STOC(Milwaukee 1931),326-333,

1/0 COMPLEXITY:
THE RED-BLUE PEBBLE GAME

Hong, Jia-Wei and IL. T. Kung

Department of Computer Science
Carncgie-Mcllon University
Pittshurgh, Pennsylvania 15213

In this paper, the red-blue pebble game is proposed to model the
input‘output complexity of algorithms. Using the pcbble game
formulation, a number of fower bound results for the 1/0 requirement
are proven. For example, it is shown that to perform the n-point FFT
or the ordinary nxn matrix multiplication algorithm with O(S) memory,
at least Q(n log n/log S) or Q(n3/\/§), respectively, time is needed for
the 170. Similar results arc obtained for algorithins for scveral other
problems. All of the lower bounds presented are the best possible in

the sense that they are achievable by certain decomposition schemes.

Results of this paper may provide insight into the difficult task of
balancing /0 and computation in special-purpose system designs. For
cxample, for the n-point FFT, the lower bound on 170 time implies
that an S-point device achicving a speed-up ratio of order log S over the

conventional O(n log n) time implementation is all one can hope for.

1. Introduction

When a large computation is performed on a small device or
memory, the computation must be decomposed into subcomputations.
Executing subcomputations onc at a time may require a substantial
amount of 170 to store or retrieve intermediate resulis. Very often it is
the 170 that dominates the speed of a computation. In fact, I/0 is a
typical bottleneck for performance at all 'lcvels of a computer system.
However, 0 the authors’ knowledge the 170 problem was not
previously modelled or studied in any systematic or abstract manner.
Similar problems were studied only in a few isclated instances [2, 5.
This paper proposcs a pebble game, called the red-blue pebble game, to
model the problem, and presents a number of lower bound results for
the 170 requircment. All the lower bounds presented can be shown to
be the best possible, in the sense that they are achicved by certain

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM 0-89791-041-9 /80/0500/0326 $00.75

decomposition schemes. The paper is organized according to the
techniques used to derive these lower bounds.

In Scction 2 we formally definc the pcbble game and point out its
rclation to the 170 probleni. In Scction 3 we show that lower bounds
for I70 in the pebble game can be cstablished by studying the so-called
S-partitioning problem. This is the key result of the paper in the sense
that it provides the basis for the derivation of all the lower bounds. In
Secction 4 we prove a lower bound for the FFT algorithm. Lower
bounds in Section 5 arc based on the information speed function, which
measures how fast the number of vertices on which a given vertex
"depends” can grow in a directed acyclic graph of a certain type. We
demonstrate the dramatic difference between the 1/0 requirement for
the odd-even transposition sorting network and that for the "snake-
like" mesh graph. In contrast to the focus of Secction 5, Section 6
studics independent computations for which there are very little
information exchanges among vertices. ‘There we obtain, for example, a
lower bound for the ordinary matrix multiplication algorithm. In
Scction 7 we prove a general theorem on products of graphs. Using this
theorem, one can determine the 170 required by a product of graphs,
by examining only the individual graphs. A summary and concluding
remarks are provided in Scction 8.

Results of this paper have the implication that they impose upper
bounds on the maximum possible speed-up obtainable with a special-
purpose hardware device. For example, our lower bound on the [/0
requirement for the n-point FFT (Corollary 4.1) implies that an S-point
device can achicve a speed-up ratio of at most O(log S) over the

The rescarch was supported in part by the Office of Naval Research
under Contracts N00014-76-C-0370 and N00014-80-C-02306, in part by
the National Science FFoundation under Grant MCS 78-236-76, and in
part by the Defense Advanced Research Projects Agency under
Contract F33615-78-C-1551 (monitored by the Air Force Office of
Scientific Rescarch). About the authors: Hong, Jia-wei is on leave
from Pcking Municipal Computing Center, Pcking, China and is
currently visiting the University of Rochester for the Spring of 1981,
H.T. Kung is currently on leave from Carnegic-Mellon University at
FSIs Advanced Processor Technology Group in San Jose, Catifornia.
(ESL. is a subsidiary of TRW.) Most of the rescarch for this paper was
carried out during the Fall of 1980 when both authors were at CMU.

conventional O(n log n) software implementation. Similarly, for matrix
multiplication our result (Corollary 6.2) implics that a VSxVS device
can achieve a speed-up ratio of at most O(V'S).

