented with additional compiler analysis to monitor the effect of latency

and bandwidth constraint in other parts of a computer system.

The bandwidth-based approach promises to be much more efficient, yet more ac-

curate than previous methods that are based on monitoring memory latency. Instead

of simulating individual memory access, the new tool assesses the cost of all memory

references, that is, the time of all memory transfer. The new tool is also much simpler

because it focuses on only very large data structures. By changing from latency based

to bandwidth based, the tool avoids the cost of previous techniques and enables fast,

accurate, and portable performance tuning and prediction.
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Chapter 6

Evaluation

This chapter evaluates the compiler strategy of global and dynamic computation fu-

sion and data grouping. Section 1 describes the compiler implementation. Section

2 explains the experimental setup, which measures two classes of applications: reg-

ular programs with structured loops and predictable data access, and irregular and

dynamic programs with unstructured computation and unpredictable data access.

Section 3 and Section 4 describe the benchmark applications, the applied transfor-

mations and the experiment results for each class of applications. Section 5 evaluates

the bandwidth-based performance tool. Finally, Section 6 summarizes the findings.

6.1 Implementation

The implementation is based on the D Compiler System at Rice University. The com-

piler performs whole program compilation given all source files of an input program.

It uses a powerful value-numbering package to handle symbolic variables and expres-

sions inside each subroutine and parameter passing between subroutines. It has a

standard set of loop and dependence analysis, data flow analysis and interprocedural

analysis. The D Compiler compiles programs written in Fortran 77 and consequently

it does not handle recursion. However, recursion should present no fundamental ob-

stacles to the new methods described in this dissertation.

This research have implemented loop fusion, array regrouping and dynamic data

packing for experimental evaluation. The following sections describe the implemen-

tation of these three new techniques.

6.1.1 Maximal Loop Fusion

For each loop, the compiler summarizes its data access by its data footprint. For each

dimension of an array, a data footprint describes whether the loop accesses the whole

dimension, a number of elements on the border, or a loop-variant section (a range

enclosing the loop index variable). Data dependence is tested by the intersection of



91

footprints. The range information is also used to calculate the minimal alignment

factor between loops.

Loop fusion is carried out by applying the fusion algorithm given in Figure 2.7 level

by level from the outermost to the innermost. The current implementation calculates

data footprints, aligns loops and schedules non-loop statements. Iteration reordering

is not yet implemented but the compiler signals the places where it is needed. Only

one program, Swim, required splitting, which was done by hand.

For multi-level loops, loop fusion orders loop levels to maximize the benefit of

fusion, as specified by the algorithm in Figure 2.8. The first loop level to fuse is the

one that produces the fewest loop nests after fusion. In the experiment, however, this

was largely unnecessary, as computations were mostly symmetric. One exception in

our test cases was Tomcatv, where level ordering (loop interchange) was performed

by hand.

Code generation is straightforward as mappings from the old iteration space to the

fused iteration space. Currently, the code is generated by the Omega library[Pug92],

which has been integrated into the D compiler system. Omega worked well for small

programs, where the compilation time was under one minute for all kernels. For the

full application SP, however, code generation took four minutes for one-level fusion

but one hour and a half for three-level fusion. In contrast, the fusion analysis took

about two minutes for one-level fusion and four minutes for three-level fusion. A

direct code generation scheme has been designed; its cost is linear to the number of

loop levels. But the implementation is currently not available.

6.1.2 Inter-array Data Regrouping

The analysis for data regrouping is trivial with data footprints. After fusion, data

regrouping is applied level by level on fused loops as specified by the algorithm in

Figure 3.4. However, the implementation makes two modifications. First, SGI com-

piler does a poor job when arrays are fully interleaved at the innermost data dimen-

sion. So the compiler instead groups arrays up to the second innermost dimension.

This restriction may result in grouping in the less desired dimension, as in the case

of Tomcatv. The other restriction is due to the limitation of Fortran language, which

does not allow non-uniform array dimensions. In cases where multi-level regrouping

produced non-uniform arrays, manual changes were made to not to group at outer

data dimensions.
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Code generation for array regrouping is semi-automatic. The compiler generates

the choice of regrouping. Then new array declarations are added by hand, and array

references are transformed through the macro processor cpp. This scheme worked

well when the name of arrays was consistent and unique throughout the program,

which was the case for most of the programs tested. Manual changes were made to

Magi to make one data array global instead of passing by parameters.

Data regrouping was performed by hand for irregular and dynamic applications

because the experiment was performed before the implementation became available.

Since these applications used one-dimensional arrays and performed indirected access,

one-dimensional grouping is sufficient. Therefore, the manual approximation of data

regrouping was trivial.

6.1.3 Data Packing and Its Optimizations

The implementation for data packing and its optimization follows the algorithm de-

scribed in Section 4.3.2 and the steps illustrated in Figure 4.11. The compiler recog-

nizes the structure of indirect access in a program and identifies all packing oppor-

tunities. A one-line user directive is used to specify which array should be packed,

as well as where and how often it should be packed. The two packing optimizations,

pointer update and array alignment, are applied automatically.

The current implementation does not work on programs where the indirect access

sequence is incrementally computed because the one-line directive requires the exis-

tence of a full access sequence. A possible extension would be to allow user to specify

a region of computation in which to apply packing so that the compiler can record the

full access sequence at run time. The other restriction of the current implementation

is due to conservative handling of array parameter passing. For each subroutine with

array parameters, the implementation does not allow two different array layouts to

be passed to the same formal parameter. This problem can be solved by propagating

array layout information in a way similar to interprocedural constant propagation or

data type analysis and then cloning the subroutine for each reachable array layout.

In the programs encountered, however, there is no need for such cloning.

