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Abstract—On multicore processors, applications are run shar-
ing the cache. This paper presents online optimization to co-
locate applications to minimize cache interference to maximize
performance.

The paper formulates the optimization problem and solution,
presents a new sampling technique for locality analysis and
evaluates it in an exhaustive test of 12,870 cases. For locality
analysis, previous sampling was two orders of magnitude faster
than full-trace analysis. The new sampling reduces the cost by
another two orders of magnitude. The best prior work improves
co-run performance by 56% on average. The new optimization
improves it by another 29%. When sampling and optimization
are combined, the paper shows that it takes less than 0.1 second
analysis per program to obtain a co-run that is within 1.5% of
the best possible performance.

I. INTRODUCTION

As multi-core processors become commonplace and cloud
computing is gains acceptance, applications are increasingly
run in a shared environment. Many techniques have addressed
the problem of job co-location to minimize interference and
maximize performance, including symbiotic scheduling [24],
co-scheduling [12], contention-aware scheduling [13], [37],
task placement [17], and cache-conscious task regrouping [32].
Most techniques use testing and heuristics. In this work we
use the terminology of Snavely and Tullsen, call the technique
symbiotic scheduling, and solve it as an optimization problem,
in part to explore the remaining potential for improvement.

Optimization is difficult given the complexity and dynam-
ics of cache sharing. The traditional metric, the cache miss
rate, is measured for a single cache size and not for all sizes.
It is insufficient for shared cache because the portion of cache
used by a program may be arbitrary. Furthermore, the miss
rate does not always correlate with cache contention. Once
the memory bandwidth is saturated, the miss rate will stop
increasing even though the cache contention can still increase
when more programs join a co-run. Finally, the miss rate is
not composable. We cannot compute the co-run miss rate from
solo-run miss rates.
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This paper develops optimal footprint symbiosis. It uses
a recent footprint theory to predict aggregate locality of a
group of programs from their individual footprints. To enable
optimization, it defines a logical miss ratio based on a stan-
dardized logical time called common logical time. It formulates
the linearity assumption, which states that co-run slowdown
is linearly proportional to the common-logical-time miss ratio.
Then optimization is to find the co-run grouping that minimizes
total logical miss ratio.

Optimal footprint symbiosis depends on footprint measure-
ment, which is costly. The paper develops adaptive bursty
footprint (ABF) sampling, which minimizes the cost of mea-
surement for a given precision threshold. The paper makes
three main contributions:

1) Theory: A theory of optimal footprint symbiosis to
combine non-linear locality composition with linear
performance optimization.

2) Technique: Adaptive bursty footprint sampling to
enable dynamic co-run optimization with negligible
analysis overhead.

3) Evaluation: Evaluation of the cost of sampling and
the performance benefit of optimal symbiosis, com-
pared with best previous approaches.

The study has limitations: We only treat cache sharing
for applications that do not share data, and the derivation
of optimal symbiosis assumes fully-associative LRU cache,
even though hardware replacement implementations usually
employ set associativity and a pseudo-LRU policy. The second
limitation is mitigated, however, by the fact that modern 8-
way or higher associativity designs give effectively the same
performance as a fully associative cache [5]. In addition,
reuse distance can be used to statistically estimate the effect
of associativity [23], and as Sen and Wood showed, reuse
distance can be used to model the performance of non-LRU
policies [22]. Next we introduce the theory of footprint and its
relation with reuse distance.

II. FOOTPRINT-BASED OPTIMAL SYMBIOSIS

In this section, we introduce the footprint theory, which
we use to compute shared-cache locality. Then we formalize
the linearity assumption, which relates shared-cache locality to
shared-cache performance. Finally we describe the symbiotic
optimization.

A. Background: Footprint Theory

Given a window, the working set size (WSS) is the amount
of data accessed in the window, i.e. the size of the “active”



data. The working set size may change from window to
window. To be deterministic, we define the footprint as the
average size for all windows of the same length. Given a data
access trace of length n, the footprint fp(t) is the average
working set size for all windows of length t, t ∈ [1..n].
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Fig. 1: The reuse distance (rd), working set size (wss) and foot-
print (fp) of length-3 windows in stack and stream accesses.
Both rd and fp quantify locality and show stack accesses have
better locality. The difference is that fp is composable across
programs while rd is not.

The footprint theory gives the conversion between footprint
fp(x) and miss ratio mr(c), where x is the logical time and
c is the cache size, using the following formula [33]:

mr(c) = fp(x+ 1)− fp(x)

where c = fp(x).