2. The Red-Blue Pebble Game and Its Relation to
the 1/0 Problem

As the usual pebble game (see, e.g. [4]), the red-blue pebble game is
played on a directed acyclic graph.1 At any point in the pebble game,
some vertices of the graph will have red pebbles, some will have blue
pebbles, some will have both red and bluc pebbles and the remainder
will have no pcbbles at all. Following the notation of Pippenger [8],
define a configuration as a pair of subsets of the vertices, one comprised
of just the vertices having red pebbles, and the other just those having
blue pebbles. Thus vertices belonging to the intersection of the two sets
have both red and blue pebbles on them. The set of inputs (or outputs)
of the graph is some designated set of vertices containing at least those
vertices that have no predecessors (or successors, respectively). We
assume that the set of inputs is disjoint from that of outputs. For all the
examples discussed in the paper, only verticcs that have no predecessors
(or successors) are assumed to be inputs (or outputs, respectively),
except in Section 7 where products of graphs are considered. The
initial (or terminal) configuration is one in which only inputs (or
outputs, respectively) have pebbles, and they are all blue pebbles. The
rules of the red-blue pebble game are as follows.

R1. (Input) A red pebble may be placed on any vertex that has a
blue pebble.

R2. (Output) A blue pebble may be placed on any vertex that
has a red pebble.

R3. (Compute) If all the immediate predecessors of a vertex
have red pebbles, a red pebble may be placed on that
Vertex.

R4. (Delete) A pebble (red or blue) may be removed frqm any
vertex.
A transition is an ordered pair of configurations, the second of which
follows from the first according to one of the ryles. A calculation is a
scquence of configurations, cach successive pair of which form a
transition. A complete calculation is onc that begins with the initial

configuration and cnds with the terminal configuration.

A graph on which the red-blue pebble game is played can model a
computation performed on a two-level memory structure, consisting of
say, a fast memory and a slow memory. Vertices represent operations
and their results. An edge from one vertex to another indicates that the
result of one operation is an operand of the other. An operation can be
performed only if all the operands reside in the fast memory. Placing a
red pebble using rule R3 corresponds to performing an operation and
storin_g the result in the fast memory. Placing a blue pebble using rule

1'l‘hc red-blue pebble game discussed in this paper is not related in any way to the
black-and-white pebble game introduced by Cook and Scthi [1].

327

R2 corresponds to storing a copy of a result (currently in the fast
mcmory)iinto the slow memory, whereas placing a red pebble using R1
corresponds to retrieving a copy of a result (currently in the slow
memory) into the fast memory, Removing a red or blue pebble using
rule R4 means frecing a memory location in the fast or slow memory,
respectively, The maximum allowable number of red or blue pebbles
on the graph at any point in the game corresponds to the number of

words available for use in the fast or slow memory, respectively.

For the purpose of this paper, we assume that the fast memory can
hold only S words, where S is a constant, while the slow memory is
arbitrarily large. Thus when the pebble game is played on a graph, at
most S red pebbles, and any number of blue pebbles, can be on the
graph at any time. For any given graph, we are intcrested in the
minimum /0 time Q, which is defined by

Q = the minimum number of transitions according to rule
R1 or R2 required by any complete calculation,
For the FFT graph, it is not difficult to prove the following upper
bound result by the decomposition scheme illustrated in Figure 2-1.
Theorem 2.1. For the n-point I'FT graph,
Q-log S = O(n log n).

Y

N
”

vyvVYyVwey

v-i
Aos\ III

.01 K ’II

AV SN VII‘\\
NN NN\

v

@

&—— logn =4
logS = 2

—

4-pt
DFT

L

T

16

"

RERREE

LTTTTT

|1

1]

®)

Figure 2-1: (a) the 16-point FFT graph, and
(b) decomposing the FFT graph, withn =16 and S = 4.

However, for proving tight lower bounds on Q, we found that it was
difficult to work with the red-blue pcbble game directly. Instead we
study the S-partitioning problem, which is a “static” problem in the
sense that it does not apply rules on-the-fly as in a game. We show that
lower bounds for the S-partitioning problem can be translated into
lower bounds on Q for the red-blue pebble game.