6.2 Experimental Design

All programs are measured on one of the three SGI machines: SGI Origin2000 with

R10K processors, SGI Origin2000 with R12K processors, and SGI O2 with a R10K
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processor. Both R12K and R10K provide hardware counters that measure cache

misses and other hardware events with high accuracy. All machines have two caches:

L1 is 32KB in size and uses 32-byte cache lines, L2 uses 128-byte cache lines, and the

size of L2 is 1MB for O2 and 4MB for Origin2000 (with either R10K or R12K). Both

caches are two-way set associative. All processors achieve good latency hiding as

a result of dynamic, out-of-order instruction issuing and compiler-directed prefetch-

ing. All applications are compiled with the highest optimization flag and prefetching

turned on (f77 -n32 -mips4 -Ofast)6. The SGI compiler is MIPSpro Version 7.30.

The experiment on irregular and dynamic applications used the slower R10K

processor on Origin2000 because the newer machine with R12K was not available at

the time of the experiment; the same is true for the evaluation of performance tuning

and prediction. The later evaluation of regular programs used Origin2000 with R12K

processors. In addition, it used SGI O2 for a direct comparison with an earlier work

by another group.

All transformations preserve dependences except locality grouping, which is applied

only once to one application. All optimized programs produce the identical output

as their unoptimized version.

The effect of optimizations is measured on execution time and the number of L1,

L2 and TLB misses. Cache misses represent only memory read traffic; therefore,

they are not equal to the amount of bandwidth consumption. However, the improved

cache reuse has similar effects on memory reads as it does on memory writebacks.

Data regrouping should eliminate unnecessary writebacks, but the function is disabled

because it does not regroup at the innermost data dimension. Since none of the eval-

uated techniques optimizes specially for memory writebacks, they are not measured

in this experiment. Nevertheless, all the executables of the original and the optimized

programs have been preserved, and any additional measurement can be made in the

future if necessary.

6.3 Effect on Regular Applications

This section evaluates the global strategy of maximal loop fusion as the first step

and inter-array data regrouping as the second. The programs are written in loop and

array structures with a data access pattern that is mostly compile-time predictable.

6The only exception is Magi, where user specified ( -mp -64 -r10000 -O3 -SWP:=ON -mips4 -
OPT:IEEE arithmetic=3:round off=3:alias=restrict).
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Irregular and dynamic applications are measured in the next section, where dynamic

optimizations are tested.

6.3.1 Applications

Loop fusion and data regrouping are tested on four applications described in Figure 6.1.

The applications come from SPEC and NAS benchmark suite except ADI, which is a

self-written kernel with separate loops processing boundary conditions. Since all pro-

grams use iterative algorithms, only the loops inside the time-step loop are counted.

name source input size No. lines loops (levels) arrays
Swim SPEC95 513x513 429 6 (1-2) 15
Tomcatv SPEC95 513x513 221 5 (1-2) 7
ADI self-written 2Kx2K 108 6 (1-2) 3
SP NAS/NPB class B, 1141 67 (2-4) 15

Serial v2.3 3 iterations

Figure 6.1 Descriptions of Regular applications

6.3.2 Transformations Applied

Loop fusion and data regrouping have been applied to all programs. In addition,

an input program is processed by four preliminary transformations before applying

loop fusion. The first is procedure inlining, which brings all computation loops into

a single procedure. The next is array splitting and loop unrolling, which eliminates

data dimensions of a small constant size and loops that iterate those dimensions.

The third step is loop distribution. Finally, the last step propagates constants into

loop statements. The compiler performs loop unrolling and constant propagation

automatically. Currently, array splitting requires a user to specify the names, and

inlining is done by hand. However, both transformations can be automated with

additional implementation.

6.3.3 Effect of Transformations

The effect of optimizations is shown in Figure 6.2. All results are collected on

Origin2000 with R12K processors except Swim, which is on SGI O2. The graphs
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for the first three applications show four sets of bars: the original performance (nor-

malized to 1), the effect of only loop fusion, the effect of only data grouping, and the

effect of loop fusion plus data regrouping. For SP, one additional set of bars is used to

show the effect of fusing one loop level instead of fusing all loop levels. The execution

time and original miss rates are also given in the figures; however, reductions are

measured on the number of misses, not on the miss rate.
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Figure 6.2 Effect of transformations on regular applications

The performance of Swim is reported for SGI O2 because it has the same cache

configuration as SGI Octane, a machine used in the work of iteration slicing by Pugh

and Rosser[PR99]. Maximal loop fusion fuses all loop nests with the help of loop

splitting and achieves the same improvement (10%) as Pugh and Rosser reported for

iteration slicing. The succeeding data grouping, shown by the fourth bar in each

cluster, merges 13 arrays into 3 and shortens execution time by 2% more because of

the additional reduction on L1 and TLB misses.
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Compared to data regrouping with loop fusion, data regrouping without loop

fusion (shown by the third bar of each cluster) merges 13 arrays into 5 and results in

similar reductions on L2 and TLB but causes 6% more L1 misses. Data regrouping

without loop fusion achieves the shortest execution time, a reduction of 16%. The

reason it performs better than the combined strategy is that the benefit of loop fusion

does not outweigh its instruction overhead when the data size is as small as in this

program. When the input size is large, the benefit of loop fusion should become

dominant. We will use much larger programs for the last two test cases.

One side effect of data regrouping seen by this program is 61% increase in the

number of graduated register loads. The overhead shows that source-level data re-

grouping confuses the back-end compiler and results in less effective register alloca-

tion. However, the problem should disappear if data regrouping is applied by the

back-end compiler itself. Among all test cases, Swim is the only one where data

regrouping causes an increased amount of register traffic.

Compared to SGI O2, running Swim on Origin2000 incurs 66% fewer L2 misses

because of the larger L2 cache on Origin2000. Loop fusion decreases performance by

6% on Origin2000, but the loss is recovered by data regrouping. Data regrouping

without loop fusion reduces cache and TLB misses but increases register loads by

35%. Since cache is not the bottleneck for this data size on Origin2000, the increase

in register traffic has a dramatic effect of increasing execution time by 16%. However,

as explained before, data regrouping will not suffer from this overhead if it is applied

by the back-end compiler.

