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Motivation

• Computer speed improvement
– powered by Moore’s law
– supercomputers [Allen&Kennedy, Optimizing Compilers, page 2]

• “Memory wall” [Wulf&McKee, CAN95]

• Software solutions
– improving cache utilization

• temporal locality
• spatial locality
• reduce both latency and bandwidth

– prefetching
• reduce latency but not bandwidth

• Need to understand program locality
– when do data accesses happen
– to what data
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Program Locality

• Compilers

– effective for scalars

– for loop nests with linear index expressions

– need to approximate branches, recursion, and indirect
data access

• Profiling

– accurate for one input

– need to predict behavior in other inputs

• Run-time analysis

– find input-dependent patterns

– need to be efficient
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DS2 Locality Models

• Dependence
– dependences among data references in a program
– static measurement of frequency, distance, and stride

• Stream
– frequent sequences of data access in a trace

• Distance
– patterns of the reuse distance of data access in a trace

• Stride
– patterns of the stride of data access in a trace

The Distance Model and Its Uses

Chen Ding

Computer Science Department
University of Rochester

Rochester, New York

Distance Model
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The Distance of Data Reuse

• Stack distances

– Evaluation techniques for storage hierarchies

• by R.L. Mattson, J. Gecsei, D. Slutz, and I.L. Traiger

• IBM System Journal, volume 9 (2), 1970, pp. 78-117

– one-pass evaluation of hardware configurations

– basis for memory management and cache design

• LRU stack distance between two accesses

– the volume of data accessed in between

• The reuse distance of an access

– the LRU stack distance between the access and the
previous access to the same data
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Reuse Distance

• Definition
– the number of distinct elements between this and the

previous access to the same data
– measures volume not time
– Euclidean

bcaacb
d = 2

• A good notion of program locality
– bounded
– independent of hardware and
– independent of variations in coding and data allocation

Measuring Reuse Distance

– naïve counting, O(N) time per access, O(N) space

• N is the number of memory accesses

• M is the number of distinct data elements

– Too costly

• up to 120 billions accesses in our tests

• up to 25 million data elements

Precise Methods

– stack algorithm [Mattson+ IBM70]

– O(M) time per access, O(M) space

– search tree [Olken LBL 81, Sugumar&Abraham UM93]
– O(logM) time per access, O(M) space

– the space cost remains a major problem

Approximation

• Basic idea
– measure only the first few digits of a long distance
– use non-unit size tree nodes

• tree size = M / average node size
• the node size bounds the measurement error

• Guaranteed relative accuracy
– a <= measured/actual_distance <= 1

• e.g. a = 99%
– logarithmic space cost if a < 1

• Hashtable cost
– space problem solved by Bennett & Kruskal in 1975
– not considered in the discussion

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

( time range, weight, capacity, size)
Tree node

The three tree nodes
have capacities

1, 2, and 6.
It guarantees 33%

accuracy.

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

( time range, weight, capacity, size)Tree node
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Search for last
access of b, whose
access time is 4.

(time, weight, capacity, size)Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

4 ∈ (1-7)

(time, weight, capacity, size)Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Set d to be 0 first.
The error in distance

is at most 4.

(time, weight, capacity, size)Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Add node size:
d += 2

(time, weight, capacity, size)Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)

Add node weight:
d += 1.

Measured distance is 3,
60% of the actual

distance.

(time, weight, capacity, size)Tree node

(8-10, 7, 2, 2)

(11-11, 1, 1, 1)(1-7, 4, 6, 4)
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Measurement of Reuse Distance

Algorithms Time Space
Naïve counting O(N2) O(N)

Trace as a stack (or list) [IBM’70] O(NM) O(M)

Trace as a vector [IBM’75, UIUC’02] O(NlogN) O(N)

Trace as a tree [Berkeley’81,
Michigan’93, UIUC’02]

O(NlogM) O(N)

List-based aggregation [Wisconsin’91] O(NS) O(M)

Approx. tree [Rochester’03] O(NloglogM) O(logM)
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Analysis Accuracy for FFT
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Pattern Recognition and Prediction

• Pattern analysis

– predictable and unpredictable parts

– constant, linear, sub-linear

– correlation among training inputs

• distance is independent of code and data

– regression analysis

– distance-based sampling

• Issues

– granularity of measurement and prediction

– the separation of patterns

– high-dimensional data

– predicting locality but not time

Spec2K/Lucas

• 95.1% accuracy and 99.6% coverage for Lucas
• average 94% accuracy for all programs
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SP reuse miss rate for 1M cache
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SP reuse miss rate for 1M cache
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A Web-based Interactive Tool