3. The S-Partitioning Problem and the Key
Lemma
In this section we show that every complete calculation of the red-
blue pebble game on a dirccted acyclic graph defines a partition of the
graph. Let G = (V. F) be a directed acyclic graph where V and E are
the vertex and cdge sets of G, respectively. A family of subscts of V,
{Vl, Voo Vh}, is called an S-partition of G for some positive integer

S if the following four propertics hold.
PL. The Vs arc disjoint and U:‘=1Vi =V.

P2. For cach V 1 < i < h, there exists a dominator set D for V
that contams at most S vertices. (A dominator set for V 1s
defined to be a set of vertices in V such that every path from
an input of G to a vertex in V; contains some vertex in the
set.)

P3. For cach V 1 <i < h, the minimum set M. ofV has at most
S vertices. ('he minimum set of V is defined to be the set
of vertices in V that do not have any sons belonging to V)

P4, There is no cyclic dependence among vertex sets in
v, v Y } (A subsct V; is said to depend on another
subsct%/ 1f thcrc is an cdge in E from a vertex in V toa
vertex in V)

Theorem 3.1. Let G = (V, E) be a directed acyclic graph.
Any complete calculation of the red-bluc pebble game on
G, using at most S red pebbles, is associated with a 25-
partition of G such that

Sh>q>S-th-1,
where q is the 170 time required by the complete

calculation, and h is the number of vertex sets in the 2S-
partition.

Proof: Denote by C any complete calculation. We can
divide C into a sequence of h consccutive subcalculations,
C C - G, for some h such that in each C,, 1 < i <h-1,
thcre arc cxactly S transitions using rule R1 or]RZ and in C
there are no more than S such transitions. Fori=1,. h,
define V. to be the largest vertex set in which each vertcx
satisfics the following three propertics.

(i) During subcalculation C it has a red pebble placed
on it using rule R1 or R3

(ii) At the end of subcalculation Ci, it cither has red
pebbles, or blue pebbles that are placed on it during
C, orhasasonin \A

(iii) It does not belong to any V. withj < i.

We claim that the family {V], V V., } is a 2S-partition
of G. First we show that pl()pcrty Pl I?olds By (iii) it
follows immediately that the V s are disjoint. In the
following wc show that every vertex in V belongs to some
V1 Because calculation C is a complete calculation, every

328

vertex must have red pcbbles placed on it at least once.
Suppose that a vertex has a red or biue pebble on it at the
end of some subcalculation C,. Then there must exist a
subcalculation C, j < 1, durmg which the vertex has a red
pebble placed ori it using rule R1 or R3, and at the end of C

it cither remains to have the red pebble or has a blue pcbblé
that is placed on it during C.. 'This implics that the vertex
belongs to V, for some k < j.” All outputs have blue pebbles
on them at the end of the last subcalculation Ch thus they
all belong to U V Consider now any immediate
predecessor u of an output v. Suppose that v belongs to V..
Then v cannot have any pebble on it at the beginning of
and thus must have a rcd pebble placed on it using R
during C;. This implics that we have one of the following
two cases:

Case 1: i > 2 and u has a red or blue pebble on it
at the end of subcalculation Cl r Then by the
reason stated above, u belongs to some V
jsil

Case 2: u has a red pebble placed on it using rule
R1 or R3 during C.. If 4 does not belong to any
V. with j < i, then l)ccause u has a son vin V u
itself must belong to V

We have shown that all thc immediate predeccssors of
outputs belong to U| 1V1 Similarly, we can show that all
the immediate prcdcccssors of the immediate predecessors
of outputs belong to U Property P1 follows by
induction. Note that both Casc 1 and Case 2 above imply

“that if Vi depends on V, then j < i Therefore there cannot

be any cyclic dependence among V.’s, and thus property
P4 holds. For proving property P2 for any Vi, 1<i<h, we
consider two subsets of V, V|, and V., which are defined as
follows.
. V consists of those vertices that have red pebbles
placcd on them just before subcalculation C begins.

oV R consists of those vertices that have blue pebbles
pllaccd on them just before subcalculation C. begins
and have red pebbles placed on them according to
rule R1 during C,.