Tomcatv has two pipelined computations progressing along reverse directions, so

multi-level loop fusion permutes non-conflicting loops to the outside to enable fusion

at the outer loop level. Data regrouping merges 7 arrays into 4. As before, the

arrays are grouped at the outer data dimension instead of inner data dimension in

order to avoid the poor code generation of the SGI compiler (see Section 6.1.2).

Figure 6.2 shows the program with an input size of 513x513. Loop fusion alone

decreases performance by 1%, but the combined transformation reduces L1 misses

by 5%, L2 misses by 20% and overall execution time by 16%. Data regrouping after

loop fusion increases TLB misses by 3% because of the side effect of grouping at the

outer data dimension. The side effect is small and becomes visible only because of

the extremely low TLB miss rate of this program, which is 0.03%.

Data regrouping without loop fusion groups 7 arrays into 5 and reduces L1 misses

by 32%, L2 misses by 12%, TLB misses by 6% and as a result reduces execution time
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by 18%. These reductions are larger than those of regrouping with loop fusion except

for L2 misses, where the combined transformation eliminates 8% more misses with

the help of loop fusion. Although the regrouping is similar with and without loop

fusion, the effect on cache and TLB misses differs significantly for two reasons. The

first is that the input data size is small, and the overhead of loop fusion is pronounced.

The other reason is that after loop interchange, the inner loops iterate through the

outer data dimension, making memory performance sensitive to small changes in

data layout. For example, regrouping with fusion increases TLB misses by 3%, but

regrouping without fusion decreases TLB misses by 6%. These variations should not

occur if arrays are regrouped at the inner data dimension by the back-end compiler. In

addition, data regrouping can also permute data dimensions. However, determining

the best order for data dimensions is a NP-complete problem. The current algorithm

is conservative and does not allow transformations like this because they may be

detrimental to overall performance.

The original data input is 257x257 for Tomcatv. At this small size on Origin2000,

Tomcatv exhibits similar behavior as Swim: loop fusion decreases performance by 2%

but data regrouping recovers the loss and improves performance by 1%. On SGI O2,

loop fusion decreases performance by 1%, but the combined transformation improves

performance by 5%.

ADI uses the largest input size and consequently enjoys the highest improvement.

The reduction is 39% for L1 misses, 44% for L2 and 56% for TLB. The execution

time is reduced by 57%, a speedup of 2.33. Since only three arrays are used in the

program, data regrouping has little benefit on L2, TLB and the execution time, but

it reduces L1 misses by 20%. Without loop fusion, however, data regrouping sees no

chance in merging any array. Therefore, regrouping without loop fusion has no effect

on performance.

Program changes for SP SP is a full application and deserves special attention in

evaluating the global strategy. The main computation subroutine, adi, uses 15 global

data arrays in 218 loops, organized in 67 nests (after inlining). Loop distribution and

loop unrolling result in 482 loops at three levels—157 loops at the first level, 161 at

the second, and 164 at the third. One-level loop fusion merges 157 outer-most loops

into 8 loop nests. The performance is shown by the second bar in the lower-right

graph of Figure 6.2. The full fusion further fuses loops in the remaining two levels
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and produces 13 loops at the second level and 17 at the third. The performance of

full fusion is shown by the third bar in the graph.

The fourth and fifth sets of bars show the effect of data regrouping with and

without loop fusion. The original program has 15 global arrays. Array splitting

resulted in 42 arrays. After full loop fusion, data regrouping combines 42 arrays

into 17 new ones. The choice of regrouping is very different from the specification

given by the programmer. For example, the third new array consists of four orig-

inal arrays: {ainv(N,N,N), us(N,N,N), qs(N,N,N), u(N,N,N, 1 − 5)}, and the

15th new array includes two disjoint sections of an original array: {lhs(N,N,N, 6 −
8), lhs(N,N,N, 11 − 13)}.

One-level fusion increases L1 misses by 5%, but reduces L2 misses by 33% and

execution time by 27%, signaling that the original performance bottleneck was on

memory bandwidth. Fusing all levels eliminates half of the L2 misses (49%). However,

it creates too much data access in the innermost loop and causes 8 times more TLB

misses. The performance is slowed by a factor of 2.32. Data regrouping, however,

merges related data in contiguous memory and achieves the best performance. It

reduces L1 misses by 20%, L2 by 51% and TLB by 39%. The execution time is

shortened by one third (33%), a speedup of 1.5 (from 64.5 Mf/s to 96.2 Mf/s).

Without loop fusion, however, data regrouping can merge only two original arrays,

lhs(N,N,N, 7) and lhs(N,N,N, 8). Consequently, data regrouping without loop fu-

sion obtains only a modest improvement. It reduces L1 misses by 4%, L2 misses by

8%, and execution time by 7%. It actually increases TLB misses by 15%.

Recall that the motivation for maximal loop fusion comes from the simulation

study on reuse distances in Section 2.2, where reuse-driven execution on a perfect

machine found a large benefit from fusing computations on the same data. The

purpose of loop fusion, then, is to realize this benefit on a real machine. Figure 6.3

compares the effect of loop fusion with that of reuse-driven execution on SP. It shows

the reuse-distance curve of three versions of SP: the original program order, reuse-

driven execution order, and the transformed program order after maximal loop fusion.

Maximal loop fusion reduces 45% evadable reuses, which is not as good as the 63%

reduction by the ideal reuse-driven execution. However, maximal fusion does realize

a fairly large portion of its potential. Furthermore, the reduction on evadable reuses

is very close to the reduction of L2 misses on Origin2000 (51%), indicating that

the measurement of reuse distance closely matches L2 cache performance on a real

machine.
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Figure 6.3 Reuse distances of NAS/SP after maximal fusion

The above evaluation has verified the effectiveness of the global optimization strat-

egy. Maximal loop fusion realizes much of the potential benefit of computation fusion

and brings together data reuses among all parts of a program. Data regrouping elim-

inates the overhead of loop fusion and translates the reduction on memory traffic to

the reduction on execution time. Together, these two techniques significantly improve

global cache reuse for the whole program.