• http://www.cs.rochester.edu/research/locality
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Cross-architecture performance prediction

• Gabriel Marin and John Mellor-Crummey

– “Cross-architecture performance prediction for
scientific applications using parameterized models”

– a full paper in SIGMetrics 2004

• Methodology

– reuse distance models

– compiler support

• program, routine, and loop scopes

• Results

– Sweep3D from ASCI, LU, BT, and SP from NASA

– measured using SPARC binaries

– predict L1, L2, TLB misses, and running time on
Origin2K
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Cache Hint Selection

• Kristof  Beyls Erik H. D'Hollander from Ghent University
– “Reuse distance-based cache hint selection”

– EuroPar 2002

• Methodology

– profile reuse distance for each memory reference

– predict L1, L2, and L3 miss rate

– insert hints based on a threshold

• Evaluation

– Intel Itanium

– Spec95fp benchmarks

– 7% average performance improvement
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Per-Instruction Locality

• C. Fang, S. Carr, S. Onder and Z. Wang from Michigan Tech.

– “Reuse-distance-based Miss-rate Prediction on a Per
Instruction Basis”

– Workshop on Memory System Performance (MSP), 2004
• Methodology

– reuse distance models for each memory reference

– predict references that cause most cache misses

• Results

– Spec2Kfp benchmarks

– over 90% references can be predicted with 97%
accuracy

– ~2% load instructions account for 95% of misses
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Other Distance-Based Studies

• Register and cache performance modeling

– Li et al. from Purdue, Interact 1996

– Huang and Shen, CMU, Micro 1996

– Beyls and D’Hollander from Ghent, PDCS 2001

– Almasi et al. from Illinois, MSP 2002

– Zhong et al. from Rochester, LCR 2002

• File caching

– Zhou et al. from Princeton, USENIX 2001

– Jiang and Zhang from William and Mary, SIGMetrics
2002
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Comparison with Other Locality Models

• with compiler dependence analysis

– distance analysis is generally applicable

– less structured and incomplete information from regular
loop nests

– cannot reorder computation

• with frequency profiling

– distance analysis finds repetitions at larger granularity

– more temporal information

– no prediction of access order

• with stride analysis

– distance analysis predicts reuses

– no prediction of access order
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Summary

• Distance-based locality analysis

– more general than compiler analysis

– more structured than traditional profiling

– best for analyzing long-range program behavior patterns

• Uses

– whole-program locality prediction

– affinity-based structure and array reorganization

– phase prediction for pro-active system adaptation
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Dependence-based Locality Analysis and
Optimization

copied from slides by

Steve Carr
Department of Computer Science

Michigan Technological University
Houghton, Michigan

Dependence Model
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Dependence and Loops

• Iteration vector: a vector of values for the loop control
variables

– one entry per variable

– indexed from outermost to innermost

• The set of all iteration vectors for a loop is called the
iteration space

DO I = 1, 10 
     DO J = 3, 5 
          DO K = 6, 9 
              A(I,J,K) = ... 

when I = 1, J = 4, and K = 7 the iteration vector is 〈1,4,7〉 
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Dependence Distance Vector

• Suppose that there is a dependence from reference R1 on
iteration i of a loop nest to reference R2 on iteration j of the
loop nest, then the dependence distance vector is d(i,j)

DO I = 1, 100 
     DO J = 1, 100
 A(I,J) = A(I-3, J-1)

A(2,2) is accessed by A(I,J) on iteration 〈2,2〉 
A(2,2) is accessed by A(I-3,J-1) on iteration 〈5,3〉 
The distance vector is 〈3,1〉
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Cache Line (Block)

• The unit of memory in a cache is a line (block)
• A line may have 1 or more words ( a word is typically 4 or 8

bytes)
• Example Cache Line

• Accessing any member of the line brings the entire line into
cache (replacing whatever was there previously)

• Interference - multiple lines that map to the same cache
location and need to be in the cache at the same time

32 bytes
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Temporal Reuse Definition

• temporal reuse - reuse of the same memory location

Do I = 2, N

     A(I) = A(I-1)

ENDDO

Access the same element
one iteration apart

Note that the true dependence from A(I) to A(I-1) 
tells that the temporal reuse exists
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Spatial Reuse Definition

• spatial reuse - reuse of a cache block with a nearby
memory reference

Do I = 1, N

     A(I) =

ENDDO

Access the same cache line
on successive iterations 
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Self Reuse Definition

