
STOC (Milwaukee 1981) , 3 2 6 - 3 3 3 ,

I / 0 COMPLEXITY:
THE RED-BLUE PEBBLE GAME

tlong, Jia-Wei and 1I. T. Kung

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

In this paper, the red-blue pebble game is proposed to model the

input-'output complexity of algorithms. Using the pebble game

formulation, a number of lower bound results for the I/O requirement

are proven. For example, it is shown that to perform the n-point FF-F

or the ordinary nxn matrix multiplication algorithm with O(S) memory,

at least ~2(n log n/log S) or ~](n3/V'g'), respectively, time is needed for

the 1/O. Similar results are obtained for algorithms for several other

problems. All of the lower bounds presented are the best possible in

the sense that they are achievable by certain decomposition schemes.

Results of this paper may provide insight into the difficult task of

balancing 1/O and computation in special-purpose system designs. For

example, for the n-point FFI', the lower bound on I/O time hnplies

that an S-point device achieving a speed-up ratio of order log S over the

conventional O(n log n) time implementation is all one can hope for.

1. In t roduc t ion
When a large computation is performed on a small device or

memory, the computation must be decomposed into subcomputations.

Executing subcomputations one at a time may reqnire a substantial

;unount of I/O to store or retrieve intermediate results. Very often it is

the I/O that dominates the speed of a computation. In fact, I/O is a

typical bottleneck for performance at all levels of a computer system.

However, to the authors' knowledge the I/O problem was not

previously modelled or studied in any systematic or abstract manner.

Similar problems were studied only in a few isolated instances [2, 5].

This paper proposes a pebble game, called the red-blue pebble game, to

model the problem, and presents a number of lower bound results for

the 1/O requirement. All the lower bounds presented can be shown to

be the best possible, in the sense that they are achieved by certain

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM 0-89791-041-9 /80/0500/0326 $00.75

decomposition schemes. The paper is organized according to the

techniques used to derive these lower bounds.

In Section 2 we formally define the pebble game and point out its

relation to the I/O problem. In Section 3 we show that lower bounds

tbr I/O in the pebble game can be established by studying the so-called

S-partitioning problem. This is the key result of the paper in the sense

that it provides the basis for the derivation of all the lower bounds. In

Section 4 we prove a lower bound for the FFT algorithm. Lower

bounds in Section 5 arc based on the information speed function, which

measures how fast the number of vertices on which a given vertex

"depends" can grow in a directed acyclic graph of a certain type. We

demonstrate the dramatic difference between the 1/O requirement for

the odd-even transposition sorting network and that for the "snake-

like" mesh graph. In contrast to the focus of Section 5, Section 6

studies independent computations for which there are very little

information exchanges among vertices. ' lherc we obtain, for example, a

lower bound for the ordinary matrix multiplication algorithm. In

Section 7 we prove a general theorem on products of graphs. Using this

theorem, one can determine the I/O required by a product of graphs,

by examining only the individual graphs. A summary and concluding

remarks are provided in Section 8.

Results o f this paper have the implication that they impose upper

bounds on the maximum possible speed-up obtainable with a special-

purpose hardware device. For example, our lower bound on the 1/O

requirement for the n-point FF3' (Corollary 4.1) implies that an S-point

device can achieve a speed-up ratio of at most O(log S) over the

"Me research was supported in part by the Office of Naval Research
under Contracts N00014-76-C-0370 and N00014-80-C-0236, in part by
the National Science Foundation under Grant MCS 78-236-76, and in
part by the l)efense Advanced Research Projects Agency under
Contract F33615-78-C-1551 (monitored by tile Air l='orce Office of
Scientific Research). About the authors: Hong, Jia-wei is on leave
from Peking Municipal Computing Center, Peking, China and is
currently visiting the University of Rochester for the Spring of 1981.
H.T. Ktmg is currently on leave from Carnegie-Mellon University at
ESI,'s Advanced Processor Technology Group in San Jose, California.
(ESI, is a subsidiary of TRW.) Most of the research for this paper was
carried otlt during the Fall of 1980 when both authors were at CMU.

3 2 6

conventional O(n log n) software implementation. Similarly, for matrix

multiplication our result (Corollary 6.2) implies that a x/SxV'g" device

can achieve a speed-up ratio of at most O(V'S).