Intuitively, the conversion equates the miss ratio of the
cache with the growth rate of the working set, i.e. the working
set grows if and only if the cache misses. This is not always
true but it is true at the point where the working set size equals
the cache size. For fully-associative LRU cache, the working
set fills the entire cache. Then the next miss increases the
working set by one.

Statistically, footprint is the average working-set size. The
difference between footprints, fp(x+ 1)− fp(x), is the growth
of the average working-set sizes. The conversion equates the
growth of the average working-set size with the average growth
of the working-set size, hence the miss ratio.

Mathematically, the conversion is well defined. Xiang et al.
first showed that the footprint as a function is monotone [31].
Then they proved that it is actually concave [33]. As its
“derivative”, the miss-ratio function is not just non-negative
but actually monotone.

B. Common Logical Time Miss Ratio

The parameter x in footprint fp(x) represents time. It can
be logical, e.g. memory accesses, or physical, i.e. seconds. For
symbiosis, we use the logical time of memory accesses.

The primary benefit of footprint is composability: the
footprint of a co-run can be computed from the footprint of
solo-runs. However, we must first normalize the logical time
of participating programs.

Let gi be a program in group G, and the access rate argi
be the average number of accesses gi makes per second in
a solo-run. In the group run, the access rates are combined.
The common logical time (or common time) is measured in
accesses from all programs. The footprint is converted into
common time (fpct) from individual time (fpit):

fpct(gi, x) = fpit(gi,
x× argi
Σi argi

)

After conversion, the group footprint is simply the sum of
individual footprints.

fp(G, x) = Σi fpct(gi, x)

The co-run miss ratio mr(G, c) is the derivative of the
group footprint, using the formula given earlier. The only
difference is that the logical time is changed from individual
to common time.

C. From Miss Ratio To Execution Time

The symbiotic optimization assumes that a program’s co-
run slowdown is linear to the group’s logical co-run miss ratio,
where the logical co-run miss ratio is based on common logical
time. We call this the linearity assumption.

Let gi be a program in group G, mr(G, c) the group co-run
miss ratio in shared cache of size c, tso(gi, c) the solo-run time
of the program with dedicated cache, tco(gi, G, c) the co-run
time of the program, and α a constant, we assume:

slowdown(gi, G, c) =
tco(gi, G, c)− tso(gi, c)

tso(gi, c)
= α×mr(G, c)

The linearity assumption enables performance ranking.
Intuitively, the miss ratio measures cache contention. The
higher the miss ratio is, the greater the cache contention is,
and the slower a program executes because of the contention.

The miss ratio mr(G, c) is logical. It can increase without
a bound, so can the co-run time tco(gi), e.g. when too many
programs overtax the cache. In contrast, a miss rate in physical
time, i.e. misses per second, has an upper bound set by the
machine memory bandwidth. Once the memory bandwidth is
saturated, the miss rate will stop increasing even though the
cache contention can still increase when more programs join
a co-run.

Consider a program which chooses one of the groups to
join. The linearity assumption states that the best choice is the
group that has the lowest co-run miss ratio, because the lowest
miss ratio implies the lowest co-run slowdown.

The assumption simplifies the complex phenomenon of
performance, to which many factors contribute. We model
shared cache by the miss ratio, but different misses have
different time costs. On modern processors, the timing effect
is increasingly complex. Sun and Wang categorized a large
number of factors including pipelining, prefetching, multi-bank
cache, non-blocking cache, out-of-order execution, branch
prediction, and speculation [25].



The linearity assumption classifies performance factors in
two types. The first type is unaffected by cache sharing; for
example, instruction parallelism and the CPU clock frequency.
The other type depends linearly on cache sharing. For example,
the contention due to memory bandwidth is assumed to grow
linearly with the cache contention.

A linear model is a simplification, but it has important
benefits for optimization. For example, all performance factors
are considered: it is fine that we do not know all linear factors
because we do not need the precise co-efficient of the linear
relation. For optimization, it is sufficient that the aggregate
effect is linear.

D. Optimal Symbiosis

Optimal symbiosis divides a set of programs into co-run
groups to minimize their slowdown. Symbiosis is communal,
not individual. Individually, it is sufficient for a program to
join a group with the lowest cache contention. Given a set of
tasks, we must run every task, so the problem is to run all
tasks with the least slowdown.