• self reuse – reuse that arises due to a single static
reference

Self spatial                         Self temporal

DO I = 1, N
     A(I) =
ENDDO

Access the same cache line
on successive iterations 

DO I = 1, N
    DO J=1,N
        A(I) =

Access the same cache location
on successive iterations 
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Group Reuse Definition

• group reuse - reuse that arises due to multiple static
references

Group spatial Group Temporal

DO I = 1, N
     A(I) = A(I-1)
ENDDO

Access the same cache line
on same iteration 

DO I = 1, N
    A(I) = A(I-1)
ENDDO

Access the same element one

iteration apart CSC573, Computer Science, U. of Rochester 40

Dependence-based Reuse Analysis

• McKinley, Carr & Tseng 96

– Compute reuse across the innermost loop only

– Self reuse

• examine the subscript

• Temporal - missing the innermost induction variable

• Spatial - innermost induction variable in 1st subscript
position only

– Group reuse

• look at reference connected by a dependence carried by
innermost loop or loop independent
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RefGroup Definition

• represent group reuse

• all references in one reference group will have some kind of
group reuse

• Two references R1 and R2 are in the same reference group
with respect to Loop L if:

–            (group-temporal reuse)

•     is a loop-independent dependence

•     is a small constant d and all other entries are zero

– R1 and R2 differ in the in the first subscript dimension by
a small constant d and all other subscripts are identical.
(group-spatial reuse) (d is decided by cache line size
and array element size)

21 RRδ
r

δ
r

Lδ
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RefGroup Leader

• The reference that brings in the cache lines accessed by
other members

• Leader is

– the reference without an incoming dependence

– or all outgoing edges are loop carried and references
are invariant at source and sink or any incoming edge is
from a reference that is not in the RefGroup
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Leader Example

DO K = 1, N
    DO J=1,N
          DO I=1,N

              A(I,J,K) = B(I,J+1,K)+B(I,J,K)+ B(I+1,J,K)

〈0,1,0〉 〈0,0,1〉

〈0,1,-1〉

Leaders(K) = {A(I,J,K), B(I+1,J,K), B(I,J+1,K)}
Leaders(J) = {A(I,J,K), B(I+1,J,K)}
Leaders(I) = {A(I,J,K), B(I+1,J,K), B(I,J+1,K)}
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Loop Cost

• Loop Cost gives the number of cache lines that are brought into
the cache if a given loop is innermost. This relates to the locality
of the loop.

• Given the RefGroups we can compute the cost of a loop, LC(L) by
summing the cost of each RefGroup, RC(R).

– Let R be the leader of a RefGroup

        where triph is the number of loop iterations for loop h

∑ ∏
≤≤ ≠

×=
nk Lh

hk tripRRCLLC
1

)()(
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RefGroup Cost
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Loop Cost Example

Leaders(K) = A(I,J,K), B(I+1,J,K), B(I,J+1,K)}
Leaders(J) = {A(I,J,K), B(I+1,J,K)}

Leaders(I) = {A(I,J,K), B(I+1,J,K), B(I,J+1,K)}

3()2LCJN

DO K = 1, N
    DO J=1,N
          DO I=1,N

              A(I,J,K) = B(I,J+1,K)+B(I,J,K)+ B(I+1,J,K)

〈0,1,0〉 〈0,0,1〉

〈0,1,-1〉
3()3 C N

3()3NLCIl
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How To Use Loop Cost

• The loop cost gives the number of cache lines accessed by
a loop as if it were innermost

• The number of cache lines is a measure of locality

• lower loop cost implies better locality

• Order loops based on decreasing cost from outer to inner
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Uniformly Generated Sets

• Gannon, Jalby and Gallivan 1988

• Def: Let n be the depth of a loop nest and d be the
dimensions of an array D. Two references a(<f1,f2, …,fk>)
and b((<g1,g2, …,gk>), where f and g are index functions, are
called uniformly generated if

• <f1,f2, …,fk> = H < i1,i2, …,iL> + Cf

• <g1,g2, …,gk> = H < i1,i2, …,iL> + Cg

• where H is a linear transformation and Cf and Cg are
constant vectors.

[()]Afir [()]Agir

gcrfcr

()()fgfiHicgiHic

ndZZ
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Localized Vector Space

• Wolf and Lam 1991

• A loop nest of depth n corresponds to a finite convex
polyhedron bounded by the loop bounds.

