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Profiling can accurately analyze program behavior for select data inputs. This article shows
that profiling can also predict program locality for inputs other than profiled ones. Here locality
is defined by the distance of data reuse. The article describes three distance-based techniques
for whole-program locality analysis. The first is approximate measurement of reuse distance in
near linear time. It can measure the reuse distance of all accesses to all data elements in full-
size benchmarks with guaranteed precision. The second is pattern recognition. Based on a few
training runs, it classifies patterns as regular and irregular and, for regular ones, it predicts their
(changing) behavior for other inputs. It uses regression and multi-model analysis to reduce the
prediction error, the space overhead, and the size of the training runs. The last technique is on-
line prediction, which uses distance-based sampling at the beginning of an execution to estimate
the locality of the whole execution. When tested on 15 integer and floating-point programs from
SPEC and other benchmark suites, these techniques predict with on average 94% accuracy for
data inputs up to hundreds times larger than the training inputs. Distance-based locality analysis
has been used in measuring and improving the cache performance of a wide range of programs.
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1. INTRODUCTION

Caching is widely used in many computer programs and systenascache performance
increasingly determines system speed, cost, and energg.udde effect of caching is
determined by the locality of the memory access of a prograsmew cache designs are
adding more cache levels and allowing dynamic reconfigumathe cache performance
increasingly depends on our ability to predict the progracality.

Many programs have predictable data-access patterns. Saiteens change from one
input to another, for example, a finite-element analysisdifferent size terrains and a
Fourier transformation for different length signals. Sopaterns are constant, for ex-
ample, a chess program looking ahead a finite number of mawegs @ompression tool
operating over a constant-size window.

The past work provides mainly three ways of locality anaydily a compiler, which
analyzes loop nests but is not as effective for dynamic cbfibw and data indirection;
by a profiler, which analyzes a program for select inputs logischot predict its behavior
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change in other inputs; or by run-time analysis, which caafford to analyze every access
to every data. The inquiry continues for a prediction schémeis efficient, accurate, and
applicable to general-purpose programs.

The article presents a new method for locality predicticsing a concept we call the
reuse distanceln a sequential execution, the reuse distance of a datasaicthe number
of distinctdata elements accessed between this and the previous attessame data.
Since it measures the volume of the intervening data actéssjways bounded, even for
a long-running program. In 1970, Mattson et al. [1970] defiaecollection of concepts
called stack distances and laid a foundation for the rekéardrtual memory management
in the following decades. TheRU stack distancés the stack distance using the least-
recently-used replacement policy. The reuse distance afaaatcess is equal to the stack
distance between this and the previous access of the same\Watuse a different (and
shorter) name to reflect our purpose in program analysismeohory management. We
later show that reuse distance is measured much fasterasiag instead of a stack.

Three properties of the reuse distance are critical foriptied program locality across
different executions of a program. First, the reuse digtdecat most a linear function
of the program data size. The search space is much smallpaftarn recognition and
prediction. Second, the reuse distance reveals invarianm®gram behavior. Most con-
trol flow perturbs only short access sequences but not theletire distance over a large
amount of data. Long reuse distances suggest importantddtaignal major phases of
a program. Finally, reuse distance allows direct comparifadata behavior in different
program runs. Different executions of a program may aledhfferent data or allocate
the same data at different locations. They may go throudardifit paths. Distance-based
correlation does not require two executions to have the shateor to execute the same
function. Therefore, it can identify consistent pattemgtie presence of dynamic data
allocation and input-dependent control flows.

The article presents distance-based locality analysispaadiction. It has three new
components. The first is approximate reuse-distance asalykich bounds the relative
error to arbitrarily close to zero. It takéX N log log M) time andO (log M) space, where
N is the length of the trace anf is the size of the data. The second is pattern recogni-
tion, which profiles a few training runs, classifies pattexasegular and irregular, and, for
regular ones, constructs a parameterized model. It usessgign and multi-model anal-
ysis to reduce the prediction error, the space overheadirensize of the training runs.
Using the locality pattern, the last technique, distanaseld sampling, predicts the locality
of an unknown execution by sampling at the beginning of thecetion. Together these
three techniques provide a general method for predictiaddbality of a program across
different data inputs.

We should note that the goal of this work is not cache analy@&che performance is
not a direct measure of a program but a projection of a paati@xecution on a particular
cache configuration. Our goal is program analysis. We fintepa consistent across
all data inputs. We analyze the reuses of data elementsathstecache blocks. The
element-level behavior is harder to analyze because itiamortized by the size of cache
blocks or memory pages (element miss rate is much higherdaelme-block miss rate).
We analyze the full distance, not its comparison with fixechessizes. Per-element, full-
length analysis is most precise and demands highest efficaard accuracy. The distance-
based analysis has many uses in understanding and imprthengerformance of real
cache systems, as discussed in Section 4.
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We do not find all patterns in all programs. Not all prograngeha consistent pattern,
nor are all patterns predictable, let alone by our methodr goal is to define common
recurrence patterns and measure their presence in refageprograms. As dependence
analysis analyzes loops that can be analyzed, we predierpathat are predictable. We
now show that, in many cases, reuse distance can extenddpe stlocality analysis to
the whole program.

2. DISTANCE-BASED LOCALITY ANALYSIS AND PREDICTION

This section presents the three components: approximadedistance analysis, distance-
pattern recognition, and distance-based sampling.

2.1 Approximate reuse-distance measurement

We view a program execution by its data-access trace. Tolfimdduse distance, a naive
algorithm would traverse the trace and for each access;tsbackwards to find the last
access of the same data and count the number of differentrdb&gween. In the worst
case, it needs to look back to the beginning of the trace, saslymptotic complexity is
O(N?) in time andO(N) in space for a trace oV memory accesses. These costs are
impractical for real programs, wheré is often in hundreds of billions.

The time and space costs can be reduced by better measumgmaithms. We illus-
trate the past solutions and our new algorithm through amelain Figure 1. Part (a)
shows that we need to count accesses to distinct data. Pahdiys that instead of storing
the whole trace, we store (and count) just the last accesaatf @ata element. Part (c)
shows the most efficient counting in the past literature. Bynizing the last-access times
in a search tree, the counting is done in a single tree seAssuming a balanced tree, the
measurement takes(N log M) time andO (M) space, wherd/ is the size of program
data. For a program with a large amount of data, the spacéeeggent becomes a limiting
factor. The tree needs to store at least four attributesdoh elata element, as shown in
Figure 1(d). Since the tree data is four times the program, daé space requirement of
the analysis easily overflow the physical memory of a machirkeven the 32-bit address
space when a program uses more than 100 million data.

We describe an approximate analysis that further reduaeatiimptotic costs of the
measurement. Accurate analysis is costly but often unsacg$or long reuse distances.
If the length of a distance is in the order of millions, we haiare about the last couple of
digits of the distance. By reducing the space cost, we careekiree small enough to fit
in not only the physical memory but also the processor cache.

In the following discussion, we do not consider the cost dlifig the last access time.
This requires a hashtable with one entry for each data. The ¢ost of the hash lookup
is constant per access. Bennett and Kruskal [1975] shovatdh#shing can be done in a
pre-pass, using blocked algorithms to reduce the memonjrezgent to arbitrarily low.

We present two approximation algorithms, with differenagantee on the accuracy of
the measured distancg,, .. s.rcq, COMpared to the actual distandg,:...;. Both guarantee
Ameasured < dactual- The difference is whether the error is bounded by a relatite or

an absolute number.
1. bounded relative errer 1 > e > 0 and destual =dmeasured < ¢

dactual
2. bounded absolute err@, B > 0 andd,ctual — dmeasured < B
We show the main idea of the approximate analysis in Figufskhown in Part (c) for

the accurate analysis, the tree stores the last accessoéleacent in a separate tree node.
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(a) An example access sequence. The reuse
distance of the second access of b is five because
five distinct elements are accessed since the last
access of b.
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(¢) The simplified trace in (b) is organized as a
search tree. Each tree node represents the last access
of a data element. The first attribute is the search
key, which is the last-access time. The weight
attribute is the size of the sub-tree. To measure the
reuse distance, we find the last access of b through a
tree search. Then we count the number of tree nodes
after its last access by a traversal of the search path
using the sub-tree weight.

time: 1 2 3 456 78 910 11 12
accesss dagbegcgef a £ b
distance: | €— 5 last accesses —>

(b) All but the last access of each element in (a) are
crossed out. The reuse distance is the number of the
remaining accesses after the last access of b at time
four.

tree node
|(time range, size, weight, capacity)l

e a

11-11.1.1.1

(d) Each node represents a time range given by the first
attribute. The size attribute is the number of elements
whose last access is within the time range. The weight is
the total size of the sub-tree. The capacity bounds the
size of a tree node to ensure a particular accuracy, which
is 33% in this case. To measure the reuse distance, we
find the range that includes the last access of b and add
the size of the tree nodes since then. The approximate
distance of two b's is 3 or 60% of the actual distance.