6.4 Effect on Irregular and Dynamic Applications

In irregular and dynamic applications, the content of and access order to certain data

structures are unknown until run time and may change during the execution. This

section evaluates the effectiveness of dynamic optimizations, developed in Chapter 4.

The global optimization, data regrouping, is also applied.

6.4.1 Applications

Figure 6.4 lists the four irregular and dynamic applications used in the evaluation,

along with their description, programming language and code size. Three scientific

simulation applications from molecular dynamics, structural mechanics and hydro-

dynamics are used. Despite the difference in their physical model and computation,

they have similar dynamic data access patterns in which objects interact with their

neighbors. Moldyn and mesh are well-known benchmarks. A large input data set

is used for moldyn with random initialization. Mesh has a user-supplied input set.

Magi is a full, real-world application consisting of almost 10,000 lines of Fortran code.
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In addition to the three simulation programs, a sparse-matrix benchmark is included

to show the effect of packing on irregular data accesses in such applications.

name description source language lines
Moldyn molecule dynamics simulation Chaos group f77 660
Mesh structural simulation Chaos group C 932
Magi particle hydrodynamics DoD f90/f77 9339
NAS-CG sparse matrix-vector NAS/NPB f77 1141

multiplication Serial v2.3

Figure 6.4 Descriptions of irregular and dynamic applications

application input size source of input exe. time
Moldyn 256K particles, 27.4M interactions, random 53.2 sec

1 iteration initialization
Mesh 9.4K nodes, 60K edges, 20 iterations Chaos group 8.14 sec
Magi 28K particles, 253 cycles DoD 885 sec
NAS-CG 14K non-zero entries, 15 iterations NASA/NPB 48.3 sec

Serial 2.3, Class A

Figure 6.5 Input sizes of irregular and dynamic applications

Figure 6.5 gives the input size for each application, the sources of the data inputs,

and the execution time before applying optimizations. The working set is significantly

larger than the L1 cache for all applications. Mesh, Magi and NAS−CG are a little

bit larger than L2. Moldyn has the largest data input and its data size is significantly

greater than the size of L2.

6.4.2 Transformations Applied

The transformations were applied in the following order: locality grouping, data re-

grouping, dynamic data packing and packing optimizations. Since the access sequence

is already transformed by locality grouping, consecutive packing is used for all cases

because of the observation made in Section 4.2.2. (One test case, NAS−CG, accesses

each element only once, therefore consecutive packing is optimal.)
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Figure 6.6 lists, for each application, the optimizations applied and the program

components measured. Each of the base programs came with one or more of the three

optimizations done by hand. Such cases are labeled with a ‘+’ sign in the table. The

‘V’ signs indicate the optimizations added, except in the case of NAS-CG. The base

program of NAS−CG came with data packing already done by hand, but I removed

it for the purpose of demonstrating the effect of packing. I do not consider hand-

applied packing practical because of the complexity of transforming tens of arrays

repeatedly at run-time for a large program.

application optimizations applied program components
locality grouping regrouping packing measured

Moldyn + V V function Compute Force()
Mesh V no effect V full application
Magi + V V full application
NAS-CG n/a no effect V/+ full application

Figure 6.6 Transformations applied to irregular and dynamic applications

Locality grouping and data regrouping were inserted by hand. Data regrouping

was applied to all programs but found opportunities only for Moldyn and Magi. Data

packing of moldyn and CG was performed automatically by our compiler given a

one-line directive of packing. The same compiler packing algorithm was applied to

mesh by hand because our compiler infrastructure cannot yet compile C. Unlike other

programs, Magi is written in Fortran90 and computes the interaction list incremen-

tally. I slightly modified the source to let it run through the Fortran77 front-end and

inserted a loop to collect the overall data access sequence. Then our compiler suc-

cessfully applied base packing transformation on the whole program. The application

of the two compiler optimizations were semi-automatic: I inserted a 3-line loop to

perform pointer update; and I annotated a few dependence-free loops which other-

wise would not be recognized by the compiler due to the presence of procedural calls

inside them. All other transformations are performed by the compiler. The optimized

packing reorganizes a total of 45 arrays in magi.

The original program is referred to as the base program and the transformed ver-

sion as the optimized program. For NAS-CG, the base program refers to the version

with no packing. Dynamic data packing is applied only once in each application

except magi where data are repacked every 75 iterations.
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6.4.3 Effect of Transformations

The four graphs of Figure 6.7 show the effect of the three transformations. The

first plots the effect of optimizations on the execution speed. The first bar of each

application is the normalized performance (normalized to 1) of the base version. The

other bars show the performance after applying each transformation. Since not all

transformations are necessary, an application may not have all three bars. The second

bar, if shown, shows the speedup of locality grouping. The third and fourth bars show

the speedup due to data regrouping and data packing. The other three graphs are

organized in the same way, except that they are showing the reduction on the number

of L1, L2 and TLB misses. The graphs include the miss rate of the base program,

but the reduction is on the total number of misses, not on the miss rate.

Effect of Locality Grouping and Data Regrouping

Locality grouping eliminates over half of L1 and L2 misses in mesh and improves

performance by 20%. In addition, locality grouping avails the program for data

packing, which further reduces L1 misses by 35%. Without the locality-grouping step,

however, consecutive packing not only results in no improvement but also incurs 5%

more L1 misses and 54% more L2 misses. This confirms the observation from our

simulation study that locality grouping is critical for the later data optimization to

be effective.

Data regrouping significantly improves moldyn and magi. Magi has multiple

computation phases, data regrouping splits 22 arrays into 26 and regroups them into

6 new arrays. As a result of better spatial reuse, the execution time is improved by a

factor of 1.32 and cache misses are reduced by 38% for L1, 17% for L2, and 47% for

TLB. By contrast, merging all 26 arrays improves performance by only 12%, reduces

L1 misses by 35%, and as a side effect, increases L2 misses by 32%. Data regrouping

is even more effective on moldyn, eliminating 70% of L1 and L2 misses and almost

doubling the execution speed.