It is easy to sec that by property (i) in the definition of V

V forms a dominator sct for V.. Since there can be
at m()st 8 red pebbles on G at any time, we have
[Vl <8

The fact that at most S transitions can usc rule R1 during C
implics that

[Vpel <.
Thus
[V U Vil < Vel + Vgl <28,

We have shown that {V V2 .V } satisfics property P2.
The proof of property l’? is snmlar By property (ii) in the
definition of V.. we know that at the end of subcalculation
Cl cvery vertex in M, the minimum sct of V., has red
pcbbles, or bluc pcbbllcs that arc placed on it c'lunng C.

Since there can be at most S vertices having red pubblcls
placed on them at any time, and at most S \fcrticcs having
blue pebbles placed on them during Cl the minimum sct M
can havc at most 2S vertices. We have shown thal
{V Y } is a 2S-partition of G. The theorem follows
by notmq Um[cm responding to each V, 1 <i < h-1, exactly
S transitions using R1 or R2 arc performed and to V no
more than S such transitions are performed.

Let

P(S) = the minimum number of vertex scts that any S-partition
of G must have.
We have, by Theorem 3.1, the key lemma of the paper:

Lemma 3.1 For any dirccted acyclic graph G, the
minimum 170 time satisfics

Q>S:(PQS)-1).
Using this lemma, lower bounds for P can be translated immediately

into lower bounds for Q.

4. Lower Bounds for the FFT Computation
In this section we cstablish a lower bound on the 170 time Q for the
n-point FFT graph (sce Figure 2-1(a)), by proving a lower bound on P.

Define an S-dominator partition of a graph G = (V, E) to be a family
of subscts of V, {Vl, V2~
an S-partition, but not nccessarily property P3. Let

e Vh}‘ satisfying propertics P1, P2 and P4 of

PD(S)= the minimum number of vertex scts that any S-
dominator partition of G must have.

Then clearly PD(S) < P(S), since any S-partition is also an S-dominator
partition. The following theorem cstablishes a lower bound on PD(S),
and thus a lower bound on P(S).

Theorem 4.1, Suppose that S > 2. The minimum
number of vertex sets in any S-dominator partition of the n-
point FF I graph satisfics

PD(S) = Q((n log n)/(S log S)).

Proot:

Stce there are a total of O(n log n) vertces i the o point FIT
graph, it suflices (o prove that any vertex set that has a donuinator set
ol size no more than S can lave at most 28 log S vertices (5 > 2).
We show this inductively. We partiion the graph into three parts, A,
B, and C, as shown in the figure, The dominator is partitioned into
three parts, . Dy, and I)C, which have dp, dy, dee clements
respecively. Whog we can assume that dy € dy. The set U s
parutoned into three parts, Uy, Uy, U, which have uy, ug, ue
clements respecively. If ues > de+2d,, then ather there are mote
than dp clements of UeADin thie apper half of part C o there are
more than dp clements of UeAD in the Tower hall of part C. In
either case, there are more than dp independent paths from the

329

uppet hall mputs o these verees e UgAD e Sinee the set 1, has
only dp o clements, tus s oampossible, Therefoie: we have

e € odee 2d,.
By ducuve hypothests, we have

Uy ¢ 2dp g dy,
uy < 2y dog dy

Thus,

[UP € 20dp log dpy b dy dop dy dp) t de

oy cisy o prove the Tullowng lemma:
Lemma: 100 <% <y and xty ¢ A, then

x log x + y logy ¢ 2x < A log Al

By this lanma, simce 0 < dy < dy, da y < S--(I(_‘, we have

UL € 2A5-dg) log (Sd¢) 4 dge
< 25 log S.

By L.emma 3.1 we have the following lower bound result.
Corollary 4.1, For the n-point FFT graph,
Q-log S = Q(n log n).

Thus the 170 time for the FFT when exccuted on a special-purpose
device with S words of memory is at least &n log n/log S), implying
that the maximum-possible speed-up ratio over the usual O(n log n)
implementation is at most O(log S). This upper bound on the speed-up
ratio holds no matter how fast the the device may be, since it is a
consequence of the 1/0 consideration. In [7] a systolic device that
distributes S words of memory in a linear processor array and achieves
O(log S) speed-up for the FFT is described.