2. The Red-Blue Pebble Game and Its Relation to
the I / O Problem

As the usual pebble game (see, e.g. [4]), the red-blue pebble game is

played on a directed acyclic graph. 1 At any point in the pebble game,

some vertices of the graph will have red pebbles, some will have blue

pebbles, some will have both red and blue pebbles and the remainder

will have no pebbles at all. Following the notation of Pippenger [8],

define a cop~guration as a pair of subsets of the vertices, one comprised

of just the vertices having red pebbles, and the other just those having

blue pebbles. Thus vertices belonging to the intersection of the two sets

have both red and blue pebbles on them. The set of inputs (or outputs)

of the graph is some designated set of vertices containing at least those

vertices that have no predecessors (or successors, respectively). We

assume that the set of inputs is disjoint from that of outputs. For all the

examples discussed in the paper, only vertices that have no predecessors

(or successors) are assumed to be inputs (or outputs, respectively),

except in Section 7 where products of graphs are considered. The

initial (or terminal) configuration is one in which only inputs (or

outputs, respectively) have pebbles, and they are all blue pebbles. The

rules of the red-blue pebble game are as follows.

R1. (Input) A red pebble may be placed on any vertex that has a
blue pebble.

R2. (Output) A blue pebble may be placed on any vertex that
has a red pebble.

R3. (Compute) If all the immediate predecessors of a vertex
have red pebbles, a red pebble may be placed on that
vertex.

R4. (Delete) A pebble (red or blue) may be removed from any
vertex.

A transition is an ordered pair of configurations, the second of which

follows from the first according to one of the rules. A calculation is a

sequence of configurations, each successive pair of which form a

transition. A complete calculation is one that begins with the initial

configuration and ends with the terminal configuration.

A graph on which the red-blue pebble game is played can model a

computation performed on a two-level memory structure, consisting of

say, a fast memory and a slow memory. Vertices represent operations

and their results. An edge from one vertex to another indicates that the

result of one operation is an operand of the other. An operation can be

performed only if all the operands reside in the fast memory. Placing a

red pebble using rule R3 corresponds to performing an operation and

storing the result in the fast memory. Placing a blue pebble using rule

1The red-blue pebble game discussed in this paper is not related in any way to the
black-and-white pebble game introduced by Cook and Sethi [1].

R2 corresponds to storing a copy of a result (currently in the fast

memory) into the slow memory, whereas placing a red pebble using R1

corresponds to retrieving a copy of a result (currently in the slow

memory) into the fast memory, Removing a red or blue pebble using

rule R4 means freeing a memory location in the fast or slow memory,

respectively. The maximum allowable number of red or blue pebbles

on the graph at any point in the game corresponds to the number of

words available for use in the fast or slow memory, respectively.

For the purpose of this paper, wc assume that the fast memory can

hold only S words, where S is a constant, while the slow memory is

arbitrarily large. Thus when the pebble game is played on a graph, at

most S red pebbles, and any number of blue pebbles, can be on the

graph at any time. For any given graph, we are interested in the

minimum 1 /0 time Q, which is defined by

Q = the minimum number of transitions according to role
R1 or 1/2 required by any complete calculation.

For the FFF graph, it is not difficult to prove the following upper

bound result by the decomposition scheme illustrated in Figure 2-1.

Theorem 2.1. For the n-point FVF graph,

Q. log S = O(n log n).

__N'x/". /i",, /: "

. _ . - L - ~ Z ~ \ \ \ \ Y O C / / / _ ;
' ~ / \ \ \ \ × > C X Y J / _ ;
- ~ / ~ / \ - ~ X X ~ ~

- - - \ . . . ~ X C / ~ X X X Y ~ _ _ L

~ / ' ~ \ X X / / / / X X \ \ ~ ;
-~C,./_/- X ~ Y ~ / / / / \ \ \ ~ .

>C,X'x,5/ / / \ \ ~ ;
-. X > C / / \ ~ / / \ ~ . :

(a)

I I'
S = 4 $

n = 1 6

(log n = 4)

log S = 2

I

1
(b)

Figure 2-1: (a) the 16-point FFT graph, and
(b) decomposing the FFT graph, with n = 16 and S = 4.

3 2 7

However, for proving tight lower bounds on Q, we found that it was

difficult to work with the red-blue pebble game directly• Instead we

study the S-partitioning problem, which is a "static" problem in the

sense that it does not apply rules on-the-fly as in a game. We show that

lower bounds for the S-partitioning problem can be translated into

lower bounds on Q for the red-blue pebble game.

3. The S-Partitioning Problem and the Key
Lemma

In this section we show that every complete calculation of the red-

blue pebble game on a directed acyclic graph defines a partition of the

graph• Let G = (V, E) be a directed acyclic graph where V and E are

the vertex and edge sets of G, respectively. A family of subsets of V,

{Vt, V 2 Vh}, is called an S-partition of G for some positive integer

S if the following four properties hold.