Fig. 1. An example illustrating the reuse-distance measarg. Part (a) shows the definition of reuse distance. Paytand (c) show two
accurate measurements. Part (d) shows the approximaterasent with a bounded relative error (67%).
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We can reduce the size of the tree by using a node to store adimge that includes the
last access of multiple elements, as shown in Part (d). Wael#fe size of a tree node as
the number of last accesses contained in its time range. @@mipo the accurate tree, the
size of the approximation tree is smaller by a factor equah¢oaverage node size. The
smallest tree has one node, whose time range is the entiee ttés also the least accurate.
The approximation methods set the node size differentiybtain different efficiency and
accuracy. The rest of this section describes them in detail.

2.1.1 Analysis with a bounded relative erroil.he analysis guarantees a bounded error
rate that can be arbitrarily close to zero. Figure 2 showsliita structure and the main
algorithm. Each node represents a time range in the tracsizk is the number of the last
accesses in the time range. Given the current and the lasgtsitime, the main routine uses
TreeSearchDelet® find the reuse distanc&reelnsertto insert the current access as the
last access, antteeCompressioto reduce the tree size when the size is above a threshold.
The algorithms foilfreeSearchDeletendTreeCompressioare shown in Figure 3. The first
subroutine searches the tree, calculates the reuse distamet updates the capacity of the
node once it is found. Then it deletes the tree node becaeseutient access will be
added as the last access. The tree insertion and deletiorelalance the tree and update
sub-tree weights. These two steps are not shown becausddpend on the type of the
balanced tree being used, which can be an AVL, red-blaciyspt B-tree.

To ensure the relative accuracy, the algorithm sets thecigypaf a tree node: to be
at mostdistance x 1=, wheredistance is the total size of théater tree nodes, which
are the nodes whose time range is greater than the time rdngela other words, the
distance gives the number of distinct data accessed atftelf the last access time falls
in the time range of:, the algorithm uselistance as the approximate reuse distance.
The approximation is no greater than the actual distanceceShe actual distance can
be at mostiistance plus the node capacity, the accuracy is at leastance divided by
distance + distance * +<, which is1 — e. The formula of;= is not valid ife = 0 or
e = 1. The former means accurate analysis. The latter meanshihartor can be any
fraction of the actual distance. We can simply return O asrthasured distance.

The size of the tree determines the efficiency of the algaritiihe most important part
of the algorithm is tree compression. The subroulirCompressioscans the tree nodes
in the reverse time order and updates the capacity tidtence x = . It merges adjacent
tree nodes if the size of the merged node is no more than thikesroapacity of the two
nodes. Tree compression is triggered when the tree sizeéste log, , ., M + 4, where
M is the number of accessed data. It guarantees that the 2eeis giut by at least a half.
The following proposition proves this property and gives time and space complexity.

PROPOSITION 2.1. For a trace of N accesses td/ data elements, the approximate
analysis with a bounded relative errer(1 > e > 0) takesO(N loglog M) time and
O(log M) space, assuming it uses a balanced tree.

PROOF. The maximal tree size cannot exceledog, , .. M +4, or,O(log M), because
of tree compression. Hew¢ = %. We now show thalTreeCompressiois guaranteed
to reduce the tree size by at least a half every time it is iadokLetng, ny, ..., and
n; be the sequence of tree nodes in the reverse time order. deoresich pair of nodes
after compressionq; andnq; 1. Let size; be the combined size of the two nodes. Let
sum;_1 be the total size of nodes befong;, that issum;_; = ijoy___ﬂ._l sizej. The

new capacity of the nodey;.capacity, is | sum;_1 * e’ |. The combined size;ize;, must
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data declarations
TreeNode= structure(time, weight, capacity, size, left, right, prev)
root: the root of the tree
€ the bound on the error rate

algorithm ReuseDistance(last, current)
/I inputs are the last and current access time
TreeSearchDelete(last, distance)
new = TreeNode(current,1,1,1, L, 1 1)
Treelnsert(new)
if (tree_size > 4 x logy , , root.weight + 4)
TreeCompression(new)
Assert(compression more than halves the tree)
end if
return distance
end algorithm

Fig. 2. Approximate analysis with a bounded relative errart I.

be at leastiy;.capacity + 1 and consequently no smaller thawn;_; = €’; otherwise the
two nodes should have been compressed. We hiavg > 1 andsize; > sum;_1x€e’. By
induction, we haveum; > (1 +¢')  ori < log, , .- sum;. For a tree holding\/ data in
Teompressed tree nodes after compression, we have | Teompressed/2] andsum,; = M.
Therefore, Teompressed < 2 * logy, . M + 2. In other words, each compression must
reduce the tree size by at least a half.

Now we consider the time cost. Assume that the tree is badbacd its size ig". The
time for the tree search, deletion, and insertio®{$og T') per access. Tree compression
happens periodically after a tree growth of at leastlog, , ., M + 2 or T'/2 tree nodes.
Since at most one tree node is added for each access, the nafrdecesses between
successive tree compressions is at |§g& accesses. Each compression také¥') time
because it examines each node in a constant time, and tfetrseuction from an ordered
list takesO(T"). Hence the amortized compression cosP{d) for each access. The total
time is therefor@(log T' + 1), or O(log log M) per access. ]

2.1.2 Analysis with a bounded absolute errdfor a cut-off distanc€’ and a constant
error boundB, the second approximation algorithm guarantees the greceasurement
of distances shorter thafi and an approximate measurement of longer distances with a
bounded erroB. It divides the access trace in two parts. Hecise tracekeeps the last
accessed’ elements. Thepproximate tracestores the remaining data in a tree where
the capacity of each tree nodefis Periodically, the algorithm transfers data from the
precise trace to the approximate trace. Our earlier paseridbes a detailed algorithm and
its implementation using a B-Tree in both the precise andadmate trace [Zhong et al.
2002].

We now generalize algorithm. The precise trace can use,aaligector, or any type
of trees, and the approximate trace can use any type of iedsng as two minimal re-
guirements are met. First, the size of the precise traceuad®xd by a constant. Second,
the minimal occupancy of the approximate tree is a constaotibn. To satisfy the first
requirement, we need to transfer data from the precise toatbe approximate trace when
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subroutine TraceSearchDelete(time, distance)
/I time s the last access time
node = root; distance =0
whiletrue
node.weight = node.weight — 1
if (time < node.time and node.prev existsand time < node.prev.time)
if (node.right exists)
distance = distance + node.right.weight
if (node.left not exists)oreak
distance = distance + node.size
node = node.left
elseif (time > node.time)
if (node.right not exists)reak
node = node.right
else break
end if
end while
node.capacity = max(distance ¥ 1%, 1)
node.size = node.size — 1
return distance
end subroutine T'reeSearchDelete

subroutine T'reeCompression(n)

/I n is the latest node in the tree

distance = 0

n.capacity = 1

while (n.prev exist)

if (n.prev.size + n.size < n.capacity)

/l merge n.prev into n
n.size = n.size + n.prev.size
Nn.prev = n.prev.prev
deallocate n.prev

else
distance = distance + n.size
n = n.prev
n.capacity = max(distance ¥ 1<, 1)
end if
end while

Build a balanced tree from the list and return the root
end subroutine TreeCompression

Fig. 3. Approximate analysis with a bounded relative errant I1.
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Table I. The asymptotic complexity of the reuse-distancasueement algorithms

M easurement Algorithms Time Space

trace as a stack (or list) [Mattson et al. 1970] O(NM) O(M)

trace as a vector-based interval tree O(NlogN) O(N)

[Bennett and Kruskal 1975; Almasi et al. 2002
trace as a search tree [Olken 1981] O(Nlog M) O(M)
[Sugumar and Abraham 1993; Almasi et al. 2002]

list-based aggregation [Kim et al. 1991] O(NS) O(M)

approx. w/ bounded absolute error O(N log 1) 0(%)
approx. w/ bounded relative error O(Nloglog M) | O(log M)

N is the length of execution\/ is the size of program data

the size of the former exceeds a threshold. To ensure a nlinitnapancy of the approx-
imate tree, we can simply merge two consecutive tree nodie iEombined size is no
more than their capacity. The merge operation guarantelesstt half utilization of the
tree capacity. Therefore, the maximal size of the approtdrtrae is%.

We implemented a splay tree [Sleator and Tarjan 1985] versidhe algorithm. We
will use only the approximate trace (the size of precisediiacset to 0) in distance-based
sampling because it runs fastest among all analyzers, asmishdsection 3.

2.1.3 Comparisons with Previous Algorithm3he past 30 years have seen a steady
stream of work in measuring reuse distance. We categoredqus methods by their
organization of the data access trace. The first three rowaldé | show methods using
a list, a vector, and a tree. In 1970, Mattson et al. [1970]iphéd the first measurement
algorithm. They used a list-based stack. Bennett and Ktj$R@5] showed that a stack
was too slow to measure long reuse distances in databass.trébey used a vector and
built an m-ary interval tree on it. They also showed how to use blockashing in a
pre-pass. In 1981, Olken [1981] implemented the first tr@seld method using an AVL
tree. He also showed how to compress the trace vector in Besome Kruskal’'s method
and improve the time and space efficiency to those of theltased algorithms. In 1994,
[Sugumar and Abraham 1993] showed that a splay tree [Slaatbfarjan 1985] has better
memory performance. Their analyz€heetahis widely distributed with the SimpleScalar
tool set. Recently, [Almasi et al. 2002] gave an algorithat tiecords the empty regions
instead of non-empty cells in the trace. Although the asptiptomplexity remains the
same, the actual cost of trace maintenance is reduced by @@%¥ in vector and tree
based traces. They found that the modified Bennett and Kroséthod was much faster
than methods using AVL and red-black trees.

Kim et al. [1991] gave the first imprecise (but accurate) ysialmethod in 1991. Their
method stores program data in a list, maskeanges in the list, and counts the number of
distances fell inside each range. The time cost per accesspsrtional to the number of
markers smaller than the reuse distance. The space d0$tis whereC' is the furthest
marker. The method is efficientff andC' are bounded and not too large. It is not suitable
for measuring the full length of the reuse distance, wittamdC need to be proportional
to M. Unlike approximate analysis, this method gives an aceuwratint of the the reuse
distances fallen within a marked range.

In comparison, the two approximation methods, shown indisetivo rows in Table |,
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trade accuracy for efficiency especially the space effigiehsey can analyze traces with a
larger amount of data and longer reuse distances. The nwe#neddjustable, and the cost
is proportional to the accuracy. The analysis with a bourréétive error has the lowest
asymptotic complexity in space and time, for an error ras tan be arbitrarily close to
zero. It for the first time cuts the space complexity from éin& logarithmic. The time
cost per access 3(log log M), which is effectively constant for any practicaf.

Reuse distance is no longer a favorable metric in low-lesehe design because it can-
not model the exact interaction between the cache and CPexxémple, the timing. How-
ever, for program traces, reuse distance determines thbetuoh capacity misses for all
cache sizes. Earlier work has also extended it to analyeefémence in various types of
set-associative cache [Hill 1987; Mattson et al. 1970].ti8act will discuss the uses of
reuse distance analysis in performance analysis and @gatiiion.

2.2 Distance-pattern prediction

Pattern recognition detects whether the recurrence patigsredictable across different
data inputs. We define the reuse, recurrence or localiteatts the distribution of the
reuse distance in a program, represented by a histogramadied thereuse signature
Based on the reuse signature of two or more training rungrdie-based pattern recogni-
tion constructs a parameterized pattern that predictsetigersignature for other inputs of
the program. The main parameter is the size of data involvpddgram recurrences. This
is not the same as the size of data touched by a program. Theewtion will show how
to obtain an estimate of this number through distance-bsaebling. In this section, we
assume it exists and refer to it indistinctively as the paogdata size.

Three factors strongly affect the prediction accuracy: nbenber of training inputs,
the precision of the histogram collection, and the compjegf patterns. The number
of training inputs needs to be at least two, although usingentgputs may allow more
precise recognition of common patterns. The precision td dallection is determined
by the number of histogram bins. Using more bins leads to mogeise distribution of
the reuse distance but lower speed in data collection artdrpgtrediction. The third
factor is the complexity of patterns. We now describe théectibn of histograms and the
recognition of their patterns.

2.2.1 Collecting distance and reference histogranvge use two types of histograms.
In areuse-distance histograiaistance histogranin short), thez-axis is reuse-distance
ranges, and thg-axis is the percentage of data accesses in each range siz¢tod each
bin. The range of the distance can be iimaar scale e.g.[0k, 1k), [1k, 2k), [2k, 3k), - - -,
or alog scale e.g. [0,1),[1,2),[2,4),[4,8), -, or alog-linear scalewhere the ranges
below2048 are in a log scale and those ab@@d8 in a linear scale. Figure 4(a) shows the
reuse-distance histogram of a fluid dynamics simulatiogiamm,S P, in the log scale.

A reference histogranis a transpose of the reuse-distance histogram. zFhgis is
groups of data accesses, sorted by the reuse distancey-dxis is the average reuse
distance of each bin. All bins have the same size. Figureigthe reference histogram of
SPin 100 bins. It first gives the average distance for the 1%tskbreuse distances, then
the average for the next 1% shortest reuse distances, amd so o

The reference histogram complements the distance histogia distance histogram
controls the range of the distance of a bin but not its sizeefArence histogram ensures
equal size but the range of distance may not be uniform. Gliingy the size of a bin
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Fig. 4. The histograms @Pwith the input size283. (a) the reuse-distance histogram (b)
the reference histogram

serves two purposes. First, it isolates the effect of nemrent parts of the program.
Some instructions are executed per execution; some arategpger program data. When
the data size becomes sufficiently large, the effect of theéo group diminishes into at
most a single bin of the histogram. Second, it offers a tiafflbetween information loss
and computation/space efficiency. For dense regions initarte histogram, where a
large portion of memory accesses have similar reuse dissartbe reference histogram
uses short ranges to increase accuracy. For sparse regitme distance histogram, the
reference histogram uses large ranges to reduce the tatddarwof bins. The size of the
bin determines the granularity and the cost of predictionbifsize of 1% means that
we need to analyze only 100 bins. At the same time, we do ndigiréne distribution of
distances within each 1% of memory references.

We first collect the distance histogram through profiling. tén compute the reference
histogram by traversing the distance histogram and cdloglghe average distance for
each fraction of memory references. Getting a precisednato incurs a high space cost.
We again use approximation since we do not measure preasmdes anyway. In the
experiment, we collect the distance histogram using ailogal scale. The size of bins
is a power of 2 up t®048 and then it is2048 for each bin. To improve precision, we
calculate the average distance within each bin and use #rage distance as the distance
of all references in the bin when converting it to the refesshistogram. Each bin in our
reference histogram holds 0.1% of the total data accesdes.cdst and accuracy of the
histogram collection can be adjusted by simply changingsibe of bins in both types of
histograms.

2.2.2 Distance patternsGiven two reference histograms from two training runs, we
construct a formula to represent the distance value of each\lye denote the bins in
the two histograms a§y1, g2, - -, gs) and{gi, g2, - - -, g5) and denote the average reuse
distances ofy; andg; by d; andd; respectively; = 1,2,---, B, whereB is the number
of bins. Lets ands be the data size of the two training runs. We can use lineardito
find the closest linear function that maps the data size togtise distance. Specifically,
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we find the two coefficients;; ande;, that satisfy the following two equations.

di = ¢; + e * fi(s) 1)
i ci +e;* fi(8) (2

d;

whered; andd; is the average reuse distance@freference group when the input size is
s ands, ¢; ande; are two parameters to be determined by the prediction methudif;
is a function. Assuming the functiofy is known, the two coefficients uniquely determine
the distance for any other data size. The formula therefefmes the pattern for each
bin, parameterized by the data size. The program pattetmeisiggregation of all bins.
The pattern is more accurate if more training runs are usedhawn later. The minimal
number of training inputs is two.

In a programthe largest reuse distance cannot exceed the size of progedanThere-
fore, the functionf; can be at most linear. It cannot be a general polynomial fonciVe
consider the following choices ¢f:

0; s s1/2, sl/3; §2/3

The firstis 0. We call it a constant pattern because reusandistdoes not change with the
data size. A bin has a constant pattern if its average reuse distance seagsuthe in the

two runs, i.e.d; = di. The second is. We call it a linear pattern. A bin has a linear
pattern if the average distance changes linearly with tla@gé in program input size, i.e.

j— = ¢; + e;3, wherec andk are constants. Constant and linear are the lower and upper
bound of the reuse distance changes. Between them are deesilib-linear patterns. The
patterns'/2 happens in two-dimensional problems such as matrix cortipatal he other

two happen in three-dimensional problems such as ocearagioru We could consider
higher dimensional problems in the same way, although wedidind a need in our test
programs.

For each bin of the two reference histograms, we calculaedtio of their average
distanced; /di, and pickf; to be the pattern function that is closes'dggidi. We take care
not to mix sub-linear patterns from a different number of eisions. In our experiments,
the dimension of the problems was given as an input to thgaelThis can be automated
by trying all dimension choices and using the best overall fit

2.2.3 Regression-based predictioklsing more than two training inputs may produce
a better prediction, because it reduces the noise from riggreeuse distance measurement
and reference histogram construction. According to theesjon theory, more data can
reduce the effect of noises and reveal a pattern closer te#igattern [Rawlings 1988].
Accordingly, we apply a regression method on more than taiaitng inputs.

The extension is straightforward. For each input, we have@umation as shown in
Equation 1. For each bin, instead of two linear equationgviorunknowns, we have as
many equations the number of training runs. We usé.#ast square regressigrRawlings
1988] to determine the best values for the two unknowns. Weus 6 training inputs in
our experiment. Although more training data can lead toebe&sults, they also lengthen
the profiling process. We will show that a small number ofrirag inputs is sufficient to
gain high prediction accuracy.