5. Lower Bounds Based on Information Speed
Functions
Many "regular” graphs G = (V, E) have the property that all inputs
can reach all outputs through vertex-disjoint paths.
Theorem 4.1 we have alrcady noted that the FFT graph has this

In the proof of

property. In the current section, this type of graph will be considered.
The vertex-disjoint paths from inputs to outputs will be called /ines, for
simplicity. We say that the information speed function is QF(d)) if for
any two vertices u, v on the same line that are at least d apart, there are
F(d) vertices in the graph satisfying the following two properties.

F1. None of these vertices belongs to the same line.

F2. Each of these vertices belongs to a path connecting u and v.

The following theorem shows that lower bounds on Q can be obtained
from lower bounds on F or upper bounds on F 1

Theorem 5.1. For any graph where all inputs can reach
all outputs through vertex-disjoint paths, if the information
specd function is QF(d)) where F is monotonically
increasing and F exists, then

Q-F(§) =0,

where L is the total number of vertices on the vertex-disjoint
paths or the lines.

Proof: As in the proof of Theorem 4.1, we will establish
P(S) = AL/ S-F(S)

by showing that any vertex set U in a S-dominator partition
can have at most O(S-F'](S)) vertices on the lines. Note
that vertices in U can be on at most S lincs, since the lines
are vertex-disjoint and U has a dominator sct of size at most
S. The theorem follows from the claim that on any line there
can be at most F'](S) + 1 vertices in U. Supposc that the
claim is false for some finc. Then on this lmc there are two
vertices # and v in U that are F (S) + 1 apart.
Conscquently, there are F(F (S) + 1) vertices satisfying
propertics F1 and F2 If any of these vertices belongs to
another vertex set U’ in the S-dominator pattition, then by
property F2 there will be a cyclic dependence among vertex
scts in the S-dominator partition, \lola[mg property P4 in
Scction 3. ‘Thercfore all of these IF(F (S) + 1) vertices,
which form a sct of more than S vertices, belong to U, and
by property F1 they belong to distinct lines. ‘This is a
contradiction, since vertices in U can be on at most S lines.
0

Corollary S.1. For the odd-cven transposition sorting
network (sec, ¢.g., [6]) for sorting n-clement runs,

Q- S =)

Proof: Consider the sub-network that includes only half
of the inputs and outputs, as shown in Figure 5-1. It is casy

to scc that the sub-network has n/2 lines with L = 0(112) and
F(d)=d.

Figure 5-1: The odd-cven transposition sorting work,

where cach "0" is a comparator.

Corollary 5.2. For the mxn snake-like directed mesh as
shown in Figure 5-2,

Q = Q(mn),
forany S <m.

Proof: Consider as lines all the horizontal vertex-disjoint
paths from inputs to outputs. It is casy to sec that we can
assume F(d) = n for any d > 2. T.et U be any vertex sct in an
S-dominator partition of the graph. As in the proof of
Theorem S.1. we note that vertices in U can be on at most S
lines, .o-J that on any line there can be at most two vertices
in U, ' u refore, U can have at most O(S) vertices, and thus
Pl)(.\r o PSY = Qmn/S). The corollary follows from
femma 3.1

330

O—»r > > » > »- »- »-
A A A
A 4 A\ A 4 A\
O—r > > > > > > >
A A I
A\ A\ A4 A
O—> > > > > > > >
A A 'y
A 4 A\ A 4 Y
O—r > »- » »- »- > »-

Figure 5-2: The snake-like graph.

6. Independent Evaluation of Multivariate
Expressions
Given values for indeterminates Xpoen X, the problem is to evaluate
multivariate polynomial expressions y, = yi(xl, e xn), i=1,2..,m
Assume that cach Y is a sum of at least two terms and in each Yp all the
terms are distinct and have degrees < D. An example of such a problem
is matrix multiplication, where 1) = 2. An independent evaluation of yi’s
is an algorithm or a directed acyclic graph with inputs xi's and outputs
yi's satisfying the following properties.
EL In the evaluation of each Y all (and only) those product
terms which appear in the fully distributed cxpression of Y
arc computed first by multiplications, and then using these
product terms y; is formed through a summation tree by
additions or subtractions only. In particular, no

multiplication can be performed after an addition or
subtraction.