P1. The Vi's arc disjoint and Oih=tVi = V.

P2. For each V r 1 < i _< h, there exists a dominator set D i for V i

that contains at most S vertices. (A dominator set for V. is
1

defined to be a set of vertices in V such that every path from
an input of G to a vertex in V i contains some vertex in the
set.)

P3. For each V l < i < h the rail imum set M of V has at most
S vert ces. (The minimum set of V. ~s de~ned to be the set
of vertices in V i that do not have an~, sons belonging to V r)

P4. There is no cyclic dependence among vertex sets in
(A subset V is .said to depend on another {Vr V2' Vh}" V

subsct ¥ . if there is an edge n E f r o m a v c r t c x i n j t o a
vertex inJVi.)

Theorem 3.1. Let G = (V, E) be a directed acyclic graph.
Any complete calculation of the red-blue pebble game on
G, using at most S red pebbles, is associated with a 2S-
partition of G such that

S. h _> q >_. S- (h - 1),

where q is the I /O time required by the complete
calculation, and h is the number of vertex sets in the 2S-
partition.

Proof: Denote by C any complete calculation. We can
divide C into a sequence of h consecutive subcalculations,
CI, C 2 C h, for some h such that in each C , l < i < h - l ,
there are exactly S transitions using rule RI or ~,2,and~in C h
there are no more than S such transitions. For i = 1 h,
define V. to be the largest vertex set in which each vertex
satisfies the following three properties.

(i) During subcalculation C it has a red pebble placed
on it using rule R1 or R3)

(ii) At the end of subcalculation C , it either has red
pebbles, or blue pebbles that are'placed on it during
Ci, or has a son in V i-

(rio It does not bclong to any Vj with j < i.

We claim that the family {V 1, V9. Vh} is a 2S-partition
of G. First we show that property P1 holds. By (iii) it
follows immediately that the Vi's are disjoint. In the
following we show that every vertex in V belongs to some
V i. Because calculation C is a complete calculation, every

vertex must have red pebbles placed on it at least once.
Suppose that a vertex has a red or blue pebble on it at the
end of some subcalculation C. Then there must exist a
subcalculation Cj, j < i, during which the vertex has a red
pebble placed on it t~ing rule i~.l or R3, and at the end of C,
it either remains to have the red pebble or has a blue pebbld
that is placed on it during Cj. ' lhis implies that the vertex
belongs to V k for some k < j. All outputs have blue pebbles
on them at the end of the last sobcalculation C~; thus they
all belong to U,h.,V;. Consider now any"imtnediate
predecessor u of a~a=bu'tput v. Suppose that v belongs to V i.
Then v cannot have any pebble on it at the beginning of C.
and thus must have a red pebble placed on it using RJ
during C i. This implies that we have one of the following
two cases:

Case 1: i > 2 and u has a red or blue pebble on it
at the end of subcalculation Ci_ 1. qhen by the
reason stated above, u belongs to some Vj,
j <i-1.

Case 2: u has a red pebble placed on it using rule
RI or R3 during C.. If u does not belong to any
V. with j < i, then [~ccause u has a son v in V i, u
itJselfmust belong to V i.

We have shown that all the immediate predecessors of
outputs belong to u, h ,V. Similarly, we can show that all
the immediate prede'c--dssbrs of the immediate predecessors
of outputs belong to U,h_,V,. Property P1 follows by
induction. Nnte that botla-Ca~,e 1 and Case 2 above imply

• that if V depends on V then j < i. Therefore there cannot
be any cyclic dependence among V's. and thus property
P4 holds. For proving property P2 fo~ any V. 1 < i < h we
cons=dcr two subsets of V, V R and VBR, which are defined as
follows.

• V R consists of those vertices that have red pebbles
placed on them just before subcalculation C i begins.

• VBR consists of those vertices that have blue pebbles
placed on them just before subcalculation C i begins
and have red pebbles placed on them according to
rule RI during C r

It is easy to see that by property (i) in the definition of V,
V. O V~. forms a do,ninator set for V.. Since there can b~

K K . I

at most ~ red pebbles on G at any ume, we have

IVRI <_. S.
The fact that at most S transitions can use rule R1 during C i
implies that

IV~RI _ S.
Thus

Iv R u VBRI < IVRI + IVBRI __. 2S.
Wc have shown that {V , V 2 Vh} satisfies property P2.
'l ')e proof of property P3 is similar. By property (ii) in the
definition of V i, we know that at the end of subcalculation
C , every vertex in M, the minimum set of V., has red
p~bblcs, or blue pebbles that arc placed on it c~uring C..
Since there can be at most S vertices having red pebble's
placed on them at any time, and at most S vertices having
blue pebbles placed on them during C t.be minimum set M.