2.2.4 Multi-model prediction.An important source of imprecision comes from the
limited granularity because the above methods assume lthatcesses in the same bin
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have the same pattern. We call them single-model predictida now describe multi-
model prediction, which allows multiple patterns insideteain of a histogram. We will
use the terms pattern and model interchangeably.

In multi-model prediction, the reuse distance function bfrais as follows.

hz(s) = Pm, (87 Z) + Pm, (57 Z) +o 4+ Pm; (Sa Z) (3)

where,s is the size of input data, (s) is they-axis value of thé* bin for input of sizes,
andy,,, ...om, are the functions corresponding to all possible pattermsaufels.
Eachh;(s) is a linear combination of all the possible models of the déad histogram:

Pmq (SOa 1)7 Pmq (80’ 2)) s Pmy (807 B)7 Pma (507 1)7 Pmo (SOa 2)7 s Pmg (80, B),
s Pmy (s0,1), Pm; (50,2),++, Pm; (50, B)

where,B is number of bins in the standard histogram.

Figure 5 shows an example of the multi-model prediction. Wstiarily pick one of
the training inputs as thstandard input In this examples, is the size of the standard
input (the other training inputs are not showed in the figults.reuse distance histogram,
calledstandard histogramhas 12 bins, and each bin has two models—the constant and
the linear pattern. Using multi-model analysis, the statdastogram in Figure 3(a) is
decomposed into the constant and the linear pattern in &8fix) and 3(c). Given another
program data size, e.§xsg, we predict the reuse distance accordingly for the two padte
Figure 5(d) for the constant pattern and 5(e) for the linedtepn. The constant pattern
remains unchanged, and the distance of the accesses inghe fiattern is lengthened by
a factor of 8. Ther-axis is in log scale, so the bar in the linear pattern mowgs fy 3
points. The final prediction is the combination of the préslicconstant and linear parts,
shown in Figure 3(f).

As an example of the actual calculation, take a program @mbbth constant and linear
patterns. For easy description, we assume:

range 0: [0,1); range 1: [1,2); range 2: [2,4); range 3: [4,8)
For another input of size; = 3 x sy, we calculate thej-axis value of rangé4, 8) as
follows:

hs(s1) = ¢o(s0,3) + ©1(s0,7)

where,r is the rangd3, §). We calculatep; (so, ) as
¢1(s0,7) = @1(s0,71) + 1(s0,72)

where,r; = [3,2) andr; = [2, 3). We assume the reuse distance has uniform distribution
in each bin. Hence,

p1(s0,m1) = (522)1 (50, 1) = 31 (s0, 1)
©1(s0,72) = (%’%22)901(8072) = 5¢1(50,2)

Finally, we calculatéis(s1) as

hs(s1) = @o(s0,3) + 5¢1(s0,1) + 21 (s0,2)

After processing each;(s) of all training inputs in a similar manner, we obtain an equa-
tion group. The unknown variables are the models in the stahlkistogram. Regression
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Fig. 5. An example of multi-model prediction. Part (a) is these-distance histogram of
the inputsy. After regression analysis on this and other training iaptite histogram is
decomposed into two parts—the constant and the linear patty and (c). Given a new
input& x s, the constant part keeps unchanged, shown in (d), and ttaadésof the linear
part multiplies by 8 times, shown in (e). Theaxis is in the log-2 scale. The reuse-distance
histogram of the new input is the combination of (d) and (epveed in Figure (f).

techniques are used to find the models that fit all trainintpgrems with the least error.
An important assumption is that the percentage of memonysses in each model remains
unchanged for different inputs. We will show later that tisswamption is valid for a wide
range of programs.

A multi-model method does not depend on the type of histograincan use distance
histograms with log or linear scales. It can also use refardnistograms. The equations
are constructed and solved in the same manner.

2.2.5 Space and time complexitifrhe space and time cost of the prediction methods
areO(B), whereB is the size of the histogram. The sized$M ) for a linear-scale dis-
tance histogramQ(logM) for a log-scale distance histogram, afidl) for a reference
histogram. Although most costly, the linear-scale histioghas higher precision, which
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can produce better results especially when using smalltsdning runs. The log scale is
needed to separate reference groups with short reuseatistamhe reference histogram
has a constant cost, but it raises a problem: how to choodeestenumber of bins. The

range of choices is large. The maximal number of groupsgisitmber of memory refer-

ences in the smallest training run. We will see in the evadnatection that the prediction

accuracy depends heavily on the choice of the number of bins.

2.2.6 Limitations. Although the analysis can handle any sequential prograergeh-
erality comes with several limitations. For high-dimem&ibdata, pattern prediction re-
quires that different inputs have a similar shape, in otherdw, their size needs to be
proportional or close to proportional in all dimensionsh@tvise, a user has to train the
analyzer for each shape. In our future work, we will combime pattern analyzer with
a compiler to predict for all shapes. All high-dimensionatalwe have seen come from
scientific programs, for which a compiler can collect highidl information. In addition,
predicting reuse pattern does not mean predicting exatctitiee. The prediction gives the
percentage distribution but not the total number of memeopesses, just as loop analysis
can know the dependence but not the total number of loogibasa

Once the pattern is recognized from training inputs, we cadipt constant patterns in
another input statically. For other patterns, we need the siae of the other input, for
which we use distance-based sampling.

2.3 Distance-based sampling

The purpose of data sampling is to estimate data size in agmogxecution. For on-line
pattern prediction, the sampler creates a twin copy of tlgnam and instruments it to
generate data access trace. When the program starts toexbewgampling version starts
to run in parallel until it finds an estimate of data size. Ipgledent sampling requires
that the input of the program be replicated, and that the Bagpun do not produce side
effects.

The sampling iglistance-basedIt uses the reuse distance analyzer and monitors each
measured distance. It records only long-distance reusesibe they reveal global patterns.
When the reuse distance is above a threshold dtradification thresholyl the accessed
memory location is taken as a data sample. A later accessatasdmple is recorded as
an access sample if the reuse distance is over a seconddlarés$tetemporal thresholf
To avoid picking too many data samples, it requires that adesa sample to be at least a
certain space distance away (gpatial thresholdlin memory from existing data samples.
Given the sequence of access samples of a data sample, thieséindspeaks which
are time samples whose height (reuse distance) is greaterthiat of its preceding and
succeeding time samples.

The sampler runs until seeing the fikspeaks of at least: data samples. It then takes
the appropriate peak as the data size. The peak does notchlbgdhe actual data size. It
just needs to be proportional to the data size in differgmiis. We use the same sampling
scheme to determine data size in both training and predictins. For most programs we
tested, it is sufficient to take the first peak of the first twéadsamples. An exception is
Apsi Allits runs initialize the same amount of data as requingthie largest input size, but
smaller inputs use only a fraction of the data in the computatWe then use the second
peak as the program data size. More complex cases happereatigpeaks do not show
a consistent relation with data size, or the highest peakagpat the end of a program.
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We identify these cases during pattern recognition anduaosthe predictor to predict only
the constant pattern.

The sampling can be improved by more intelligent peak findifgr example, we re-
quire the peak and the trough differ by a certain factor, eraimoving average to remove
noises. The literature on statistics and time series idwaeisource for sample analysis. For
pattern prediction, however, we do not find a need for sojghigtd methods yet because
the (data-size) peak is either readily recognizable at dggniming or it is not well defined
at all.

The cost of distance-based sampling is significant sincedtia to measure reuse dis-
tance of every memory reference until peaks are found. Thé/sis does not slow the
program down since it uses a separate copy. It only lengttlensime taken to make
a prediction. For minimal delay, it uses the fastest appnation analyzer. It can also
use selective instrumentation and monitor only distinctmory references to global and
dynamic data [Ding and Zhong 2002]. For long-running prawgathis one-time cost is
insignificant. In addition, many programs have majority afmory references reused in
constant patterns, which we predict without run-time samgpl

Another use of distance-based sampling is to detect phasepriogram. For this pur-
pose, we continue sampling through the entire executiane Begments between consec-
utive peaks are phases. A temporal graph of time samplesssteowrrent accesses in time
order and the length and shape of each recurrence. The goalsaction will use phase
graphs to understand the results of pattern prediction.

Finding the first few peaks of the first few data samplings isramsual heuristic because
itis not based on keeping track of a particular program uasion or a particular data item.
The peaks found by sampling in different program executémaot have to be caused by
the same memory access to the same data. Very likely theparmmprograms with input-
dependent control flow, one cannot guarantee the executiariumction or the existence
of a dynamic data item. Distance-based sampling allowsetadion across data inputs
without relying on any pre-assumed knowledge about prograae or its data.

3. EVALUATION
3.1 Reuse distance measurement

Figure 6 compares the speed and accuracy for eight analyzkich we have described
in Section 2.1.BK-2, BK-16 andBK-256 are vector-based k-ary tree analyzers with
equal to 2, 16, and 256 [Bennett and Kruskal 19#HW is list-based aggregation with
three markers at distance 32, 16K, and the size of analyzedidian et al. 1991]. We re-
implemented it since the original no longer existheetaHSugumar and Abraham 1993]
uses a splay-treezDK-2k and Samplingare approximate analysis with the error bound
B = 2048, as described in Section 2.12DK-2kuses a B-tree and a mixed trace [Zhong
et al. 2002].Samplinguses a splay tree and only the approximate tr@8ésis the analysis
with the bounded relative errer= 1%. The input program traverséd data twice with

a reuse distance equal 36/100. To measure only the cost of reuse-distance analysis, the
hashing step was bypassed by pre-computing the last adresgekcept foKHW, which
does not need the access time). The timing was collected ch@Hz Pentium 4 PC with
800 MB of main memory. The programs were compiled ugingwith the optimization
flag-O3.
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Fig. 6. Comparison of analyzers

Compared to the accurate methods, approximate analyséstisrfand more scalable
with data size and distance length. The vector-based methma the lowest speeldHW
with three markers is fastest (7.4 million memory referenper second) for small and
medium distances but is not suited for measuring very longealistances.Cheetah
achieves an initial speed of 4 million memory referencessgeond. All accurate anal-
yses run out of physical memory at 100 million datdamplinghas the highest speed,
around 7 million memory references per second, for larga dates.ZDK-2kruns at a
speed from 6.7 million references per second for 100 thaligata to 2.9 million refer-
ences per second for 1 billion datamplingandZDK-2kdo not analyze beyond 4 billion
data since they use 32-bit integers.

The most scalable performance is obtained by the analyzle®8% accuracye = 1%),
shown by the line markefl9% We use 64-bit integers in the program and test it for up
to 1 trillion data. The asymptotic cost @(loglog M) per access. In the experiment,
the analyzer runs at an almost constant speed of 1.2 militerences per second from
100 thousand to 1 trillion data. The consistent high speednsarkable considering that
the data size and reuse distance differs by eight orders ghitgle. The speed is so
predictable that when we first ran 1 trillion data test, wenested that it would finish in
19.5 days: It finished half a day later, which was a satisfyimgment considering that
prediction is the spirit of this work. If we consider an ar@ldo physical distance, the
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Fig. 7. Pattern prediction for Spec2K/Lucas

precise methods measure the distance in miles, the appatgimmethod measures light
years with the same speed.

The lower graph of Figure 6 compares the accuracy of appatiam on a partial his-
togram of FFT. The y-axis shows the percentage of memory references, and-thas
shows the distance in a linear scale between 55 thousand@attimbésand with an incre-
ment of 204899.9%and99%approximation¢ = 0.1% ande = 1% respectively), shown
by the second and the third bars in each group, closely ma&chdcurate distance. Their
overall error is about 0.2% and 2% respectively. The bourmdsdlute error with a bound
2048, shown by the last bar, has a large misclassificationtheaend, although the error
is no more than 4% of the actual distance. In terms of the spaedhead, accurate ana-
lyzers need 67 thousand tree or list nod#BK-2kneeds 2080 tree node&¥9%needs 823,
and99.9%needs 5869. The last two results show that the cost and theaaycof the
approximate analysis are adjustable.

3.2 Pattern prediction

Figure 7 shows the result of pattern predictionlfacasfrom Spec2K, which is represen-
tative in our test suite. The graph shows four reuse sigeatdrhe first two are for the two
training inputs. They are used by the analyzer to recogrigtarntte patterns and to make
the locality prediction for a third input. The analyzer ruhe program with the third input,
samples 0.4% of its execution, finds the data size, and psettlie reuse signature shown
by the third bar in each group. The prediction matches cjosith the measured signature
shown by the fourth bar of each group. The two histogramdapday 95%. The accuracy
is remarkable considering that the target execution hagid®& more data and 320 times
longer trace than the larger one of the two training runs hds3$50 times more data and
3220 times longer traces than the smaller one has. The tqnediction of the peaks on
the far side of the histograms is especially telling becaluse differ from the peaks of the
training inputs not only in position but also in shape andjhei
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Table 1.

Prediction accuracy and coverage for floatingipprograms

Data Avg. reuses| Avg. dist. | Accuracy | Accuracy | Cover-

Benchmark Description Patterns Inputs elements per per w/ data | w/ sample| age

element element | size (%) | size (%) (%)

Lucas Lucas-Lehmer test const ref 20.8M 621 2.49E-1 85.0 95.1 99.6

(Spec2K) for primality linear train 41.5K 971 2.66E-1 85.9 81.8 100
test 6.47K 619 2.17E-1

Applu solution of five const 453 9.33M 153 1.62E-1 91.9 92.1 99.4

(Spec2K) coupled nonlinear | 3rd roots train(243) 1.28M 150 1.62E-1 94.1 94.1 994
PDE'’s linear test(23) 127K 146 1.57E-1

Swim finite difference const ref(512%) 3.68M 33.1 4.00E-1 94.0 94.0 99.8

(Spec9b) approximations for | 2nd root 4002 2.26M 33.0 4.00E-1 98.7 98.7 99.8
shallow water equation linear 2002 568K 32.8 3.99E-1

SP computational fluid const 503 4.80M 132 1.05E-1 90.3 90.3 99.9

(NAS) dynamics (CFD) 3rd roots 323 1.26M 124 1.01E-1 95.8 95.8 99.9
simulation linear 283 850K 125 9.78E-2

Tomcatv vectorized mesh const ref(513%) 1.83M 208 1.71E-1 92.4 92.4 99.5

(Spec9b) generation 2nd root 4002 1.12M 104 1.67E-1 77.3 99.2 99.3
linear train(2572) 460K 104 1.67E-1

Hydro2d hydrodynamical ref 1.10M 13.4K 2.23E-1 98.5 98.5 100

(Spec95) | equations computing| const train 1.10M 1.35K 2.23E-1 98.5 98.4 100
galactical jets test 1.10M 139 2.20E-1

FFT fast Fourier const 5122 1.05M 63.7 7.34E-2 72.6 72.8 99.6

transformation 2nd root 2562 263K 57.5 8.13E-2 95.5 95.5 99.5
linear 1282 65.8K 51.4 9.04E-2

Mgrid multi-grid solver const ref(64%) 956K 35.6K 6.81E-2 96.4 96.4 100

(Spec9b) in 3D potential 3rd roots test(43) 956K 1.42K 6.76E-2 96.5 96.5 99.3
field linear train(323) 132K 32.4K 7.15E-2

Apsi pollutant distribution const 128x1x128 25.0M 6.35 1.60E-3 27.2 91.6 97.8

(Spec2K) for 3rd roots | train(12&1x64) | 25.0M 146 2.86E-4 27.8 925 99.1
weather predication linear test(12& 1x32) 25.0M 73.6 1.65E-4




Table Ill. Prediction accuracy and coverage for integegpms
Data | Avg. reuses| Avg. dist. | Accuracy | Accuracy | Cover-
Benchmark Description Patterns Inputs elements per per w/ data | w/ sample| age
element element | size (%) | size (%) (%)
Compress | an in-memory versiorn] const ref 36.1M 628 4.06E-2 86.1 85.9 92.2
(Spec9s) | of the common UNIX| linear train 279K 314 6.31E-2 92.3 92.3 86.9
compression utility test 142K 147 9.73E-2
Twolf circuit placementand const | ref(1888-cell)| 734K 177K 2.08E-2 92.6 94.2 100
(Spec2K) | global routing, using| linear | train(752-cell)| 402K 111K 1.82E-2 96.2 96.6 100
simulated annealing 370-cell 227K 8.41K 1.87E-2
\ortex an object oriented ref 7.78M 4.60K 4.31E-4 95.1 95.1 100
(Spec9b) database const test 2.58M 530 3.25E-4 97.2 97.2 100
(Spec2K) train 501K 71.3K 4.51E-4
Gcee based on the expr 711K 137 2.75E-3 98.2 98.2 100
(Spec9b) GNU C compiler cp-decl 705K 190 2.65E-3 98.6 98.6 100
version 2.5.3 const explow 321K 68.3 3.69E-3 96.1 96.1 100
train(amptjp) 467K 221 3.08E-3 98.7 98.7 100
test(ccep) 456K 233 3.25E-3
Li const ref 87.9K 328K 2.19E-2 85.6 82.7 100
(Spec9b) Xlisp interpreter linear train 44.2K 1.86K 3.11E-2 85.8 86.0 100
test 14.5K 37.0K 2.56E-2
Go an internationally ref 109K 124K 3.78E-3 96.5 96.5 100
(Spec9b) ranked go-playing const test 104K 64.6K 3.78E-3 96.9 96.9 100
program train 86.1K 2.68K 2.02E-3
average 88.6 93.5 99.1
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Table Il and IIl show the effect of pattern prediction on 1:bemarks, including 7
floating-point programs and 6 integer programs from SPECGRbSPEC2K benchmark
suites, and 2 additional progran&Rfrom NASA and a two-dimension®FT kernel. We
reduce the number of iterations in a program if it does nacafthe overall pattern. We
compile the tested programs with the DEC compiler using #fawlt optimization {O3).
Different compiler optimization levels may change the eepattern but not the accuracy
of our prediction. We use Atom [Srivastava and Eustace 1894#)strument the binary
code to collect the address of all loads and stores and fesd th our analyzer, which
treats each distinct memory address as a data element.

Column 1 and 2 of the table in Table Il give the name and a slestription of the test
programs. The programs are listed in the decreasing ordieadverage reuse distance.
Their data inputs are listed by the decreasing order of ttesize. For each input, Column
5 shows the data size or the number of distinct data, and Gotuand 7 give the number
of data reuses and average reuse distance normalized bgttheize. The programs have
up to 36 million data, 130 billion memory references, and Biom average reuse distance.
The table shows that these are a diverse set of programs: mprbgrams are similar in
data size or execution length. Although not shown in thestable programs have different
reuse distance histograms (even though the average distamsimilar fraction of the data
size in a few programs). In addition, the maximal reuse distds very close to the data
size in each program run.

The third column lists the patterns in benchmark prograniméclvcan be constant, lin-
ear, or sub-linear. Sub-linear patterns inclitel root (+'/2) and 3rd roots (z'/3 and
x2/3). Floating-point programs generally have more patteras thteger programs.

The prediction accuracy is shown by the Column 8 and 9 of thketaletz; andy;
be the size ofth bar in predicted and measured histograms. The cumuldiffezence,
E, is the sum ofly; — ;| for all 7. In the worst caseF is 200%. We usd — E/2 as
the accuracy. It measures the overlap between the two hésteg ranging from 0% or
no match to 100% or complete match. The accuradyuaiaswith sampled size is 95%,
shown in Figure 7.

As we discussed in Section 2.2, reuse signature pattermmasngerized by the size of
data involved in program recurrences. This is not the santbeasize of data touched
by a program and we use distance-based sampling descrilfelction 2.3 to estimate
the number. The accuracy of prediction based on this sagektimation is given by
Column 9. As a comparison, Column 8 lists the prediction eexxybased on program data
size. For many benchmarks, the two columns give comparabldts, which indicates a
proportional relation between the size of data involvedrogpam recurrences and the size
of data visited in whole program execution. But this doeshwit for all programs. An
obvious example i&\psi For different input parameters, the program initializes same
amount of data, but only uses part of it in computation. Tfegeereuse signature pattern
built on program data size can not capture the locality bieh&er Apsiand the prediction
accuracy is only 27%. In general, prediction based on sasip&ehas a higher average
accuracy.

We use three different input sizes for all programs excepfic. Based on two smaller
inputs, we predict the largest input. We call this forwarddiction. The prediction also
works backwards: based on the smallest and the largessinpatpredict the middle one.
In fact, the prediction works for any data input over a readds size. The table shows
that both forward and backward predictions are very aceur&ackward prediction is
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generally better except fluucas—because the largest input is about 500 times larger than
the medium-size input—and fai—because only the constant pattern is considered by the
prediction. Among all prediction results, the highest aacy is 99.2% for the medium-
size input ofTomcaty the lowest is 72.8% for the large-size inputkefFT. The average
accuracy is 93.5%.

The last column shows the prediction coverage. The covasa$@0% for programs
with only constant patterns because they need no samplorgthkers, the coverage starts
after the data-size peak is found in the execution traceNUe¢ the length of the execution
trace,P be the logical time of the peak, then the coverage-isP/N. For programs using
a reduced number of iteration¥, is scaled up to be the length of the full execution. To be
consistent with other SPEC programs, weddt and F'F'T" to have the same number of
iterations agomcatv Data sampling uses the first peak of the first two data sarfied
programs with non-constant patterns excepi@ompresandLi. Compressieeds 12 data
samples. It is predictable only because it repeats conipresuultiple times, an unlikely
case in real used.i has random peaks that cannot be consistently sampled. \Mfetdre
based on only the constant pattern. The average coveragel9

The reported coverage is for predicting simulation resultstead of measuring reuse
distance for the whole program, we can predict it by sampdimgwverage 1.2% of the ex-
ecution. To predict a running program, the coverage is #nmbkcause the instrumented
program (for sampling) runs much slower than the originagpam. Our fastest analyzer
causes a slowdown by factors ranging from 20 to 100. For adslaxm of 100, we need
a coverage of at least 99% to finish prediction before the drtieoexecution! Fortu-
nately, the low coverage happens onlydompress Without them, the average coverage
is 99.73%, suggesting 73% time coverage on average. Evéwoutit fast sampler, the
prediction is still useful for long running programs and gmams with mainly constant
patterns. Six programs or 40% of our test suite do not neeglgzgn

Most inputs are test, train, and reference inputs from SHECGCC, we pick the
largest and two random ones from the 50 input files irrit§ directory. SPandFFT do
not come from SPEC, so we randomly pick their input siZ€sT(needs a power of two
matrix). We change a few inputs for SPEC programs, shown lao@o 4. T'omcatv and
Swim has only two different data sizes. We add in more inputs. Apuits ofHydro2d
have a similar data size, but we do not make any change. Thimpes of Twolf has 26
cells and is too small. We randomly remove half of the cellésnrain data set to produce
a test input of 300 cellsAppluis a benchmark with long-time execution, so we replace
reference input with a smaller one to save data collectioe tiFinally,Apsiuses different-
shape inputs of high-dimensional data, for which our curgedictor cannot make an
accurate prediction. We change the shape of its largest.inpu

3.3 Regression-based multi-model prediction

We now turn our attention to a sub-set of the test prograntshiéaee multiple inputs so
that we can test regression-based and multi-model predictihe first column of Table IV
gives results obtained by Ding and Zhong's original meth@ther columns show the
accuracy of the new methods. All methods are based on h&steygiven by the same
reuse-distance analyzer and the input sizes given by the demtance-based sampler.
The results in Table IV show that for most programs, all regi@-based predictions
produce better results than the method using two trainipgts1 Therefore, regression
on multiple inputs indeed improves prediction accuracycdgt for SWIM multi-model
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logarithmic scale method is comparable to the best predictblowever, it is the most
efficient among all methods because the storage space ofszébg histogram is 95% less
than other histograms.

SWIM shows inconsistent results. The multi-model logarithntials has poor result
for SWIM but multi-model log-linear scale and single-model methgive very accurate
predictions. Figure 8 shows the distance histograi8WiM Note it has a high peak in a
very small reuse distance range. Multi-model logarithntigls usesog scale ranges. It
assumes that the reuse distance is evenly distributedimraage, which brings significant
noise in a histogram using a log scale.

The performance of multi-model log-linear scale methodighfly better than multi-
model logarithmic scale method for the first four benchmarkd much better fo8WIM
However, log-linear scale costs more than 20 times in spadeeamputations than loga-
rithmic scale for most programs. The multi-model methodebasn reference histograms
outperforms single-model two-input method for two out af giograms. It gives the high-
est accuracy fof' F'T. As we explained in Section 2.2.4, this approach is very filexi
and its performance depends heavily on the number of groupsur experiment, we
tried 7 different numbers of groups for each benchmark aedented the highest accu-
racy, but finding the maximal accuracy requires trying tlamas of choices. The result
for F'F'T shows the potential of this method, but the overhead of fonttie best result is
prohibitively high.

Table IV. The prediction accuracy of the five methods

Bench- Single Model Multi-model Max.
mark RF-Hist. | RF-Hist. | Log Log-linear Num.
2inputs | 3+ inputs| RD-Hist. | RD-Hist. | RF-Hist. | Inputs

Applu 92.06 97.40 93.65 93.90 90.83 6
SWIM 94.02 94.05 84.67 92.20 72.84 5

SP 90.34 96.69 94.20 94.37 90.02 5
Tomcatv | 92.36 94.38 94.70 96.69 88.89 5

FFT 72.82 93.30 93.22 93.34 95.26 3
GCC 98.61 97.95 98.83 98.91 93.34 4
Average | 90.04 95.63 93.21 94.90 88.53 4.7

So far the prediction uses a relatively large input, so tifegrént patterns are separated
from each other. It is important for the two single-model nogls that different patterns
do not overlap, because the methods assume that only ond exists in each range. In
addition, the composition of patterns in a bin is likely ctamg when the input size is large.
This is required by both single-model and multi-model basethods.

When the training uses small input sizes, single-model nustlaoe not expected to per-
form well, but multi-model methods should work as well asargk input sizes. Table V
shows the performance of the four methods on small size smgff P benchmark. We do
not show the results of the multi-model method using refegdnistograms because it is
difficult to tune. The results show that multi-model logdar scale method is significantly
more accurate than other methods. The good accuracy shaihéhpercentage of each
model remains unchanged even for small inputs. The perioceaf multi-model logarith-
mic scale method is worse than the log-linear scale methecaluse of the low precision in
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Fig. 8. The reuse-distance histogramsaVIM

logarithmic scale histograms. Although multi-model lagelar scale method needs more
computation and more space than the logarithmic scale mgtihis cost is not an issue for
small-size inputs.

Table V. Accuracy fotS P with small-size inputs

largest | testing | single-model| single-model| multi-model | multi-model
training | size 2 inputs 3+ inputs log scale log-linear scale
83 103 79.61 79.61 85.92 89.5

123 79.72 75.93 79.35 82.84

143 69.62 71.12 74.12 85.14

283 64.38 68.03 76.46 80.3
103 123 91.25 87.09 84.58 90.44

143 81.91 83.20 78.52 87.23

163 77.28 77.64 76.01 84.61
163 283 75.93 74.11 77.86 83.50

We compare the five methods in Table VI. Methods A, B, and E efsge&nce histograms
while Methods C and D use reuse distance histograms. Ther gitbup needs not to
transform between the two histograms. Using log-scaledé® histograms, Method C
saves 20 times in space and computation compared to othkodsetThe last method can
also save cost because it can freely select the number af ltimst is hard to pick the
right number. While efficient, Method C loses information &ese it assumes a uniform
distribution in large ranges. It could not accurately peethie locality of SW 1M, where a
large number of reuse distances stay in a narrow range. indba, other methods produce
much better results because they use shorter, linear-smages. Among them, multi-
model prediction methods predict with a higher accuracy tih& single-model methods
do if multiple patterns overlap in the same bin. Overlappftgn happens for inputs of a
small size.
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Table VI. Features of Various Reuse Distance Predictiorhivtix

Methods A B C D E
Models single single multiple | multiple | multiple
Histogram Reference| Reference| Distance| Distance | Reference
Histogramz-axis log-linear | log-linear log log-linear | log-linear
Number of inputs 2 3+ 3+ 3+ 3+
Number of models per bir 1 1 2+ 2+ 2+

In summary, regression analysis significantly improvesateuracy of reuse distance
prediction, even with only a few training inputs. The mutiddel method using loga-
rithmic histograms can save 95% space and computationstiirkeéep the best accuracy
in most programs, although it is not as consistent as thoskaue using log-linear his-
tograms. Space efficiency is necessary for fine-grainegsisalf the patterns in individual
program data. It is a good choice when efficiency is importdifie single-model multi-
input method has the highest accuracy, but it cannot acyratodel small-size inputs.
It is the best choice when one can tolerate a high profiling. ctise multi-model method
using log-linear scale histograms is the best for smalltisimes, where different models
tend to overlap each other. It is also efficient because th size is small.

3.3.1 Comparisons with Profiling AnalysidMost profiling methods use the result from
training runs as the prediction for other runs. An early gtoasured the accuracy of this
scheme in finding the most frequently accessed variablegxexlited control structures
in a set of dynamic programs [Wall 1991]. We call this schemestant predictionwhich
in our case uses the reuse-distance histogram of a trainmgg the prediction for other
runs. For programs with only constant patterns, constaedigtion is the same as our
method. For the other 11 programs, the worst-case accusatyeisize of the constant
pattern, which is 55% on average. The largest is 84%wnlf, and the smallest 28% in
Apsi The accuracy can be higher if the linear and sub-lineaepwttoverlap in training
and target runs. It is also possible that the linear pattEmtmaining run overlaps with a
sub-linear pattern of the target run. However, the latter tases are not guaranteed; in
fact, they are guaranteed not to happen for certain target rithe last case is a faulty
match since those accesses have different locality.

For several programs, the average reuse distance is of ksiingiction of the data
size. For example iBwim the average distance is 40% of the data size in all three runs
This suggests that we can predict the average reuse digithoter runs by the data size
times 40%. This prediction scheme is in fact quite accuratepfograms with a linear
pattern (although not for other programs). When the dataisisafficiently large, the
total distance will be dominated by the contribution frore tmear pattern. The average
distance is basically the size of the linear pattern, whicBwimis 40% of all references.
This scheme, however, cannot predict the overall distiobubf reuse distance. It also
needs to know the input data size from distance-based sagndlhe total data size is not
always appropriate. For exampkepsitouches the same amount of data regardless of the
size of the data input.

As areality check, we compare with the accuracy of randorigtien. If a random dis-
tribution matches the target distribution equally wellr method would not be very good.
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A distribution is ann-element vector, where each element is a non-negative veaber
and they sum to 1. Assuming any distribution is equally fikéte probability of a random
prediction has an errax or less is equal to the number of distributions that are withi
error to the target distribution divided by the total numbépossible distributions. We
calculate this probability using-dimensional geometry. The total number of such vectors
is equal to the surface volume on a corner cut ofwagimensional unit-size hypercube.
The number of distributions that differ by with a given distribution equals to the sur-
face volume of a perpendicular cut througjlr ! corner cuts of am-size hypercube. The
probability that a random prediction yields at least « accuracy isa” !, the ratio of
the latter volume to the former. For the prograocasshown in Figure 7n is 26 and the
probability of a random prediction achieving over 95% aecyris0.05%° or statistically
impossible.

3.3.2 A case studyThe programGcc compiles C functions from an input file. It has
dynamic data allocation and input-dependent control flowcl@ser look atGcece helps to
understand the strength and limitation of our approach. &kgpde the entire execution of
three inputsSpec95/Gcecompilingcccp. i andanpt j p. i andSpec2K/Gececompiling
166. i . The three graphs in Figure 9 show the time samples of onesdatale. Other
data samples produce similar graphs. The upper two gragitg. i andanptjp.i,
link time samples in vertical steps, where the starting pofirach horizontal line is a time
sample. The time samples fd66. i are shown directly in the bottom graph.

The two upper graphs show many peaks, related to 100 fursctiothe 6383-line
cccp. i and 129 functions in the 7088-lirgerpt j p. i . Although the size and location of
each peak appear random, their overall distribution is 969886 identical between them
and to three other input files (shown previously in Table Tihe consistent pattern seems
to come from the consistency in programmers’ coding, fomgxa, the distribution of
function sizes. Our analyzer is able to detect such comsigt@ logically unrelated recur-
rences. On the other hand, our prediction is incorrect ifitpet is unusual. For example
for 166. i , Gecespends most of its time on two functions consisting of thadsdines of
code. They dominate the recurrence pattern, as shown bgwlee graph in Figure 9. Note
the two orders of magnitude difference in the range of x- aiakgs. Our method cannot
predict such unusual pattern.

Our analyzer is also able to detect the similarity betwedfierdint programs. For ex-
ample, based on the training runs $pec95/Gccwe can predict the reuse pattern of
Spec2K/Gcon its test input (the same as the test input in Spec95) with 8&curacy.

While our initial goal was to predict programs with regulacugrence patterngccand
other programs such &s$ andVortextook us by surprise. They showed that our method
also captured the cumulative pattern despite the inheagrtomness in these programs.
High degree of consistency was not uncommon in applicatiarisding program compila-
tion, interpretation, and databases. In additi®o¢ showed that our method could predict
the behavior of a later version of software by profiling itslieaversion.

4. USES OF DISTANCE-BASED LOCALITY PATTERNS

Distance-based locality analysis is unique because itnermgdly applicable as program
profiling is, yet it describes the program behavior undeiirgduts as compiler analysis
does. This section briefly surveys the current and potensaek of the distance-based
locality information.
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Performance modeling Reuse distance gives richer information about a program aha
cache miss rate does. At least four compiler groups haverasise distance for different
purposes: to study the limit of register reuse [Li et al. 7]9%8&d cache reuse [Huang and
Shen 1996; Ding 2000; Zhong et al. 2002], and to evaluateffetef program transfor-
mations [Ding 2000; Beyls and D’Hollander 2001; Almasi et2802; Zhong et al. 2002].
Recently, Zhong et al. [2003] and [Marin and Mellor-Crumng804] applied distance-
based analysis to memory blocks and reported accurateraisgrediction across differ-
ent program inputs and cache sizes. Using the predictorideddn this article, Fang et al.
[2004] examined the reuse pattern of each program instructi 11 SPEC2K CFP bench-
mark programs and predicted the miss rate of 90% of instmstivith a 97% accuracy.
They used to prediction tool to identifyritical instructions that generate the most cache
misses.

Program transformation Beyls and D’Hollander [2002] is the first to show real perfor-
mance improvement using the reuse distance informatioery Tked reuse distance pro-
files to generate cache hints, which tell the hardware whethd which level to place
or replace a loaded memory block in cache. Their method iwgaldhe performance of
SPEC95 CFP benchmarks by an average 7% on an Itanium prac€asorecent work
sub-divides the whole-program distance pattern in theespéits data. The spatial analy-
sis identifies locality relations among program data. Raogr often have a large number
of homogeneous data objects such as molecules in a simgiaaéee or nodes in a search
tree. Each object has a set of attributes. In Fortran 77 prograttributes of an object are
stored separately in arrays. In C programs, the attributestared together in a structure.
Neither scheme is sensitive to the access pattern of a pnoghabetter way is to group
attributes based on the locality of their access. For asthgstransformation is array re-
grouping. For structures, it is structure splitting. Weugred arrays and structure fields
that have a similar reuse signature. The new data layouistenty outperformed array
and structure layouts given by the programmer, compilelyaisa frequency profiling, and
statistical clustering on machines from all major venddtsdng et al. 2004].

Memory adaptation A recent trend in memory system design is adaptive cachisgta
on the usage pattern of a running program. Balasubramoniah 000] described a
system that can dynamically change the size, associataity the number of levels of
on-chip cache to improve speed and save energy. To enabdelaged adaptation, our
recent work divides the distance pattern in time to idergtyupt reuse-distance changes as
phase boundaries. The new technique is shown more effattigentifying long, recurring
phases than previous methods based on program code, exetigrvals, and manual
analysis [Shen et al. 2004]. For FPGA-based systems, So[208PR] showed that a best
design can be found by examining only 0.3% of design spade thé help of program
information, including the balance between computatioth rw@mory transfer as defined
by Callahan et al [1988b]. So et al. used a compiler to adjumnram balance in loop
nests and to enable software and hardware co-design. Whilenalysis cannot change
a program to have a particular balance (as techniques suahral-and-jam do [Carr
and Kennedy 1994]), it can be used to measure memory balamtsuwpport hardware
adaptation for programs that are not amenable to loop-nedysis.

File caching For software managed cache, Jiang and Zhang [2002] dewketopefficient
buffer cache replacement polidyRS based on the assumption that the reuse distance of
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cache blocks is stable over a certain time period. Zhou ¢2@01] divided the second-
level server cache into multiple buffers dedicated to béook different reuse intervals.
The common approach is partition cache space into multipfeets, each holding data
of different reuse distances. Both studies showed thatrdistéance based management
outperforms single LRU cache and other frequency-baseshses. Our work will help in
two ways. The first is faster analysis, which reduces the gramant cost for large buffers
(such as server cache), handles larger traces, and prdaites run-time feedbacks. The
second is predication, which gives not only the changingepatbut also a quantitative
measure of the regularity within and between different sypiworkloads.

5. RELATED WORK

The preceding sections have discussed related work in tlesumement and the use of
reuse distance. This section compares our work with progmaatysis techniques. We
focus on data reuse analysis. Data reuse analysis can lmerped mainly in three ways:

by a compiler, by profiling or by run-time sampling.

Compiler analysis Compiler analysis has achieved great success in undeirstgadd
improving locality in basic blocks and loop nests. A basioltis dependence analysis.
Dependence summarizes not only the location but also thendis of data reuse. We re-
fer the reader to a recent, comprehensive book on this dUBjlken and Kennedy 2001].
Various types of array sections can measure data localityoips and procedures. Such
analysis includes linearization for high-dimensionabgs [Burke and Cytron 1986], lin-
ear inequalities for convex sections [Triolet et al. 1986fular array sections [Callahan
et al. 1988a], and reference lists [Li et al. 1990]. Havlald &ennedy [1991] studied the
effect of array section analysis on a wide range of prograBascaval and Padua [2003]
extended dependence analysis to estimate the distanceagtdaes. Other locality analy-
sis includes the matrix model [Wolf and Lam 1991], the menmwdering [McKinley et al.
1996], and a number of later studies using high-dimensidisakrete optimization [Cier-
niak and Li 1995; Kodukula et al. 1997], transitive depertdeanalysis [Song and Li
1999; Wonnacott 2002; Yi et al. 2000], and integer sets anions [Chatterjee et al.
2001; Ghosh et al. 1999].

Because dependence analysis is static, it cannot acquaaialyze input-dependent con-
trol flow and dynamic data indirection, for which we need pitdi or run-time analysis.
However, dynamic analysis cannot replace compiler arglgspecially for understanding
high-dimensional computation.

Balasundaram et al. [1991] used training sets in performamediction on a parallel
machine. They ran test programs to measure the cost of penaiperations and used the
result to calibrate the performance predictor. While the#tmod trains for different ma-
chines, our scheme trains for different program inputs. gitenanalysis can differentiate
fine-grain locality patterns. Recent source-level toolssaisombination of program instru-
mentation and profiling analysis. McKinley and Temam [19€&Ffully measured various
types of reference locality within and between loop nestslldt-Crummey et al. [2001]
measured fine-grained reuse and program balance throughlB@View tool. Reuse dis-
tance has recently been used in source- and binary-levisl [doong et al. 2004; Marin
and Mellor-Crummey 2004]. Since our current analyzer calyae all data in complete
executions, it can definitely handle program fragments ta dabsets.

Data Access Frequency Access frequency has been used since the early days of comput
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ing. Early analysis included sample- and counter-basefilipgp[Knuth 1971] and static
probability estimation [Cocke and Kennedy 1974]. Most piredi work considered only a
single data input. Thabit [1981] measured how often two detments were used together.
Chilimbi later used grammar compression to fimat data streamswhich are sequences
of repeated data accesses up to 100 elements long [2001h]200

While previous studies find repeating sequences by measiigggency and individ-
ual similarity, we find recurrence patterns by measuringdis&ance between data reuses.
Phalke and Gopinath [1995] used a Markov model to predictithe distance between
data reuses inside the same trace. Distance-based arddgsisnot construct frequent
sub-sequences as other techniques do. On the other harstavers the overall pattern
without relying on identical sequences or fixed-size tragedews. Repetition and recur-
rence are orthogonal and complementary aspects of progrhavior. Recurrence helps to
explain the presence or absence of repetition. For examglechitectural simulation, one
study found thaBpec95/Gcavas so irregular that they needed to sample 33% of program
trace [Lafage and Seznec 2000], while another study showa&pec2K/Gecg¢compiling
166.i) consisted of two identical phases with mainly foypeating patterns [Sherwood
et al. 2002]. Being a completely different approach tharezgccurate CPU simulation,
distance-based sampling shown in Figure 9 confirms bothesf tbservations and sug-
gests that the different recurrence pattern is the reasothifo seemingly contradiction.
Lafage and Seznec [2000] mentioned that although reusandistmight help their analy-
sis, it was too time consuming to measure. Using the effi@eatysis described in this
paper, our later work has successfully identified repegiatterns in an execution [Shen
et al. 2004].

Corréation among data inputs Wall [1991] presented an early study of execution fre-
guency across multiple runs. Chilimbi [2001b] examineddbasistency of hot streams.
Since data may be different from one input to another, Chiliosed the instruction PC
instead of the identity of data and found that hot streamludecsimilar sets of instruc-
tions if not the same sequence. The maximal stream lengthdveesl was 100. Hsu et al.
[2002] compared frequency and path profiles in differensrieckhout et al. [2002] stud-
ied correlation in 79 inputs of 9 programs using principanpmnents analysis followed
by hierarchical clustering. They considered data propgiticluding access frequency of
global variables and the cache miss rate. All these tecksiqueasure rather than predict
correlation.

The past profiling analysis is limited to using a single inputliscovering invariance
among a few inputs. Most used program data or code. The fddbhsavork is to analyze
the program behavior in terms of its reuse distances andettigirthechanging behavior
in other program inputs, including those that are too laogeib, let alone to simulate.

Run-time data analysis Saltz and his colleagues pioneered dynamic parallelizatith
an approach known as inspector-executor, where the irep@amines and partitions data
(and computation) at run time [Das et al. 1994]. Similartsj@s were used to improve
dynamic locality [Ding and Kennedy 1999; Han and Tseng 200&ljor-Crummey et al.
2001; Strout et al. 2003]. Knobe and Sarkar [1998] includedtime data analysis in array
static-single assignment (SSA) form. To reduce the ovetloéaun-time analysis, Arnold
and Ryder [2001] described a general framework for dynammeming, which Chilimbi
and Hirzel [2002] extended to discover hot data streamgitdatia prefetching. Their run-
time sampling was based on program code, while our run-tangp$ing is based on data



30 . Chen Ding et al.

(selected using reuse distance). The two schemes are onthlnd complementary. Ding
and Kennedy [1999] used compiler and language support t& erat monitor important
arrays. Ding and Zhong [2002] extended it to selectively ioorstructure and pointer
data. Run-time analysis can identify patterns that areusig a program input, while
training-based prediction cannot. On the other hand, prgfiinalysis like ours is more
thorough because it analyzes all accesses to all data.

6. CONCLUSIONS

The paper has presented a general method for predictinggondgcality. It makes three
contributions. First, it builds on the 30-year long seriésvork on stack distance mea-
surement. By using approximate analysis with arbitrarilyhhprecision, it for the first
time reduces the space cost from linear to logarithmic. Téve analyzer achieves a con-
sistently high speed for practically any large data and Idistance. Second, it extends
profiling to provide predication for data inputs other thaofibed ones. It defines com-
mon locality patterns including the constant, linear, afieéhasub-linear patterns. Finally,
it enables correlation among different executions wittiatise-based histogram and sam-
pling, which overcomes the limitation of traditional codedata based technigues. When
tested on an extensive set of benchmarks, the new methasliasti4% accuracy and 99%
coverage, suggesting that pattern prediction is pradticalse by locality optimizations in
compilers, architecture, and operating systems.
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