E2. Internal vertex scts of the summation trees for all the yi’s are
disjoint from cach other, that is, nonc of the internal
vertices in one tree appears as an internal vertex in another.
(Thus, evaluations of yi’s arc independent from cach other.)

Let X be any sct ofxi’s or products in xi’s. For any output Yo define
h(y,. X) as the number of terms in Y that can be obtained from X
dircctly or by multiplying clements in X. Forany Y ¢ {yl, Cen ym} we

further define

h(Y.X) = 2 h(y, X).
For example, if y; = xx, + x3xl, Yy = X x2 + x1x3, = {y;. y,}, and
X = {x}, 3, 3}, then h(y,. X) = 1, hy,, X) = 2,and (Y, X) = 3. Define

the S-combination number to be

H(S) = max{h(Y, X) | [Y] < S, |X| < S}.
We have the following result.

Theorem 6.1. For any independent evaluation of a
multivariate expression of degree < D,

Q-(D-H(S)/S+1D) = Q(|V|),

where |V] is the total number of vertices in the graph
corresponding to the independent cvaluation.

Proof: let {V v, Y } be an S-partition of the
graph associated w1t11 [lC 1ndcpendcn[cvaluation. We shall
prove the following,

(i) Each V 1 < i < h, can have at most H(S) + 28
internal vertices. (An internal vertex is defined to be
a vertex belonging to the internal vertex set of some
summation tree.)

(i) There are at least |V|/(2D) internal vertices in the
graph.

By property P3 in the definition of S-partition, the
minimum set ofV has at most S vertices. This implics that
V. can have noncmpty intersections with internal vertex sets
of at most S summation trees, since by E2 cach of such
interscctions has at least one distinct vertex in the minimum

t. Thus, to bound the number of internat vertices that Vi
can have, we need only consider summation trees for S yi's.
By property P2 of S-partition, we note that Vv, has a
dominator set Di of size no more than S. By the definition
of H(S), from Di onc can form at most H(S) terms appearing
in the S yi‘s. These terms, together with possible vertices in
D, that are already intcrnal vertices, can gencrate at most
H(S) + 2S internal vertices. We have shown (i). To prove
(ii), let A denote the total number of internal vertices in the
graph corresponding to the independent cvaluation. Then
the total number of external vertices, or terms, in all the
summation trees, is no greater than 2A. Each product term
requires at most 1> - 1 multiplications; thus the total
number of vertices | V| in the graph satisfies:

V] <2A(D -~ 1) + A € 2AD.

This proves (ii). It follows from (i) and (ii) that
h > (|V|72D3) 7 (H(S) + 28),

and by I.emma 3.1,

Q= Q(S- [V} 7 (D-(H(25)+25))),
or
Q-(D-H(S)/S+D) = (V).

Corollary 6.1, For the ordinary matrix-vector
multiplication algorithm for multiplying an mxn matrix with
an n-vector,

QS = Q(mn),

assuming that entrics in the matrix can be generated on-the-
fly and thus they are not required to be input.

Proof: I‘hc corollary follows immediatcly by noting that
H(S) = O(S Yand D = 1.

Lemma 6.1. For matrix-matrix multiplication,
H(S) = O(S*2).

Proof: Consider the matrix multiplication, AB = C. Let
W be any set of entries in A and B, with |W| < S. Partition
A into two classes as follows. Class A | consists of all rows 1n
A, cach of which has at least VS entries in W, and class A
consists of the rest of rows in A. Acc()rdmg]y, matrix C 1s
partitioned into two blocks, AdB and A’ B Since A, can
have at most V'S rows, and since in any row of A ‘h an
entry in B can appear at most once (and B has no more than
S entrics in W), the maximum number of terms in AdB that
can be obtamcd by multiplying clements in W is at most
S-VS = $¥2 For terms in AdB each of them can be
obtained by mu]nplymg at most V'S elements in W, since
each row in A has at most V'S clements in W. Therefore,
in any subsct of A B having no more than S clements, the
maximum number of terms that can be gbtained by
multiplying elements in W is at most S- VS = s,

By Theorem 6.1 and Lemma 6.1, we have the following result.