• 1

can have at most 2S vertices. We have s aown that
{V 1 V . . . Vh} is a 2S-partition of G. The theorem follows

' . 2 ' " ' . .

by noting that corresponding to each V, 1 <_ = _< h - l , exactly
S transmons using R1 or R2 are performed and to V h, no
more than S such transitions are performed. []

328

Let

P(S) = the minimum number of vertex sets that any S-partition
of G must have.

We have, by qlaeorem 3.1, the key lcmma of the paper:

Lemma 3.1. For any directed acyclic graph G, the
minimum I/O time satisfies

Q .> s. (p(2s) - ~).
Using this lemma, lower bounds for P can be translated immediately

into lower bounds for Q.

4 . L o w e r B o u n d s f o r t h e F F T C o m p u t a t i o n

In this section we establish a lower bound on the I /O time Q for the

n-point FF'F graph (see Figure 2-1(a)), by proving a lower bound on P.

Define an S-dominatorpar/ition of a graph G = (V, E) to be a family

of subsets of V, {V 1, V 2 Vh}. satisfying properties PI, P2 and P4 of

an S-partition, but not necessarily property P3. Let

PD(S)= the minimum number of vertex sets that any S-
dominator partition of G must have.

Then clearly PD(S) < l)(S), since any S-partition is also an S-dominator

partition. The following theorem establishes a lower bound on PD(S),

and thus a lower bound on P(S).

Theorem 4.1. Suppose that S _> 2. The minimum
number of vertex sets in any S-dominator partition of the n-
point Fl-'r graph satisfies

PD(S) = ~((n log n)/(S log S)).

Pr :
~lllCt: L h c r t : ~trt.: ~1 total uf (}0, lug n) VCltlt:t:s in the n Jl(=illl I,'l,"r

graph, it sttrlk:t:,~ t o provt: theft any vertex set that ha~ a dumm~dor set

or size i1() ln()lC than S ca=J hilvc ill lnost 2S lug S vcrticc~ (S _> 2).
Wt: .q~ow this imhlctivcly. Wt: I)illtJt.)n the glltph into tlut:c paris, A,
1}, a .d (3. as shown in the Iigurc. The dominator is paltin(mcd into

three parts, I) A, 1) H, and I) C, which have OA, dll, d C elements
rcspcdv¢ly. W.I.u.g. wc can as.~tmlt: that d A < dll. The set U is

pmt=tloncd into three parts, UA, l..lll, U C, which have u A, Ull, u C
clt:mcnLs rcspccivcly. If u C > d c + 2 d A, then t:Jtht:~ thole air: mole
than d A clclncnts of UC\I) C il~ tht: UllpCr half nr part C r)i there a~c
mole dmn d A clcnlcnts uf U(,\I) C ill tilt: luwt:r half uf I)arl C. In
either case, there arc inure titan d A mdcl)c~,lcnt paths ht)ln tile

A
r _ .j _ _ t - - 2 - -]

I _ ~ _ , X ~ ~ _ ~ d Z ' - . _ \ ~ _ _ 4 /
I ~ X / \ \ ' x / ~ , " / \ , ' ~ / ~ , , , 4 / - I at,per
t ' .'.'.'.'.'.'.'.'.--~*-" >" " 7 ' ~ I

I " < ' K . ' . x / t

, - - ~ ' / ' V T " - - ~ , ' ~ . . ~ F ; ~ ' ~ ~t ' -~ '~7 ~ - -

.¢Zx,,'&_%\ / "- q

I
. J - - i

h~li

)
)

ha(f

)

uppul half ii=l~tit~ L¢~ Iht:nc ¥t:lllt:t'h II1 /l(?\l)(,..t.~mcc lilt: st:l I) A has

~ntly (t A t:Icmt:nls, Lh lS I!, IIHp¢)~,SIIJ]C. 'l'hclt:lc~lC WC have

Lit., (d(], I 2d A.

Ily [I;thk:LIvc hyl)othc.~Js , wc Ilavc

u A < 2d A]t~g dA,
I111 (_ 21111 l()g till.

"lhtl~,

IUI < 2(tl A log d A t till 1()~. dlt I dA) I (1(:

It IS t:~l'~y |() phJVL', the rtl]llJWlllt~ It:Jlllll~t~

l.unlma: 11" (.) (x < y m.I x l y ' A , thctt

x lt~g x + y I¢~L-', y I 2x ,_" A lug A.

Ily Lifts Icmma, ~Ji~t:t: 0 4 OA < till . dA t dl I 4 ̀ S.-tI(,, wt have

lUl E 2(s-tiC) I,,g (~.-ckj ~ ~1(.
< 2S I{~g S.

[]

l}y l.emma 3.1 we have the following lower bound result.

Corollary 4.1. For the n-point F F r graph,

Q. log S = f~(n log n).

Thus the I /O time for the F'FI" when executed on a special-purpose

device with S words of mcmol3' is at least f~(n log n/log S), implying

that the maximum-possible speed-up ratio over the usual O(n log n)

implementation is at most O(log S). 'this upper bound on the speed-up

ratio holds no matter how fast the the device may be, since it is a

consequence of the I /O consideration. In [7] a systolic device that

distributes S words of memory in a linear processor array and achieves

O(log S) speed-up for the FFF is described.

5 . L o w e r B o u n d s B a s e d on I n f o r m a t i o n S p e e d

F u n c t i o n s

Many "regular" graphs G = (V, E) have the property that all inputs

can reach all outputs through vertex-disjoint paths. In the proof of

Theorem 4.1 we have already noted that the FFT graph has this

property. In the current section, this type of graph will be considered.

The vertex-disjoint paths from inputs to outputs will be called lines, for

simplicity. We say that the information speed function is fl(F(d)) if for

any two vertices u, v on the same line that are at least d apart, there are

F(d) vertices in the graph satisfying the following two properties.

F1. None of these vertices belongs to the same line.

F2. Each of these vertices belongs to a path connecting u and v.

The following theorem shows that lower bounds on Q can be obtained

from lower bounds on F or upper bounds on F "1.

Theorem 5.1. For any graph where all inputs can reach
all outputs through vertex-disjoint paths, if the information
speed function is f~(F(d)) where F is monotonically
increasing and F 1 exists, then

Q- F I (s) = f~(L),

3 2 9

where L is the total number of verticcs on the vertex-disjoint
paths or the lines.

Proof: As in the proofofq]aeorem 4.1, we will establish

PD(S) = ~(L / S. FI(S))

by showing that any vertex set U in a S-dominator partition
can have at most O(S.FI(S)) vertices on the lines. Note
that vertices in U can be on at most S lines, since the lines
are vertex-disjoint and U has a dominator set of size at most
S. The theorem follows from the claim that on any line there
can be at most Fq(S) + 1 vertices in U. Suppose that the
claim is false for some line. Then on this line there are two
vertices u and v in U that are F t (s) + 1 apart.
Coasequently, there are F(F-J(S) + 1) vertices satisfying
properties F1 and 1-2. If any of these vertices belongs to
another vertex set U' in the S-dominator partition, then by
property F2 there will be a cyclic dependence among vertex
sets in the S-dominator partition, violating property P4 in
Section 3. Therefore all of these F (FI (s) + 1) vertices,
which form a set of more than S vertices, bchmg to U, and
by property FI the~, belong to distinct lines. 'llfis is a
contradiction, since vcrticcs in U can be on at most S lines.
[]

Corollary 5.1. For the odd-even transposition sorting
network (see, e.g., [6]) for sorting n-element runs,

Q • S = ~2(u2).

Proof: Consider the sub-network that includes only half
of the inputs and outputs, as shown in Figure 5-1. It is easy
to see that the sub-network has n/2 lines with L = O(n 2) and
F(d)= d. []

_ x x

x x)<
Figure 5-1: The odd-evcn transposition sorting work,

whcre each "o" is a comparator.

Corollary 5.2. For the mxn snake-like directed mesh as
shown in Figure 5-2,

Q = [2(ran),

for any S < m.

Proof: Consider as lines all the horizontal vertex-disjoint
paths from inputs to outputs. It is easy to see that we can
assume I:(d) = n for any d >_ 2. l_ct U bc any vertex set in an
S-dominator partition of the graph. As in the proof of
Theorem 5.1. we note that vertices in U can be on at most S
line,,. ,~,,J that on any line there can be at most two vertices
in t : ' , , refurc, U can have at most O(S) vcrticcs, and thus
PI)(~ ,.,r P(S)) = ft(mn/S). lq]e corollary follows fl'om
l.cmm:l 3.1. []

.J

O

Figure 5-2: The snake-like graph.

6 . I n d e p e n d e n t E v a l u a t i o n of M u l t i v a r i a t e

Exp r e s s i o n s

Given values for indeterminates x 1 Xn, the problem is to evaluate

multivariate polynomial exprcssions Yi = Yi(Xl Xn), i = 1, 2 m.

Assume that each Yi is a sum of at least two terms and in each Yi' all the

terms are distinct and have degrees _< D. An example of such a problem

is matrix multiplication, where 1) = 2. An independent evaluation of Yi'S

is an algorithm or a directed acyclic graph with inputs xi's and outputs

Yi'S satisfying the following properties.

El. In the evaluation of each y, all (and only) those product
terms which appear in the ft'~lly distributcd expression of Yi
are computed first by multiplications, and then using these
product terms Yi is formed through a summa/ion tree by
additions or subtractions only. In particular, no
multiplication can be performed after an addition or
subtraction.

E2. Internal vertex sets of the summation trees for all the Yi'S are
disjoint from each other, that is, none of the internal
vertices in one tree appears as an internal vertex in another.
(l'hus, evaluations of Yi'S arc independent flom each odaer.)

Let X be any set of xi's or products in xi's. For any output Yi' define

h(y i, X) as the number of terms in Yi that can be obtained from X

directly or by multiplying elements in X. For any Y c:_ {Yl ym} we

further define

h(Y, X) = ~,,y~yh(y, X).

= 4 y = {Yl' Y2 }' and For example, if yl = XlX 2 + x~xl, Y2 x~x~ + XlX3,
2 2

X = {xl, x2, x3}, then h(y l, X) = 1, h(y 2, X) = 2, and h(Y, X) = 3. Define

the S-combination number to be

H(S) = max{h(Y, X) [IVl _< s, Ixl _< s}.
We have the following result.

Theorem 6.1. For any independent evaluation of a
multivariate expression of degree _< D,

Q-(D. r l (S)/S+D) = ~(Ivl) ,

where IV[is the total number of vertices in the graph
corresponding to the independent evaluation.

Proof: Let {V t, V 2, Vh} be an S-partition of the
graph associated with the independent evaluation. We shall
prove the following.

(i) Each V. 1 < i < h, can have at most H(S) + 2S
internal vertices. "(An internal vertex is defined to be
a vertex bch)nging to the internal vertex set of some
summation tree.)

3 3 0

(ii) There are at least [V]/(2D) internal vertices in the
graph.

By property P3 in the definition of S-partition, the
minimum set ofV i has at most S vertices. This implies that
V can have nonempty intersections with internal vertex sets
el ~ at most S summation trees, since by F2 each of such
intersections has at least one distinct vertex in the minimum
set. "llms to bet nd the nt nbcr of internal vertices that V.

' , , 1
can have, we need only consider SUmlnatlon trees for S Yi'S.
By property P2 of S-partition. wc note that V. has a
dominator set I). of size no more than S. By the d~finition
of H(S). from l))one can form at most H(S) terms appearing
m the S yi's. lhcse terms, together with possthle vemces in
D that are already internal vertices, can generate at most
It/S) + 2S internal vertices. Wc have shown (i). To prove
(ii), let A denote the total number of internal vertices in the
graph corresponding to the independent evaluation. Then
the total number of external vertices, or terms, in all the
summation trees, is no greater than 2A. l~ach product term
requires at most 1) - 1 multiplications; thus the total
number of vertices IVl in the graph satisfies:

I v] < 2 A (D - 1) + a < 2AD.

This proves (ii). It follows from (i) and (ii) that

h _> (IVI/2D) /(lJ(S) + 2s),

and by 1.emma 3.1,

Q = g(S. Iv[/ (D.(H(2S)+2S))),

or

Q. (D.H(S)/S+D) = f~([Vl). []

Corollary 6.1. For the ordinary matrix-vector
multiplication algorithm for multiplying an mxn matrix with
an n-vector,

Q. S = 9(mn),

assuming that entries in the matrix can be generated on-the-
fly and thus they are not required to be input.

Proof: The corollary follows immediately by noting that
H(S) = O(S 2) and D = 1. []

Lemma 6.1. For matrix-matrix multiplication,

t l (S) = O(S3n).

Proof: Consider the matrix multiplication, AB = C, Let
W be any set of entries in A and B, with IWI < S. Partition
A into two classes as follows. Class A~ consists of all rows in
A, each of which has at least V'S entr~ies in W, and class A~t
consists of the rest of rows in A. Accordingly, matrix C is
partitioned into two blocks A~B and A'dB. Since A.a_can , ' 0 .
have v ' g at most rows, and since in any row of AAB an
entry in B can appear at most once (and B has no more ~ than
S entries in W), the maximum number of terms in AdB that
can be obtained by multiplying elements in W is at most
S .V 'S = S 3/2. For terms in A',B each of them can be

• . , Q , .

obta,ned by multlplymg at most V S elements m W, since
each row in A d has at most Vff elements in W. Therefore,
in any subset of A'.B having no more than S elements the

• I 1 J

maximum number o f terms that can be obtained by
multiplying elements in W is at most S' V'-ff = S 3/2. []

By Theorem 6.1 and [.emma 6.1, we have the following result.

Corollary 6.2. For the ordinary matrix-matrix
multiplication algorithm for multiplying mxk and kxn
matrices,

Q" x/ff = ~2(mkn).

7. Lower Bounds for Products of Graphs
As demonstrated in Sections 4 and 5, one can establish lower bounds

on Q by proving upper bounds on the size of any vertex set that has a

dominator set of size at most S. This is equivalent to proving lower

bounds on

D(n) = the minimum size of a dominator set for any vertex set
having no less than n vertices.

In this section we show that lower bounds on D(n) for the product of

two graphs can be obtained from lower bounds on D(n) for individual

graphs. (See. for example, [3] for the definition of the product o f two

graphs.) Let GIxG 2 be the product o f G 1 and G 2. A vertex (v r v2) ¢

GlxG 2 is defined to be an input (or output) of GlXG 2 if v I is an input

o fG t or v 2 is an input of G 2, (or, respectively, v 1 is an output o fG t and

v 2 is an output of G2.) Of course D(n) depends on the graph on which

it defines; we use Dl(n), D2(n) and D(n) to distinguish the case when

the graph is G 1, G 2 and G respectively.

Lemma 7.1. If f is a positive function such that f(x)/x is

non-increasing, Y.a i _> T1T 2, and 0 < a i < T 2, then

Ef~a i) _> "rlf(T2).
Proof:

~ f (a i) > ~aif(T2)/T 2 > Tlf(T2). []

Theorem 7.1. (The Production Theorem for Dominators)
I f D (n) = f~(di(n)) where d i = 1 2 is a positive non-

. 1' ', ' '
decreasing function such that di(x)/x as non-increasing, then

D(nln2) = f~(min{n 1 • d2(n2), n2"dl(nl)})-

Proof: Let W be a subset in VlXV 2 of size nln 2. Define

U. = the set of vertices P2 in V 2 for which
z iW n (Vlx{p2}) I > n r

and

U' 2 = V 2 - U 2.

Clearly, we have IU21 < n 2 giving

IW n ({pl}xU2)l < n 2,
and for p E U' 2,

I W o (V 1 x {p2})l < n 1.

One of the following two cases must hold.

Case 1. [W n (VlXU2) [> nln2/2.

Let Pl he any vertex in V r Any dominator set for
W n ({p~}xV2) is of size at least d2([W n ({pl}xV2)[). Thus
the size o-f any-dominator set for W satisfies:

D(nln2) >_ "5~.plCVld2(IW o ({pl}xV2)l).

Since U. is a subset of V 2 and d 2 is a nondecreasing
• Z

funcUon, we have

D(nln2) _> Zpl~vld2(IW n ({Pl}XU2)l).

By the definition of Case 1,

~']~pIEV 1 I W n ({ p l } x U 2) l > n l n 2 / 2 .

(4)

(s)

(6)

331

By I.emma 7.1, it follows from (4) and (6) that

]~plcV t d2(lW n ({pl}xU2)[)_> nl" d2(n2)/2,
implying

D(nln 2) >_ nl 'd2(n2)/2.

i

Case 2. IW n (VtxU2) I > nln2/2.

Let p, be any vertex in V 2. Any dominator set for
W o (V ~{p }) is of size at least d (IW o (Vlx{ p })1) Thus

1 2 . 2 "
the size of any dominator set for ~ satisfies:

D(nln2) > ~.P2¢V 2 dt([W N (Vlx{P2}) [.
Since U~ is a subset of V 2, we have

D(nln2) > "Y~P2eU' 2 dl(lW f'l (Vtx{P2})[).
By the definition of Case 2,

Y.P2¢u2IW n (V1x{P2}) I _> nln2/2,
By Lemma 7.1, it follows from (5) and (7) that

Y.P2~u,2dl(lW n (V1x{P2}) l) >_ n 2. dl(nl)/2,
implying

I)(nln 2) > n2.dl(nl)/2.

(7)

[]

Let L 1 = {V, E} be a directed line where V = {1, 2 m}, and

E = {(i, i+l) I i = 1, 2 m- l} , with unique input "1" and output "m."

We have D L (n) = 1 for any n < m. See Figure 7-1.

Let 1.2 = LlX]T Then '

D 1 (n 2) = ~2(min{1 .n, 1. n}),

giving

D L (n 2) = O(n).
2

Let I., 3 = 1,2xl T Then

DL3(n3) = f l(min{n'n, n 2-1}),

giving

1-) L (n 3) = O(n2).

Let L d = 3L 1 x . . . x L 1, that is, L d is the product of d Ll's. Then

similarly,

DLd(nd) = O(nd-l). (8)

O =e ~ : == =e L 1

r

L 1 L 2 = .L 1 x L 1

Figure 7-1: The product of two directed lines, where
each "o" represents an input.

Corollary 7.1. For the product L d with d >_ 2,
Q. sl/(d-l) = fl(md).

P r o o f : By (8), the maximum size of any vertex set that
has a dominator set of size at most S is o(sd/(d-1)). Since
there are a total o fm d vertices in L d, we have

P(S) = ~(md/Sd/(d-1)),

by which the Corollary follows from Lemma 3.1. []

We have a similar product theorem for separators of a graph. For the

special case L d, bounds on the sizes of minimum separators have been

established by A. L. Rosenberg [9].

8. S u m m a r y a n d C o n c l u d i n g R e m a r k s

To compare 1/O requirements for different algorithms, we propose

the use of the following measure. The decomposability factor X(S) of an

algorithm or graph G = (V, E) is defined to be the ratio between the

sequential time of the algorithm, that is I% and the minimum I/O time

Q when assuming S red pebbles are used. Thus,

O. x(s) ° I%
For a given algorithm, IV I is fixed. We see that the larger the X(S) is,

the less the I /O is required. A summary of results of this paper on

specific algorithms or graphs, expressed in terms of bounds on h(S), is

as follows:

Algorithms o r G r a p h s ~.(S)

Matrix-vector multiplication O(S)
(ordinary algorithm)

Odd-even transposition sort O(S)
Matrix-matrix multiplication O(V-g')

(ordinary algorithm)
L d, (d _> 2) O(S 1/(a-D)
~ e FFF O(log S)
Snake-like mesh O(1)

It is also possible to establish upper bounds on X(S) for a class of

algorithms for solving a given problem. For example, it has been

shown recently that for any sorting algorithm based on the decision tree

model, X(S) = a").(log S) [10].

The problem of establishing bounds on ~.(S) is closely related to

several other graph partitioning problems. We intend to work on some

of these partitioning problems in the future, and show how they are

related to the I /O complexity problem addressed in this paper.

[1]

R e f e r e n c e s

Cook, S.A. and Scthi, R.
Storage Requirements for Deterministic Polynomial Time

Recognizable l_anguages.
J. Comp. andS.vs. Sci. 13:25-37, 1976.

332

[2] Floyd, R.W.
Permuting Information in Idealized Two-I,evel Storage.
In Miller, R.E. and Thatcher, J.W. (editor), Complexity of

Computer Computations, pages 105-109. Plenum Press, New
York, 1972.

[3] Harary, F.
Graph Theory.
Addison-Wesley, Reading, Massachusetts, 1969.

[4] l {opcroft, J.E., Paul, W. and Valiant, I,.G.
On Time Versus Space.
Journal of the ACM 24:332-337, 1977.

[5] Kernighan, B.W. and l,in, S.
• An Effective Heuristic Procedure for Partitioning Graphs.

Bell ,S),stons Technical Journal 49:291-308, February, 1970.

[6] Knuth, D. E.
The Art of Computer Programming. Volume 3: Sorting and

Searching.
Addison-Wesley, Reading, Massachusetts, 1973.

[71 Kung, H.T.
Special-Purpose Devices for Signal and Image Processing: An

Opporlutlily bl VLSL
Technical Report, Carnegie-Mellon University, Department of

Computer Science, July, 1980.
Presented at SPIE's 24th Annual Technical Symposium, San

Diego, California, July 1980. 'Ille final version of the paper is
to be published in the Symposium Proceedings.

[8] Pippenger, N.
Pebbling.
111 Proc. the Fifth IBM Symposium on Mathematical Foundations

of Computer Science. Academic & Scientific Programs, IBM
Japan, May, 1980.

[9] Rosenberg, A. L.
Private communication.

[10] Song, S.W.
I /0 ComplexiO, and Design of Special-Purpose ttantware for

Sorting.
VI.SI 1)ocument V075, Carnegie-Mellon University,

I)epartment of Computer Science, February, 1981.

333