• The loop iterations that exploit reuse and have locality are
called the localized iteration space.

• If we abstract away the loop bounds we have a localized
vector space, L.

nZ
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Nearby Permutation Example

DO I = 1, 100
    DO J = 1, 100
          DO K = 1, 100

              A(I,J,K) = A(I+1,J-1,K)+B(J,I,K)

〈0,1,-1〉()300 00() 00 00

order K,J,I is illegal
use K,I,J
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Application - Loop Tiling

do j = 1, n
do i = 1, n
  do k = 1, n
      c(i,j) += a(i,k) * b(k,j)

do ii = 1, n, is

  do kk = 1, n, ks
do j = 1, n, js
  do i = ii, min(ii+is-1,n)
    do k = kk,min(kk+ks-1,n)
        c(i,j)+=a(i,k)*b(k,j)
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Application - Software Prefetching and Scheduling

do i = 1, n
do j = 1, n
  x(i) += m(i,j)

do i = 1, n
do j = 1, n
   prefetch(m(i,j+c))
   x(i) += m(i,j)
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Limits of Compile-time Analysis

• Not all information is known at compile time

– loop bounds

– cache interference

• What if references are not uniformly generated?

– index arrays

• Non-scientific code
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The Hot Data Stream Model

Reformatted from slides by

Trishul Chilimbi
Runtime Analysis & Design Group

http://research.microsoft.com/~trishulc/Daedalus.htm

Stream Model
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Exploitable Locality

Exploitable Locality = Reference Skew + Regularity

a b c a c b d b a e c f b b b c g a a f a d c c

Reference Skew

a b c h d e f a b c h i k l f i m d e f m k l f
                  Regularity

a b c a b c d e f a b c g a b c f a b c d a b c

Exploitable locality: Reference Skew + Regularity

CSC573, Computer Science, U. of Rochester 56

SEQUITUR (Nevill-Manning & Witten)

aaabac aaabac aaabac aaabac aaabad aaabad aaabad aaabad aaabad aa

SEQUITURSEQUITURS -> BBDDCaa

A -> aaabac

B -> AA

C -> aaabad

D -> CC

S

C

B
D

a b c d

A

SEQUITUR Grammar

DAG

representation

of grammar
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Computing Exploitable Locality

0x32cc00

0x53cd1e

Address
Abstraction

a

b

SEQUITURS

B

A C

a b c d

Data Reference
Trace

Abstracted Trace

Whole Program Streams
(WPS)

regularity detector

Increases repetitions

Hot data
stream

analyses

b a

a b

d

Hot Data Streams

a’

b’
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Efficient Offline Implementation

• Eliminating noise

• Inter-stream analysis
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Inter-stream Analysis
S

B
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a’ b’

Graph
summarization

b’ a’
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d’

Hot Data
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Stream Flow
Graph (SFG)

Whole program
streams (WPS)
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Hot Data Stream Size (Regularity)
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Efficient Online Implementation

• Low-overhead profiling

– Bursty Tracing

– Dynamic Optimization Extensions

• Low-overhead analysis
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Bursty Tracing

proc1

comp1
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Duplicate Basic Blocks

proc1 prof$proc1

comp1
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Insert Dispatch Checks

proc1 prof$proc1

comp1
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Add Instrumentation

proc1 prof$proc1
comp1
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Dynamic Optimization Extensions

Awake phase Hibernate phase
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Fast Hot Data Stream Detection

S

A

B

C

B

a ba a bca  b ca bca  bc

C C C

A A A A

parse tree
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cold uses :
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length
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1:2

Hot data stream: abcabc (generated by non terminal B)
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Structure Layout Transformations

Field reorderingstruct node {
int key;
…
struct node* next;}

struct node {
int key;
struct node* next;
…;}

Hot/cold
splitting

struct node {
int key;
struct node* next;
struct cnode* cold;}

struct cnode {

…;

}

8—23% improvements in execution time
20 min
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Prefetch Generation

s0

s1

s2

s3

s4

s5

s6

a

b

a

a

a
a

b
a

b
b
b

b
g

b

a

{}

{[v,1]} {[v,2],[w,1]} {[v,3],[v,1]}

{[w,1]} {[w,2]} {[w,3]}

v=abacadae

w=bbghij
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Prefetch Generation

    a.pc: if(accessing a.addr){
            if(v.seen == 2){
              v.seen = 3;
              prefetch c.addr,a.addr,d.addr,e.addr;
            }else{
              v.seen = 1;
            }
          }else{
            v.seen = 0;
          }
    b.pc: if(accessing b.addr)
            if(v.seen == 1)
              v.seen = 2;
            else
              v.seen = 0;
          else v.seen = 0;
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Putting it all together

finite state

machine

grammar

hot data
streams

data 
reference
sequence

execution with
profiling

Sequitur

analysis
code

injection

execution with
prefetching

deoptimization

profiling

analysis and
optimization

hibernation

tim
el

in
e Dynamic

Vulcan
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Profiling and Analysis Overhead
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Dynamic Prefetching Evaluation
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5—19% overall execution time improvement
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Conclusions

• Hot data streams useful locality model

– Can handle irregular, pointer-based codes

– Can be efficiently computed online

– Small number account for 90% of data references

• Stream flow graph compact representation

– 10 GB Trace => 100 KB SFG

– Analyze hot data stream interactions

• Stream-based optimizations appear promising

– Good performance improvements
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Efficient Discovery of Regular Stride Patterns in
Irregular Programs and Its Use in Data Prefetching

Reformatted from slides by

Youfeng Wu

Programming Systems Research
Intel Labs

Stride Model
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Memory Optimization Opportunity
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Loads Responsible for the Data Cycles

• Cache simulation to identify delinquent loads
– The set of load instructions that account for 95% or

more of L1, L2, L3, DTC, and DTLB misses

– Some references are not simulated

• Library references: ~20%

• Additional references from speculation to more
frequent blocks: ~8%
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Concentration of delinquent Loads
• 1.2-3.6% of executed load sites produce 95% misses
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Motivations

• Data prefetching for regular programs is very effective

– Array references often have constant strides

• Automatic prefetching of delinquent loads in irregular
programs is hard

– Future data addresses are difficult to determine
automatically

– Blindly applying automatic prefetching actually slows
down SPECint2000 on Itanium

• Opportunities

– Some delinquent loads have stride access patterns
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Stride Profiling

• For each static load

– Collect top N most frequently occurred strides and
their frequencies [Calder-97]

– Count the number of times the strides change

Addresses from a static load:
1,3,5,7,9,11,111,211,311,411,413,415,417
Strides:
2, 2,2,2,2,100,100,100,100,2,2,2

Stride profile:
#1 stride = 2, #1 stride freq = 8
#2 stride = 100, #2 stride freq = 4
Number of stride changes = 3
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Discover Stride Patterns

• Strong single stride (SSST)

– One non-zero stride, e.g. 60, occurs very
frequently

• Phased multi-stride (PMST)

– Multiple non-zero strides together occur
frequently

– The strides change infrequently
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Prefetching for Multi-Stride Load

� Compute stride and prefetch

prev_P = P

stride = (P-prev_P);

prev_P=P;

While (P) {

L: D= P->data

Use (D)

P = P->next

}

prefetch(P+2*stride) delinquent
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Prefetching for Single-Stride Load

� Prefetch with a constant stride, e.g. 60

While (P) {

L: D= P->data

Use (D)

P = P->next

}

prefetch(P+120)
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Key Observations for Efficient Profiling

• Stride patterns exist mostly with loads inside
loop with high trip count

– Targeting these loads can significantly reduce
profiling overhead

• Stride profile is statistically stable

– Sampling can be used
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Sampling Methods

• Profiling a small sample of loads in high-trip count loops
• Take place inside strideProf routine
• Chunk sampling

– After every N1 references are skipped, profile the next N2
references (N1 = 8 millions, N2 = 2 millions)

• Fine sampling of references from a static load

– Inside each chunk, profile one after every F (e.g. 4)
references

• Sampling ratio
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Sampling Example

Addresses seen by strideProf:
 {N1 refs}2,4,6,8,10,12,14,16,18,20,22,24,26,28,…{N1 refs}..

 N2 refs (assume from the same static load)

Addresses with chunk sampling:
 2,4,6,8,10,12,14,16,18,20,22,24,26,28,…..

Addresses with fine sampling F = 4:
2,  ,  ,  ,10,    ,    ,    ,18,  ,...