Corollary 6.2 For the ordinary matrix-matrix
multiplication algurithm for multiplying mxk and kxn
matrices,

Q- VS = Q(mkn).

W]

331

7. Lower Bounds for Products of Graphs

As demonstrated in Sections 4 and 5, one can cstablish lower bounds
on Q by proving upper bounds on the size of any vertex sct that has a
dominator set of size at most S. This is cquivalent to proving lower
bounds on

D(n) = the minimum size of a dominator set for any vertex set
having no less than n vertices.

In this scction we show that lower bounds on ID(n) for the product of
two graphs can be obtained from lower bounds on D(n) for individual
graphs. (Sce, for example, [3] for the definition of the product of two
graphs.) Let G 1xG2 be the product of G1 and GZ. A vertex (Vr v2) €
Gle2 is defined to be an input (or output) of Gle2 if vy is an input
is an input of GZ, (or, respectively, vy is an output ofG1 and

2
is an output of Gz-) Of course D(n) depends on the graph on which

of G, orv
V2
it defincs; we use Dl(n), Dz(n) and D(n) to distinguish the case when
the graph is Gr 02 and G respectively.

If fis a positive function such that f{x)/x is

1T2, and 0 < 3 '[‘2, then

Lemma 7.1.
non-increasing, 3a, > T

2fa) 2 T,AT,).
Proof:

Sfia) > ZafT,/T, 2 T)RT,).

Theorem 7.1, (The Production Theorem for Dominators)
If D(n) Q(d. (n)) where d1 i = 1, 2, is a positive, non-
dccreasmg function such that d. [(x)/x is non-increasing, then

D(n;n,} = @(min{n, -d,(n,), n,-d,(n)}
Proof: Lct W be asubsetin V Y, of sizenjn
U, =

Deﬁne

= the set of vertices p,in V for whlch

2 W (Vyxip,D)l 2 1y

and
U,=V,-U,
Clearly, we have [U,| < n, giving
[W 1 ({fp Uyl < ny,
and forp e U’z,
(WN(V,x {p, Dl <n;.
One of the following two cases must hold.

@

®)

Case 1. |W N (leU2)| 2 n /2.

Let n, be any veriex in V.. Any dominator set for
W N ({p,}xV,) is of size at least d (W n {p;}xV)))). Thus
the size of any dommator sct for V\; satisfies:

D(n;n,) > Eplevldz(lW n({p XV

Since U is a subset of V2 and d2 is a nondecreasing
funcuon we have

Dimyny) 2 3, oy dy(IW 1 (fpy}xU).
By the definition of (‘}ase 1,

EDIEVI Iw n ({pl}xuz)l 2 n1n2/2. (6)

By Lemma 7.1, it follows from (4) and (6) that

Eplevl dz(lw n ({pl}xuz)l) P4 nl) dz(nz)/zs
implying
D(nlnz) >N, dz(nz)/2.

Case 2. [WnN (leUlz)| >0 ny/2.

Any dominator set for
(W n (v x{p,DI)- Thus
satisfies:

Let P, be any vertex in V2.
wn (le{pz}) is of size at least d
the size of any dominator set for V\}

D) 2 By, 4UW 0 (Vixdp Dl
Since U, is a subset of V,, we have

D(nyn)) 2 %, el d,((W n (V x{p,HD-
By the definition of 8ase 2,

Ep EU’ iw n (le{pl})l > n1n2/2, %)
2
By Lemma 7-%, it follows from (5) and (7) that
EpzeU;_dlqw NV x{p,HD = n,-dy(0)72,
implying
D(nlnz) 2 1'12 ‘ dl(nl)/2. a

Let L = {V, E} be a directed line where V = {1, 2, ... , m}, and
E={@,i+1)]i=1,2, .., m-1}, with unique input "1" and output "m."
We have DL (n) = 1 for anyn<m Sce Figure 7-1.