Effect of Dynamic Data Packing

Data packing is applied to all four applications after locality grouping and data re-

grouping. It further improves performance in all cases. For moldyn, packing improves

performance by a factor of 1.6 and reduces L2 misses by 21% and TLB misses by 88%
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Figure 6.7 Effect of transformations on
irregular and dynamic applications

over the version after data regrouping. For NAS − CG, the speedup is 4.36 and the

amount of reduction is 44% for L1, 85% for L2 and over 97% for TLB.

For mesh after locality grouping, packing slightly improves performance and re-

duces misses by additional 3% for L1 and 35% for L2. The main reason for the modest

improvement on L1 is that the data granularity (24 bytes) is close to the size of L1

cache lines (32 bytes), leaving little room for additional spatial reuse. In addition,

packing is directed by the traversal of edges, which does not work as well during

the traversal of faces. The number of L1 misses is reduced by over 6% during edge

traversals, but the reduction is less than 1% during face traversals. Since the input
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data set almost fits in L2, the significant reduction in L2 misses does not produce a

visible effect on the execution time.

When applied after data regrouping on magi, packing speeds up the computation

by another 70 seconds (12%) and reduces L1 misses by 33% and TLB misses by 55%.

Because of the relatively small input data set, L2 and TLB misses are not a dominant

factor in performance. As a result, the speed improvement is not as pronounced as

the reduction in these misses.

Overall, packing achieves a significant reduction in the number of cache misses

especially for L2 and TLB, where opportunities for spatial reuse are abundant. The

reduction in L2 misses ranges from 21% to 84% for all four applications; the reduction

in TLB misses ranges from 55% to 97% except for mesh, whose working set fits in

TLB.

Packing Overhead and the Effect of Compiler Optimizations

The cost of dynamic data packing comes from the overhead of data reorganization

and the cost of indirect memory accesses. The time spent in packing has a negligible

effect on performance in all three applications measured. Packing time is 13% of the

time of one computation iteration in moldyn, and 5.4% in mesh. When packing is

applied for every 20 iterations, the cost is less than 0.7% in moldyn and 0.3% in

mesh. Magi packs data every 75 iterations and spends less than 0.15% of time on

packing routines.

The cost of data indirection after packing can be mostly eliminated by two com-

piler optimizations described in Section 4.3.1. Figure 6.8 shows the effect of these

two compiler optimizations on all four applications tested.

The upper-left graph shows that, for moldyn, the indirections (that can be opti-

mized away) account for 10% of memory loads, 22% of L1 misses, 19% of L2 misses

and 37% of TLB misses. After the elimination of the indirections and the references

to the run-time map, execution time was reduced by 27%, a speedup of 1.37. The

improvement in mesh is even larger. In this case, the indirections account for 87%

of the loads from memory, in part because mesh is written in C and the compiler

does not do a good job of optimizing array references. Since the excessive number of

memory loads dominates execution time, the compiler optimizations achieve a sim-

ilar reduction (82%) in execution time. The number of loads is increased in magi

after the optimizations because array alignment transforms 19 more arrays than the
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Figure 6.8 Effect of compiler optimizations for data packing

base packing, and not all indirections to these arrays can be eliminated. Despite the

increased number of memory loads, the cache misses and TLB misses are reduced

by 10% to 33%, and the overall speed is improved by 8%. For NAS − CG, the

compiler recognizes that matrix entries are accessed in stride-one fashion and conse-

quently, the compiler replaces the indirection accesses with direct stride-one iteration

of the reorganized data array. The transformed matrix-vector multiply kernel has

the equally efficient data access as the original hand-coded version. As a result, the

number of loads and cache misses is reduced by 23% to 50%. The TLB working set

fits in machine’s TLB buffer after the optimizations, removing 97% of TLB misses.

The execution time is reduced by 60%, a speedup of 2.47.

6.5 Effect of Performance Tuning and Predication

This section evaluates bandwidth-based performance tuning and prediction on a well-

known benchmark application, SP from NASA, on SGI Origin2000 with R10K pro-

cessors. NAS/SP is a complete application with over 20 subroutines and 3000 lines

of Fortran77 code. Since the program consists of sequences of regular loop nests, it is
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partitioned into two levels of computation phases—subroutines and then loop nests.

Class-B input is used and only three iterations are ran to save the experiment time.

Since the implementation of compiler analysis was not complete at the time of

experiment, the following evaluation does not have compiler estimation of memory

transfer. Instead, it used manual approximation and machine hardware counters.

Performance Tuning

Tuning opportunities are identified by measuring the bandwidth utilization of each

subroutine and each loop nest. Hardware counters are used to estimate the total

amount of memory transfer. The table in Figure 6.9 lists the effective memory band-

width of seven major subroutines, which represents 95% of overall running time.

Subroutines Achieved BW BW Utilization
compute rhs 252MB/s 84%
x solve 266MB/s 89%
y solve 197MB/s 66%
z solve 262MB/s 87%
lhsx 321MB/s 107% 1

lhsy 279MB/s 93%
lhsz 96MB/s 32%

Figure 6.9 Memory bandwidth utilization of NAS/SP

The last column of the table in Figure 6.9 shows that all subroutines utilized 84%

or higher memory bandwidth except y solve and lhsz. The low memory bandwidth

utilization prompted the need for user tuning. Subroutine lhsz had the largest poten-

tial gain for performance tuning. The subroutine has three loop nests, all had normal

bandwidth utilization except the first one, which had an extremely low bandwidth

utilization of less than 11%. The inspection by a user (myself) revealed that the

problem was due to excessive TLB misses. Manual application of array expansion

and loop permutation was able to eliminate a large portion of the TLB misses and

improve the running time of the loop nest by a factor of 5 and the overall execution

time by over 15%.

1Pure data-copying loops with little computation can achieve a memory bandwidth that is slightly
higher than 300MB/s on SGI Origin2000.
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Similar tuning process was then performed on compute rhs, which had an average

bandwidth utilization of 84%. However, not all loops performed well in compute rhs.

The examination of loop-level bandwidth utilization found two loops that utilized 65%

and 44% of memory bandwidth because of cache conflicts in L1. Loop distribution

and array padding were applied by hand. The modifications improved the two loops

by 9% and 24% individually and overall running time by another 2.4%. After the

tuning of both lhsz and compute rhs, the performance of SP was improved from 45.1

MFlops/s to 55.5 MFlops/s, a speedup of 1.19.

Bandwidth-based tuning is more accurate in locating performance problems than

other tuning techniques because it monitors the most critical resource—memory band-

width. For example, flop rates are not as effective. The flop rates of the previously

mentioned two loops in compute rhs are over 30 MFlop/s before tuning, which are

not much lower than other parts of the program. For example, all loops in lhsx have

a flop rate fewer than 18 MFlop/s. By comparing the flop rates, a user may draw the

wrong conclusion that the loops in lhsx are better candidates for tuning. However, the

loops in lhsx cannot be improved because they already saturate the available memory

bandwidth. Their flop rates are low because they are data-copying loops with little

computation.

The successful tuning of SP shows that the automatic tuning support is extremely

effective for a user to correct performance problems in large applications. Although

there were over 80 loop nests in SP, bandwidth-based tuning automatically located

three loop nests for performance tuning. As a result, we as programmers only needed

to inspect these three loops, and simple source-level changes improved overall perfor-

mance by 19%. In other words, the bandwidth-based tuning tool allowed us to obtain

19% of overall improvement by examining less than 5% of the code.

Performance Prediction

Bandwidth-based performance prediction approximates program-running time with

the estimated memory-transfer time, that is, the total amount of memory transfer

divided by the memory bandwidth of the machine. This section examines the accuracy

of this prediction technique on the SP benchmark. Since the prediction requires

estimation on the amount of memory transfer, the experiment will first measure

it with hardware counters and then apply compiler analysis by hand to verify the

accuracy of the compiler-based estimation.
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The table in Figure 6.10 lists the actual running time of a single iteration of SP,

the predicted time and the percent of error. The predicted time is the total amount

of memory transfer divided by memory bandwidth. The prediction is given both with

and without considering the effect of TLB misses in the first loop of lhsz, discussed in

the previous section on user tuning. The table lists two predictions, the first assumes

full memory bandwidth utilization for the whole program, and the other assumes an

average utilization of 90%.

Computation Exe Pred. Time I Err. I Pred. Time II Err. II
Time Util=100% Util=90%

adi w/o TLB est. 59.0s 43.8s -26% 48.6s -18%
adi w TLB est. 59.0s 50.9s - 14% 55.7s - 5.6%
adi w/o lhsz 47.0s 40.0s - 15% 44.3s - 5.7%

Figure 6.10 Actual and predicted execution time

The first row of table in Figure 6.10 gives the estimation without considering the

extra overhead of TLB misses in lhsz. The TLB overhead can be easily predicted by

multiplying the number of TLB misses with full memory latency (338ns according to

what is called restart latency in [HL97]), which adds to a total of 7.1 seconds. The

second row gives the performance prediction considering this TLB overhead. The

third row predicts performance for the program without lhsz (the rest represents over

80% of the overall execution time).

The third and fifth column of the table in Figure 6.10 show the error of prediction.

When assuming full bandwidth utilization, the prediction error is 26% when not

considering the abnormal TLB overhead, 14% when considering the TLB overhead,

and 15% for the program without lhsz. When the assumed utilization is 90%, the

prediction error is 18% when not considering TLB overhead, 5.6% when including the

TLB cost, and 5.7% for the program without lhsz. The table shows that, with the

estimation of the TLB cost and the assumption of 90% memory-bandwidth utilization,

bandwidth-based prediction is very accurate, with an error of less that 6%. The

similar errors in the last two rows also suggest that our static estimation of the TLB

overhead is accurate.

The above predictions measured the amount of memory transfer through hardware

counters. This is undesirable because we should predict program performance without
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running the program. So the next question is how accurate is the static estimation

of a compiler. I manually applied a simplified version of the data analysis described

in Section 5.2. In fact, only the bounded-section analysis was used, which counted

only the number of capacity misses in each loop nest. I did not expect many conflict

misses because the L2 cache on SGI Origin2000 is two-way set associative and 4MB

in size.

Two subroutines were manually analyzed: compute rhs and lhsx, which consisted

of 40% of the total running time. Subroutine compute rhs had the largest code source

and the longest running time among all subroutines. It also resembled the mixed

access patterns in the whole program because it iterated the cubic data structure

through three directions. The subroutine lhsx accessed memory contiguously in a sin-

gle stride. The following table lists the actual memory transfer measured by hardware

counters, the predicted memory transfer by the hand analysis, and the error of the

static estimation.

Subroutine Actual Predicted Error
lhsx 396MB 406MB + 3%
compute rhs 5308MB 5139MB - 3%

Figure 6.11 Actual and predicted data transfer

The errors shown in the third column of the table in Figure 6.11 are within 3%,

indicating that the static estimation is indeed very accurate. Assuming this accuracy

holds for other parts of SP, the bandwidth-based analysis tool could predict the

overall performance within an error of less than 10%, assuming an average memory

bandwidth utilization of 90%.

6.6 Summary

Global optimizations The two-step global strategy of loop fusion and data re-

grouping are extremely effective for the benchmark programs tested, improving overall

speed by 14% to a factor of 2.33 for kernels and a factor of 1.5 for the full application.

Furthermore, the improvement is obtained solely through automatic source-to-source

compiler optimization. The success especially underscores the following three impor-

tant aspects:
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• Aggressive loop fusion. All test programs have loops with a different number of

dimensions. Mere loop alignment cannot fuse any of the tested programs except

for a few loops in SP. Swim also requires loop splitting.

• Conservative data regrouping. Data regrouping improves cache and program

performance in most cases. The only few degradations are due to the side

effects of data regrouping on the back-end compiler. These problems can be

easily corrected if the data transformation is made by the back-end compiler

itself. Therefore, data regrouping should always be beneficial in practice.

• Combined optimization strategy of computation fusion and data regrouping.

Although when used together they achieve substantial performance improve-

ment, neither can do so when used alone. In fact, loop fusion degrades perfor-

mance in most cases if used without data regrouping, and data regrouping sees

little or no opportunity without loop fusion, especially for large programs.

Data regrouping is also very beneficial for dynamic applications. Although these

programs have unpredictable data access within each array, the relations among mul-

tiple arrays are consistent and can be determined by a compiler. Consequently, data

regrouping is able to improve global cache reuse despite unknown and dynamic data

access patterns. For the two dynamic applications where data regrouping is applied,

it reduces 17% to 70% of cache and TLB misses and improves performance by factors

1.3 and 1.9.

Dynamic optimizations Run-time data packing is very effective for dynamic pro-

grams whose access pattern remains unknown until run time and changes during the

execution. By analyzing and optimizing data layout at run time, data packing re-

duces the number of L2 misses by 21% to 84% and the number of TLB misses by

33% to 97%, and as a result, improves overall program performance by a factor up to

4.36. The run-time cost of data reorganization is negligible, consuming only 0.14%

to 0.7% of the overall execution time. The overhead due to data indirections through

run-time data maps is significant, but it can be effectively eliminated by the two

packing optimizations, pointer update and array alignment. The two optimizations

improve performance by factors ranging from 1.08 to 5.56. In addition, the run-time

optimizations and global data regrouping complement each other and achieve the best

performance when both are used together.
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Bandwidth-based performance tool Bandwidth-based tuning and prediction is

simple yet very accurate. When evaluated on the 3000-line NAS SP benchmark, it

enables a user to obtain an overall speedup of 1.19 by inspecting and tuning only 5%

of the program code. The compile-time prediction on the whole-program execution

time can be within 10% difference of the actual execution time.
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Chapter 7

Conclusions

“To travel hopefully is a better thing than to arrive, and the true success is to

labour.” – Rober Louis Stevenson (1850-1894)

At the outset, this dissertation demonstrated the serious performance bottleneck

caused by insufficient memory bandwidth. From then on, it has taken the goal of min-

imizing memory-CPU communication through compiler optimizations. This chapter

first summarizes the new techniques that have been developed in the preceding chap-

ters. Then it discusses future extensions of this work. Finally, the chapter concludes

with the final remarks restating the underlying theme of this dissertation.

7.1 Compiler Optimizations for Cache Reuse

The main contribution of this dissertation is a set of new compiler transformations

that optimizes cache performance both at the global level and at run time.

Global optimizations Global optimizations include computation fusion and data

grouping. Chapter 2 describes two algorithms for computation fusion: reuse-driven

execution measures the limit of global cache reuse on an ideal machine, and more

importantly, maximal loop fusion realizes most of the global benefit on a real ma-

chine. Maximal loop fusion fuses data-sharing statements whenever possible, achieves

bounded reuse distance within a fused loop, and maximizes the amount of fusion for

multi-dimensional loops. While maximal loop fusion improves temporal cache reuse

for the whole program, inter-array data regrouping maximizes spatial cache reuse for

the entire data. Inter-array regrouping, presented in Chapter 3, merges data at a

hierarchy of granularity from large array segments to individual array elements. It

makes data access as contiguous as possible and it eliminates unnecessary memory

writebacks. Both maximal loop fusion and inter-array data grouping are fast; their

time complexity is approximately O(V ∗ A), where V is the length of the program

and A is the number of data structures in the program.
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Maximal loop fusion and inter-array data regrouping are currently the most pow-

erful set of global transformations in the literature. Maximal loop fusion is more

aggressive than previous loop fusion techniques because it can fuse all statements in

a program whenever permitted by data dependence. Data regrouping is the first to

split and regroup global data structures and to do so with guaranteed profitability

and compile-time optimality. The overall strategy is also the first in the literature to

combine a global computation transformation with a global data transformation.

Dynamic optimizations Dynamic optimizations include Locality grouping and

data packing, presented in Chapter 4. They improve dynamic cache reuse by re-

ordering irregular computation and data at run time. Locality grouping merges com-

putations involving the same data, and data packing groups data used by the same

computation. Both are general-purpose transformations. Locality grouping reorders

any set of independent computations, data packing reorganizes any non-contiguous

data access. In addition, both transformations incur a minimal run-time overhead,

which is linear in time and space.

More importantly, locality grouping and data packing are the first set of dynamic

optimizations that are automatically inserted and optimized by a compiler. The basis

for this automation is compiler indirection analysis, which analyzes indirect data ac-

cess in a program and identifies all opportunities of data reorganization. Two compiler

optimizations, pointer update and array alignment are used to remove data indirec-

tions after data relocation. Both optimizations are extremely effective in removing

the overhead of run-time data transformation.

Performance model and tool The balance-based performance model, described

in Chapter 1, is the first to consider the balance of bandwidth resources at all levels

of a computing system from the CPU flop rate to memory bandwidth. The balance-

based model has clearly demonstrated the existence of the memory bandwidth bot-

tleneck and its constraint on performance. Based on this model, Chapter 5 designed

a bandwidth-based tool. The new tool supports effective user tuning by automatically

locating performance problems in large applications. In addition, the tool provides

accurate performance prediction.

Summary of evaluation results The experimental evaluation has verified that

the new global strategy achieved dramatic reductions in the volume of data transferred
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for the programs studied. The table in Figure 7.1 compares the amount of data

transferred for versions of each program with no optimization, with optimizations

provided by the SGI compiler, and after transformation via the strategy developed

in this dissertation. If we compare the average reduction in misses due to compiler

techniques, the new strategy, labeled by column New, does significantly better than

the SGI compiler, labeled by column SGI.

program L1 misses L2 misses TLB misses
NoOpt SGI New NoOpt SGI New NoOpt SGI New

Swim 1.00 1.26 1.15 1.00 1.10 0.94 1.00 1.60 1.05
Tomcatv 1.00 1.02 0.97 1.00 0.49 0.39 1.00 0.010 0.010
ADI 1.00 0.66 0.40 1.00 0.94 0.53 1.00 0.011 0.005
NAS/SP 1.00 0.97 0.77 1.00 1.00 0.49 1.00 1.09 0.67
average 1.00 0.98 0.82 1.00 0.88 0.59 1.00 0.68 0.43

Moldyn 1.00 1.15 0.34 1.00 0.99 0.19 1.00 0.77 0.10
Mesh 1.00 1.02 0.47 1.00 1.34 0.39 1.00 0.57 0.57
Magi 1.00 1.15 0.82 1.00 1.25 0.76 1.00 1.00 0.36
NAS/CG 1.00 1.01 0.58 1.00 0.95 0.15 1.00 0.97 0.03
average 1.00 1.08 0.55 1.00 1.13 0.37 1.00 0.83 0.27

Figure 7.1 Summary of evaluation results

On average for the four regular applications measured, the new strategy outper-

forms the SGI compiler by factors of 9 for L1 misses, 3.4 for L2 misses, and 1.8 for

TLB misses. The improvement is even larger for the four irregular and dynamic pro-

grams, where both global and dynamic optimizations are applied. On average, the

new strategy reduces L1 misses by 45%, L2 misses by 63%, and TLB misses by 73%.

In contrast, the SGI compiler causes an average of 8% more L1 misses and 13% more

L2 misses for these dynamic applications. Thus, the global and dynamic strategy

developed in this dissertation has a clear advantage over the more local and static

strategies employed by an excellent commercial compiler.

7.2 Future Work

The successful development of global and dynamic optimizations has opened new

fascinating opportunities for future compiler research. New improvement can come
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from overcoming the overhead of global and dynamic optimizations and from extend-

ing their capabilities. This section touches on research directions that are important

and can be approached by direct extensions of this work.

Storage optimization after fusion Extensive loop fusion enables new opportu-

nities for storage optimization. Section 2.5 of Chapter 2 has given two examples of

storage reduction and store elimination. These two techniques need to be developed

and evaluated on real programs. In general, computation fusion provides more free-

dom in organizing data and its uses. The data transformations mentioned here are

just the tip of an iceberg.

Improving the fusion heuristic Although the benefit of maximal fusion has been

verified, it remains unknown how much more benefit can be obtained by improving

over the greedy heuristic currently used. How can data sharing be reduced among

fused loops? How well do other heuristics perform, especially the one of always fusing

along the heaviest edge by Kennedy[Ken99]? Further evaluation is required to find

the best fusion method.

Register allocation after fusion Since loop fusion may merge too much compu-

tation in a fused loop, it may overflow machine registers and dramatically increase the

number of register loads and stores. A direct remedy exists, which is to distribute a

large loop into smaller ones that do not overflow registers. The distribution is in fact

a form of fusion after computations are divided into the smallest unit. The fusion is

equivalent to a fixed-size partitioning of hyper-graphs and is NP-hard. The problem

is similar to loop fusion because it needs to minimize data sharing; however, it is also

different because it fuses loops up to a fixed size.

Data grouping for arbitrary programs In this dissertation, array regrouping

uses compiler analysis to identify computation phases and data access patterns. When

compiler analysis is not available, data regrouping can still use profiling analysis. By

profiling the execution, it can define computation phases as time intervals in which

the amount of data access is larger than cache. If two data items, as for example,

two members of different object classes, are always accessed together, they can then

be grouped into the same cache block. In this way, data grouping can be applied to

arbitrary programs.
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Data grouping for parallel programs On shared memory machines, cache blocks

are the basis of data consistency and consequently the unit of communication among

parallel processors. Data regrouping can be applied to parallel programs to improve

cache-block utilization, which leads to reduced communication latency and increased

communication bandwidth.

Indirection analysis for object-oriented programs Indirection analysis can be

extended to dynamic allocated objects linked by pointers. It can be done by analyzing

the relation of objects based on their types and then recording the access sequence

of related objects at run time. Such an extension would allow data packing to be

applied to object-oriented programs.

Data reuse analysis for parallelization The reuse-distance analysis is a general

tool that can study unconventional optimizations by examining their effect on data

reuse. One important direction is to experiment with innovative methods of program

parallelization and data communication.

Automatic run-time optimizations The efficient performance monitoring tech-

nique, developed in Chapter 5, has made it possible that the execution status of

a program can be monitored and its performance problems can be identified and

corrected dynamically. This adaptability is extremely important for large programs

running on heterogeneous machines where a single program code cannot work well

everywhere.

7.3 Final Remarks

The dissertation can be viewed as a pursuit of two goals. The first, a fundamen-

tal one, is to minimize the memory-CPU communication by caching. The second,

a practical concern, is to avoid losing software productivity in the search for higher

performance. This research has found a middle ground to balance between these two

goals. It optimizes the whole program at all times but it does so with automatic

methods that are transparent to a programmer. This dual theme of optimization and

automation permeates this dissertation and extends to its vision of the future. As the

world is becoming a ubiquitously connected computing environment, programming

tasks in the future will be far more complex and difficult because of the scale of the
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software and the complexity of hardware. Today’s manual process of programming is

unlikely to meet this future challenge. The extension of this work may offer a better

alternative through programming automation. In fact by providing powerful tech-

niques for global and dynamic program transformation, this research has paved the

way for the automation of complex and large-scale programming tasks, thus making

software development less labor-intensive and more manageable.

“He who knows others is learned. He who knows himself is wise.” – Lao Tzu

(about 500 BC)
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