Stride with both sampling = 8
Original stride = 8/F = 2
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Performance Gains

• Compare with no-prefetching

• Profiles collected with train input, execution with ref input
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Other Stride Patterns

• We have discovered “self-stride”: difference between
successive addresses of the same load

• “cross-stride”: difference between addresses of dependent
but different loads

brandInfo value

Stride

StrideStride

x = p -> ->
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Recent Extensions

• Other Stride Profiling Methods

– PMU-based sampling [Luk-04]

– Partial interpretation [Inagaki-03]

– PMU+GC analysis [Adl-Tabatabai-04]

• PMU identify delinquent loads

• GC identify strides and maintain them

• Prefetching more delinquent loads [Inagaki-03] [Adl-
Tabatabai-04]

– Prefetch “cross-stride” loads

– Create more stride patterns for delinquent loads

• Via memory management

CSC573, Computer Science, U. of Rochester 90

PMU-based Stride Profiling

• Sample load misses with 2 phases:

TimeTime

Skipping phases (1 sample per 1000 misses)

Inspection phases (1 sample per miss)

GCD(A2-A1, A3-A2 )=GCD(240,336)=48
GCD(A3-A2, A4-A3 )=GCD(336,144)=48

Use GCD to figure out strides from miss addresses:

A1, A2, A3, A4 are four consecutive miss addresses of a load.
The load has a stride of 48 bytes.

TimeTime
A1 A2 A3

A2-A1=5*48=240 A3-A2=7*48=336

A4

A4-A3=3*48=144
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Partial Interpretation in JIT

• Before translating a method

– Interpret each loop a few iterations (e.g. 20)

– Identify both self-strides and cross-strides

• Translate the method with prefetching

– Can achieve better performance than prefetching self-strides
alone

• Loop

– tmp = load a[i]

– tmp1 = load tmp->field1

– tmp2 = load tmp1->field2

• Cross-stride Prefetch• Self-stride Prefetch

tmp = prefetch a[i+K]

tmp = spec_load a[i+K]

prefetch(tmp+stride1)

prefetch(tmp+stride2)
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Sampling Cache Misses

• HW PMU delivers samples

– IP of the load causing the miss

– Effective address of miss

– Miss latency

– Low overhead

Strides

Paths

Metadata

PMU

Inject
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Discovering Delinquent Paths

• Delinquent paths abstract high latency linked data
structure

– Approximates traversals causing latency
• Discover edges along the paths

– Piggyback on GC mark phase traversal
– Characterize edges GC encounters
– Glean global properties about edges
– Use characterization to estimate path

• Combine the edges into paths

strides

Paths

Metadata

PMU

Inject
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Finding Strides Along Path

• Process set of delinquent objects

• If type matches the base of a delinquent path

– Traverse path

– Summarizing strides between base and objects
along the path

• Useful strides exist even without proactive
placement by GC

• Proactive placement by GC enables more loads can
be stride-prefetched

Strides

Paths

Metadata

PMU

Inject
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Maintaining strides

• GC must be stride aware

• Allocation order placement

– Frontier pointer allocation creates useful strides

– Sliding compaction algorithm maintains
allocation order strides

– Various GC algorithms break/alter strides

• Expands GC role into a memory hierarchy controller
and optimizerstrides

Paths

Metadata

PMU

Inject
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Inserting Prefetches

• IPs associated with path start are prefetch point
candidates

• Screening a candidate point:
– Must contributes a significant number of the

base type misses
– Use JIT analysis to locate earliest availability of

the pointer used to load base
• Finally, recompile with prefetches

– A speedup of 11-14% for SPEC JBB2000
Strides

Paths

Metadata

PMU

Inject

field_of_p value

stride2stride2

Stride1Stride1

   p -> ->

tmptmp=load [p]=load [p]

prefetch(p+stride1)prefetch(p+stride1)

prefetch(p+stride2)prefetch(p+stride2)
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Summary

• Stride profiling technique can discover stride pattern efficiently
– Instrumentation based approach is only 17% slower than the

frequency profiling alone
• Transparent to users for a compiler with edge frequency profiling

– PMU or interpretation based techniques can also discover stride
patterns

• Significant performance improvement

– Average 7% for SPECINT2000 suite for self-stride prefetching
• 1.59x speedup for "181.mcf", 1.14x for "254.gap", and 1.08x for

"197.parser".

– Performance gain is stable across profiling data sets.
• Cross-stride prefetching can contribute additional performance gains

– Demonstrated in Java JIT environment
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Summary

• Dependence
– dependence, temporal, spatial group, and self reuse
– dependence analysis
– loop permutation, tiling, prefetching

• Stream
– hot-streams
– off-line and run-time measurements
– structure splitting, prefetching

• Distance
– reuse distance, approximate measurement
– reuse behavior prediction across program inputs
– miss-rate prediction across program inputs

• Stride
– stride patterns
– profiling and sampling
– prefetching