Let l,2 = 1‘1"}‘1' Then

Dlﬂ(n2) = Q(min{1-n, 1-n}),
giving

DLZ(nZ) = 6(n).
Let Ly= l,,le,l. Then

DL3(n3) = Q(min{n-n, n?- 1},

giving
D, (%) =)
3
Let Ld = L1 X...% Ll, that is, Ld is the product of d Ll’s. Then
similarly,
D, (n%=0m""). ®)
d
Ly

Figure 7-1: The product of two directed lines, where

each "o" represents an input.

332

Corollary 7.1. For the product L with d > 2,
Q . Sl/(d-l) - Q(md)

Proof: By (8), the maximum size of any vertex set that
has a dominator set of size at most S is O(S¥4"D). Since
there are a total of m9 vertices in L o Ve have

P(S) = Q(m®/s44-D),

by which the Corollary follows from Lemma 3.1. a

We have a similar product theorem for separators of a graph. For the
special case L & bounds on the sizes of minimum separators have been
established by A. L. Rosenberg [9].

8. Summary and Concluding Remarks

To compare 1/0 requirements for different algorithms, we propose
the usc of the following measure. The decomposability factor A(S) of an
algorithm or graph G = (V, E) is defined to be the ratio between the
sequential time of the algorithm, that is |V|, and the minimum 1/0 time
Q when assuming S red pebbles are used. Thus,

Q-A(S) = |V|.

For a given algorithm, | V] is fixed. We sce that the larger the A(S) is,
the less the 170 is required. A summary of results of this paper on
specific algorithms or graphs, expressed in terms of bounds on A(S), is

as follows:
Algorithms or Graphs A(S)
Matrix-vector multiplication o(S)
(ordinary algorithm)
Odd-even transposition sort o(S)
Matrix-matrix multiplication (V%)
(ordinary algorithm)
L.d>2) o)
The FFT O(log S)
Snake-like mesh (1)

It is also possible to cstablish upper bounds on A(S) for a class of
algorithms for solving a given problem. For example, it has been
shown recently that for any sorting algorithm based on the decision tree
model, A(S) = Q(log S) [10).

The problem of establishing bounds on A(S) is closely related to
several other graph partitioning problems. We intend to work on some
of these partitioning problems in the future, and show how they are

related to the I/0 complexity problem addressed in this paper.

References
1 Cook, S.A. and Scthi, R.
Storage Requirements for Deterministic Polynomial Time
Recognizable Languages.
J. Comp. and Sys. Sci. 13:25-37, 1976.

2]

B3]

4]

5]

6]

|

8]

19

(10]

Floyd, R.W.

Permuting Information in Idealized Two-1.cvel Storage.

In Miller, R.E. and Thatcher, J.W. (cditor), Complexity of
Computer Compuiations, pages 105-109. Plenum Press, New
York, 1972.

Harary, F.
Graph Theory.
Addison-Wesley, Reading, Massachusetts, 1969.

Hopcroft, J.E., Paul, W. and Valiant, [.G.
On Time Versus Space.
Journal of the ACM 24:332-337,1977.

Kernighan, B.W. and Lin, S.

- An Effective Heuristic Procedure for Partitioning Graphs.

Bell Systems Technical Journal 49:291-308, February, 1970,

Knuth, D. E.

The Art of Computer Programming. Volume 3: Sorting and
Searching.

Addison-Wesley, Reading, Massachusetts, 1973.

Kung, H.T.

Special-Purpose Devices for Signal and Image Processing: An
Opportunity in VLSI.

Technical Report, Carnegic-Mellon University, Department of
Computer Science, Juty, 1980.

Presented at SPIE’s 24th Annual Technical Symposium, San
Dicgo, California, July 1980. The final version of the paper is
to be published in the Symposium Proccedings.

Pippenger, N,

Pebbling.

In Proc. the Iifth 1BM Symposium on Mathematical Foundations
of Computer Science. Academic & Scientific Programs, [BM
Japan, May, 1980.

Roscnberg, A. L.
Private communication,

Song, S.W.

1/0 Complexity and Design of Special-Purpose Hardware for
Sorting.

VL.SI Document V075, Carnegie-Mcllon University,
Department of Computer Science, February, 1981.

33:

