
Memory Behavior of the UAV Application

Grigorios Magklis

Semester project for CSC-573

1 Introduction

In this project we studied the memory behavior of the Unmanned Airborne

Vehicle (UAV) application. UAV is a key application for the Complexity

Adaptive Processing project (http://www.ccs.rochester.edu/projects/cap).

The application is using little memory, compared to others, but it is designed

to run on an embedded processor. Embedded processors usually have less

resources than high-end microprocessors and we would like to know what is

the smallest cache that can accomodate most of the application's needs. To
do this we are using the Reda simulator to gather statistics about the reuse

distance pattern of the application and estimate the best cache size.

2 The application

The application is basically a target recognition system. In its typical envi-

ronment it periodically receives an image from a frame bu�er and tries to

identify targets in the image. The images are 128x128 pixels in size, 1-byte

per pixel, to a total of 16KB per image. The application is going through
three main computation phases.

The �rst phase is termed pre-screening and is trying to �nd possible

targets in the image. In order to do this the application is calculating a

convolution of the image with a standard 3x3 kernel. The whole image is

accessed during this phase, in a normal, left-to-right, top-to-bottom fashion.

The second phase is called quick clustering and is trying to identify a set

of targets from a set of possible targets. The possisions of all the possible

targets are compared to each other and if they are close they are considered

parts of the same target. The position of each target is the gravity center

of it's clustered possible targets.

1



In the third phase, called compute distance, the application is calculating

the distance from the targets identi�ed in the second phase. This step

involves computing three distances, one for each of the X, Y and Z axis.

The computation is the same for all three distances and it involves three

oating-point arrays, representing complex numbers. The �rst array is called

ROI (Region Of Interest) and it represents the data of the image around a

selected target (as complex numbers). The second is an HDCCF �lter, and

the third is a temporary array called BUF. The computation steps in this

phase are the following:

1. Compute the 2-dimensional Fast Fourier Transform (FFT) of ROI.

2. Do an element-by-element multiplication of ROI and HDCCF and cal-

culate the surface power of the result.

3. Do an element-by-elemnt multiplication of ROI and HDCCF and put

the result in BUF.

4. Compute the 2-dimensional Inverse Fast Fourier Transform (IFFT) of

BUF.

5. Do an element-by-elemnt multiplication of ROI and HDCCF and put

the result in BUF.

6. Compute the 2-dimensional Inverse Fast Fourier Transform (IFFT) of

BUF.

The third phase is repeated for every target in the image, and the whole

process is repeated for every image.

3 The source code

The application is written in the C programming language and the code is

split in 25 source �les and 4 header �les. From the 25 �les we instrumented

only 18. The total code size is 1232 lines, and from that we instrumented

876 lines. The result of the instrumentation was about 4.8 thousand lines.

The code was modi�ed from its original version. Some of the arrays,

used in the FTT and IFFT code, were arrays of pointers, and some two-

dimensional arrays. The Reda library was not working with theses types

of arrays so we converted them to one-dimensional arrays. Part of this
modi�cation involved changing the arrays from being dynamically allocated,

via malloc, to statically allocated global variables. The resulted code has

2



the following global arrays: (a) three 
oating-point arrays of 8K, 2K and 2K

elements respectively, (b) three integer arrays of 4M, 16K and 1K elements,

and (c) a byte (unsigned char) array of 4M elements. The two 4M element

arrays are arti�cial, and they correspond to 256 times the size of an image
(16K elements). They could both be replaced with an array of 16K elements

that is reused in every iteration.

4 Results

We run the application with 5 di�erent input sizes to see how the input

size a�ects its reuse distance behavior. The di�erent inputs consist of 1,

2, 4, 8 and 16 images from a sequence of 180 frames taken from a real

missile camera. The results for each run were compared with the unmodi-
�ed application to check the correctness of the instrumented code and the

simulator. The unmodi�ed application executes about 3.8M instructions to

process each image (this number was taken from simulation with the Sim-

pleScalar tool). The simulator outputs statistics based on the base-type of

the arrays in the application. So we got four di�erent numbers: total refer-

ences, 
oating-point references, integer references and unsigned char (byte)

references.

The �rst thing we notice is that the number of references for each reuse

distance scales linearly with the input size (�gure 1). This hints to the

fact that the memory behavior of the application should not depend on the

input size. Figure 2 shows the percentage of memory references for each
reuse distance, and this is the same for all di�erent input sizes. As it is

expected this is true for each individual type of array (�gures 3, 4 and 5).

The interesting thing to notice is that most of the references are due to

accesses to the 
oating-point arrays. Figure 6 graphically shows the number

of references for each type for each reuse distance. Accesses to the byte

arrays dominate the 24, 29 and 215 distances. Accesses to the integer arrays

show about 30% of total accesses only for the distance of 28. Floating-point

accesses are the only accesses for most of the distances.

The last �gure (�gure 7) shows the percentage of accesses that happen

up to a certain distance. This �gure can help decide what memory size

better �ts our needs. As we can see a (fully-associative) cache that can �t
8K (213) elements can accommodate about 95% of the memory references

of the application.

3



0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
ef

er
en

ce
s 

(1
06 )

Reuse Distance (log2)

Total References

input-1
input-2
input-4
input-8

input-16

Figure 1: Number of total memory references for each reuse distance, for

di�erent input sizes.

5 Conclusions

Through this work we found out that UAV has a standard reuse distance

pattern, that does not depend on the input size. We also concluded that

the 
oating-point arrays account for almost all the memory references in the
application and that 95% of the memory references have a reuse distance of

213 or less.

Unfortunately there is something that the simulator in its current state

cannot tell us. We know, by using di�erent tools, that UAV goes through

three distinct phases when analyzing each input image. It would be more

helpful, for our purposes, to gather reuse distance information for each phase

separately. It would be interesting to see what type of arrays contribute to

each phase of the application, and what is the maximum reuse distance for

each phase.

4



0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe
rc

en
ta

ge

Reuse Distance (log2)

Total References

input-1
input-2
input-4
input-8

input-16

Figure 2: Percentage of total memory references for each reuse distance, for

di�erent input sizes.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe
rc

en
ta

ge

Reuse Distance (log2)

Floating-point References

input-1
input-2
input-4
input-8

input-16

Figure 3: Percentage of 
oating-point memory references for each reuse

distance, for di�erent input sizes.

5



0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe
rc

en
ta

ge

Reuse Distance (log2)

Integer References

input-1
input-2
input-4
input-8

input-16

Figure 4: Percentage of integer memory references for each reuse distance,

for di�erent input sizes.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe
rc

en
ta

ge

Reuse Distance (log2)

Byte References

input-1
input-2
input-4
input-8

input-16

Figure 5: Percentage of byte (unsigned char) memory references for each

reuse distance, for di�erent input sizes.

6



0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
ef

er
en

ce
s 

(1
06 )

Reuse Distance (log2)

Contribution

Float
Int

Byte

Figure 6: Number of 
oating-point (Float), integer (Int), and unsigned char

(Byte) references, for an input of 16 images.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe
rc

en
ta

ge

Reuse Distance (log2)

Total References Covered

Figure 7: Percentage of memory references covered by each reuse distance,

for an input of 16 images.

7