Given a set of programs G = {gi}. Let fp(gi, x) be the
common-time footprint. Let s = {Gj} be a valid schedule,
where every program gi is assigned to a co-run group Gj

sharing the same cache. As will become clear in Section II-E, it
is useful to define a quantity for a schedule called the aggregate
miss ratio. This is simply the sum of all co-run group miss
ratios in that schedule:

mr(s, c) = Σjmr(Gj , c)

.

For example, if a schedule has two co-run groups, the
aggregate miss ratio is the sum of the two co-run miss ratios.
Note that the aggregate miss ratio is not a miss ratio in the strict
sense; it can be greater than 1. It is simply an indicator metric
for comparing the performance between different schedules.

Among all possible schedules, a symbiotic schedule is the
one that has the lowest aggregate miss ratio. This is the goal
of symbiotic optimization. The groups in a symbiotic schedule
are symbiotic groups.

The optimality is a conjecture. It depends on the linear-
ity assumption. Moreover, it has to deal with the following
problems.

Non-uniform Slowdowns: There are two types of non-
uniform slowdown: Inter-group non-uniform slowdown, and
intra-group non-uniform slowdown.

In inter-group non-uniform slowdown, all programs within
the same group have the same slowdown, but different groups
have different slowdowns. By the linearity assumption, opti-
mality holds in this case: if the sum of the miss ratios Σmr(gi)
is minimal, the total slowdown Σαmr(gi) is minimal, even
though each group gi has a different co-run miss ratio and a
different slowdown.

In intra-group non-uniform slowdown, different programs
in the same group have a different slowdown. This scenario,
however, is not consistent with the linearity assumption.

Perturbation Free Testing: In real uses, we may not be
able to measure individual footprint in a solo execution. When
tested in a co-run environment, the access rate of a program is
affected by its peers Because of the linearity assumption, we
can compute the solo-time access rate from the co-run access
rate. In this paper, however, we use the access rate from solo-
executions.

E. The Performance Ranking Model

The goal of symbiosis is to optimize the interaction be-
tween programs in shared cache. While the objective is abso-
lute performance, the model is relative performance. Instead
of predicting the performance directly, the model predicts the
ranking of performance. We call it the ranking model.

It is well established that the effect of shared cache interac-
tion is asymmetrical and non-linear. The ranking model divides
this complexity into two parts. The first is non-linear miss-ratio
composition, building on the footprint theory and extending it
with the common-time logical miss ratio. The second is linear
performance correlation. The following summarizes the key
components and their relations:

• Common logical time, which allows us to compute
(add) and compare logical miss ratios.

• Logical miss ratio, which includes co-run miss ratio
(per group) and aggregate miss ratio (summed over
multiple groups). Co-run miss ratio represents cache
contention. Aggregate miss ratio represents the perfor-
mance of co-run grouping.

• Footprint theory, which allows us to compute the co-
run and aggregate miss ratio from individual footprints
without parallel testing.

• Linearity assumption, which establishes the relation
between co-run performance and the logical miss ratio.

• Footprint sampling, which will measure individual
footprint efficiently in real time.

III. ADAPTIVE BURSTY FOOTPRINT (ABF) SAMPLING

The perennial problem of a sampling method is the tradeoff
between the cost and accuracy. The goal is to obtain the best
accuracy with the least cost. That is achieved by controlling
two parameters: the length and frequency of sampling.

In program analysis, the common technique is called bursty
sampling [1], [4], [7]. Each sample is a burst, and the dormant
period between two samples is called hibernation. The cost of
a sampling depends on the length of a burst and the length
of hibernation between bursts. We use the terms burst interval
and hibernation interval and symbolize them as bi and hi.

We build our solution on bursty sampling and add three
novel techniques—approximation, bounded cost and adapta-
tion, all designed to specialize for a cache environment. We
call it adaptive bursty footprint sampling or ABF sampling for
short. It collects the sampled footprint sfp.

ABF sampling approximates the miss ratio for the target
cache. Let the cache size be c. Applying the conversion in
Section II-A, we take the sampled footprint sfp and predict



the miss ratio pmr(c). The prediction approximates the actual
miss ratio amr(c). We set an approximation threshold h, which
is the bound on the prediction error:

|amr(c)− pmr(c)| ≤ h

The threshold is absolute, not relative. For example, if h =
0.01, the error is 1% miss ratio not 1% of the miss ratio.

The threshold h is the minimal miss ratio we would predict,
i.e. pmr(c) ≥ h. The limit in accuracy allows us to set a limit
on the length of a sample, i.e. the burst interval bi, in number of
accesses. The interval is just long enough to measure the miss
ratio of h or higher. Here “long enough” means to fill the cache
during the interval with cache misses, i.e. pmr(c)× bi ≥ c. At
the minimal miss ratio h, we have h× bi = c. Hence, we set
the sample length:

bi = c/h

The second technique is bounded cost. The bound is
relative, i.e. no more than 1% of the time of the execution.
This is achieved by not sampling too frequently. We represent
the frequency by the ratio of hibernation to burst interval, hi

bi . If
the hi/bi ratio is 1000, the sampled execution is about 0.1% of
the total execution. In ABF sampling, we use the hi/bi ratio
to bound the cost. The higher the ratio is, the lower is the
maximal cost.

The third technique is adaptive sampling. After each hi-
bernation, ABF sampling checks the actual miss ratio and
compares it with the prediction. A new sample is collected
if and only if the difference is no more than h′, which we call
the phase-change threshold.

The algorithm for ABF sampling is given in Algorithm 1.
As in bursty sampling, the procedure is called after each
hibernation. The branch at Line 3 tests for the prediction
error and decides whether to take a new sample or not.
Sampling is done by forking a second process and attaching
the Pin tool to it. Footprint analysis is the same as Xiang et
al. [33], so is the use of fork. Such parallel analysis has been
pioneered by shadow profiling [19], [27]. There are problems
of safety, e.g. the forked process should not perform I/O, and
concurrency, when sampling threaded code, but these problems
are orthogonal to ABF sampling.

In summary, ABF sampling takes 4 parameters. The first
two are the cache size c and the approximation threshold h,
which are used to set the sample length bi. The third is the
hi/bi ratio, which is used to set the length of hibernation
hi. The fourth is the phase-change threshold for adaptive
sampling. The total cost is bounded by the hi/bi ratio, but
may be much lower because of the adaptation. We will show
that most of test programs need just one sample.

IV. EVALUATION

The preceding sections have presented symbiotic optimiza-
tion, including the model of shared-cache performance and
the technique of footprint sampling. This section evaluates the
model, the technique, and the effect of optimization, comparing
them with alternative solutions of locality profiling and co-run
optimization.

Algorithm 1 Adaptive bursty footprint (ABF) sampling

Require: This procedure is called after each hibernation. The
L2 cache size is c. The phase-change threshold is h′.
Initially pmr(c) = 0. The output is sampled footprint sfp.

1: obtain amr(c) using the hardware counter
2: compute pmr(c) using sfp
3: if pmr(c) > 0 and |amr(c)− pmr(c)| ≤ h′ then
4: update sfp using the last sample
5: { return to hibernation }
6: else
7: { take a new sample }
8: pid← fork()
9: if pid = 0 then

10: attach Pin and sample for bi accesses
11: update sfp using the new sample
12: exit {terminate sampling process}
13: end if
14: end if
15: reset the timer to interrupt after hibernation

A. Experimental Setup

We exhaustively test the co-run schedules for 16 programs
(arbitrarily chosen) from SPEC 2006: perlbench, bzip2, mcf,
zeusmp, namd, dealII, soplex, povray, hmmer, sjeng, h264ref,
tonto, lbm,omnetpp, wrf, sphinx3. We use the first reference
input provided by SPEC.

We use an Intel(R) Core(TM) i7-3770 with four cores,
3.40GHz, 25.6GB/s bandwidth, 256KB private L2, and 8M
shared LLC, with prefetching enabled. It runs Fedora 18 and
GCC 4.7.2.

We enumerate all 8-program subsets, which gives us 12870
subsets. Each subset is divided into two co-run groups in the
way that maximizes the performance of the 4-core machine.
In implementation, we do not need to run 12870 tests. Instead,
we only test all 1820 of the 4-program groups, and record their
performance. Then for each 8-program scheduling, we simply
compute the performance of different scheduling choices.

The test programs have different running times. To measure
co-run performance, we run each program repeatedly and
measure its speed when it is overlapping with other programs,
a method used in previous work [13], [24], [33], [34]. The
method produces stable results and avoids the problem of run-
to-run performance variation. This variability can be predicted
using the method of Sandberg et al. to model the effect of
different overlappings of applications’ phases [20]

Let G = {gi} be a set of co-run programs. Let the co-
run and sequential times be corun(gi), solo(gi). We define
the co-run slowdown of the group by the sum of the individual
slowdowns:

slowdown(G) =
∑
i∈G

slowdown(gi) =
∑
i∈G

corun(gi)

solo(gi)

B. Linear Relation Between Miss Ratio and Co-run Slowdown

Symbiotic optimization is formulated assuming a linear
relation between the common logical time miss ratio and



co-run performance. We evaluate this assumption before the
optimization.

Figure 2 plots 1820 co-run groups (all 4-program subsets
of 16 benchmarks). Each group is a point, for which the x-
axis shows the logical miss ratio of the group, and the y-
axis shows the co-run slowdown of the group. The miss ratio
ranges from 0% to 1.2%. The slowdown ranges from 4 to 11.
A slowdown of 4 means no program is affected by co-run,
and 16 or larger means that parallel execution is slower than
sequential execution.

Co-run group miss ratio shows a consistent correlation
with co-run slowdown: the higher the miss ratio, the greater
the slowdown. The correlation coefficient is 0.88. We see
two distinct rates in the correlation, divided horizontally at
x = 0.6%. We run linear fitting in both groups and combine
them into an adjusted relation. The adjusted correlation has a
correlation coefficient of 0.938 and is almost linear, as shown
in Figure 3.

When the miss ratios are similar, a higher miss ratio
does not always mean a greater slowdown. When the miss
ratios differ significantly, the cache effect becomes dominant.
For example, in Figure 2, the best (lowest) slowdown for a
group with 0.8% miss ratio is higher than the worst (highest)
slowdown at 0.6% miss ratio. In Figure 3, the worst slowdown
at x = 5 is better than the best slowdown at x = 6.5.

Weak Correlation with Co-run Miss Rate: Miss rate is
based on physical time, i.e. misses per second. The x-axis in
Figure 2 is overloaded with the actual miss rate. The figure
plots the 1820 co-run groups with their co-run miss rate, and
with the sum of their solo-run miss rates. The correlation
coefficients are 0.48 and 0.65 respectively. Unlike logical miss
ratio, miss-rate correlation shows multiple trends (models).
Unless there is a way to assign the right program to the right
model, we conclude that miss rate is not usable for symbiotic
optimization.

The inherent problem is the physical time. While co-run
slowdown is unbounded, the miss rate is bounded (by the
memory bandwidth). One may argue that we can use the
hardware counters to measure the miss ratio in real-time, but
it defeats the purpose since our goal is to optimize the miss
ratio without exhaustive testing.

We do not show measured miss ratios in the plots because
our machine has prefetching, and no hardware counter that can
measure ever memory transfer.

Solo-run Miss Rates Cannot Compose Co-run Miss
Rate: It is clear that we cannot predict the co-run miss rate
by the sum of the solo-run miss rate. In a recent survey paper,
Ding et al. showed that miss rate is not composable [11].
Here is an empirical confirmation that solo-run miss rate is
not usable for symbiotic optimization.

Linearity Assumption Validated: The correlation started
as a conjecture in Section II-C and now has been verified
by experiments. It shows that although the performance of
modern software and hardware is exceedingly complex, the
effect of cache sharing will become the dominant factor, as
more programs share cache. When it does, its effect is largely
linear. The linearity assumption is now an observation, and it
is the scientific basis for the subsequent optimization.

C. Footprint Sampling

In all experiments, we set the approximate threshold to 1%
and hi/bi ratio to 1000. Since the size of shared cache on our
test machine is 8MB, the correct parameters are 107 accesses
per sample and 1010 hibernation between samples. In more
detail, there are 8M/64 = 131072 cache lines. To fill the cache
with at least 1% miss ratio, we need 131072/0.01 = 1.3 ∗ 107

memory accesses, hence the choice of bi = 107. The phase-
change threshold h′ is 1%.

To compare with alternatives, we evaluate under-sampling,
where the sample length is 10 times shorter, and over-
sampling, where the length is 10 times longer. The three
methods are shown in Table I.

configurations bi (accesses) hi (accesses)
ABF sampling 107 1010

under-sampling 106 109

over-sampling 108 1011

TABLE I: Burst/hibernation intervals of 3 sampling methods

Table II shows the the sample cost for the 16 benchmarks,
as well as the solo execution time (without analysis) and the
number of samples collected by ABF. ABF sampling takes
0.1 second or less for all programs except for one, soplex,
which takes 0.12 second. Under-sampling and over-sampling
are roughly 10 times faster and slower respectively, because
the cost of analysis is linear to the length of the sample.

bench- t-solo over-sampling ABF under-sampling
mark (sec) p t (sec) p t (sec) p t (sec)
h264ref 51 1 0.77 1 0.076 1 0.0082
bzip2 78 1 0.78 1 0.075 16 0.0081
soplex 121 1 1.2 1 0.12 10 0.01
povray 137 1 0.85 1 0.083 1 0.0082
perlbench 148 1 0.76 1 0.073 3 0.0097
hmmer 179 1 0.76 1 0.074 1 0.0078
lbm 214 1 0.88 1 0.086 9 0.0089
mcf 232 1 1.3 7 0.102 15 0.011
dealII 242 3 0.82 5 0.08 23 0.0084
omnetpp 279 1 1.01 1 0.1 11 0.01
zeusmp 322 1 0.78 17 0.08 17 0.0081
namd 323 1 0.86 1 0.085 1 0.008
sjeng 423 1 0.89 1 0.087 1 0.0098
wrf 431 4 0.79 6 0.079 52 0.008
sphinx3 461 1 0.86 1 0.087 11 0.0087
tonto 485 5 0.89 5 0.09 46 0.01
arith avg 257 1.56 0.88 3.18 0.086 13.62 0.0089

TABLE II: Cost (t) and phase count (p) of ABF sampling,
compared with under- and over-sampling. Programs are sorted
by the solo execution time.

Table II shows the average solo execution time of 260
seconds. For the same benchmark set, Xiang et al. reported
in 2013 average slowdowns of 38, 153, and 23 for full-trace
simulation (of one cache configuration), reuse distance and
footprint analysis [33]. A simple extrapolation suggests that
for an average program, the average analysis times are 3 hours
for simulation, 11 hours for reuse distance and 1.6 hours for
footprint.

The sampling technique by Xiang et al. had 0.5%, or
1.3 seconds visible cost and 19%, or 50 seconds total (not
hidden by parallel profiling) [33]. It was the best solution,
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Fig. 3: Correlation between adjusted co-run group miss ratio
and co-run slowdown. The correlation coefficient is 0.938.

outperforming the fastest full-trace analysis by two orders of
magnitude. Using a total of less than 0.1 seconds on average,
ABF sampling is by far the fastest, ushering in another two
orders of magnitude improvement.

We compare the miss ratio for all cache sizes up to 8MB (at
the increment of one cache block). Since the test machine has
8MB cache, it is sufficient if we can predict the miss ratio for
these cache sizes. The collection of miss ratios is called the
miss-ratio curve (MRC). Measurement based solutions, e.g.
cache partitioning [15], measure the MRC for a handful of
values. Footprint and reuse distance MRCs have a much greater
resolution.

We show the comparison for the 16 test programs with
one graph each in Figure 4. Each graph shows 5 MRC results.
To make it easy to distinguish, points of the same MRC are
connected into a curve. There are 5 curves in each graph
comparing 5 techniques. Two are full-trace analysis, including
reuse distance and footprint. As estimated in the last section,
their overheads are 11 hours and 1.6 hour respectively. Reuse
distance MRC is completely accurate (for fully associative
LRU cache). Footprint MRC requires the reuse hypothesis to
be correct [33]. The goal of sampling is to obtain the full-trace
footprint MRC.

The miss ratios of the first 7 programs are mostly over 1%.
ABF sampling produces close results as full-trace footprint
analysis. In lbm, sampling captures the near vertical drop of
miss ratio from over 6% to under 4% when the cache size
is around 6MB. In sphinx3, full-trace analysis shows a steep
(but not vertical) drop of miss ratio from over 4% to near
0% when the cache size increases from 2MB to 8MB. ABF
sampling shows a vertical drop from 4% to 1% when the cache
size is 4MB. The errors at larger cache sizes are within 1%.
The worst error happens in soplex. The miss ratio follows an
even decline from 11% to 5%. ABF miss ratios are 3% higher.
However, the error is almost constant. The prediction captures
the variation almost perfectly.

The sharp decline in miss ratio at a narrow range of cache
sizes, e.g. over 2% in lbm and 4% in sphinx3, is the cause
of dramatic performance fluctuation programmers observe in
shared-cache co-runs. It is important for an online analysis to
identify such cases, which ABF sampling does.

In perlbench, the reuse distance miss ratio is mostly under
0.2%. However, it is a singular case that full-trace footprint
mis-predicts, showing over 0.8% miss ratios for cache sizes
up to 5MB. Interestingly, ABF shows near 0 miss ratios for
all cache sizes, which is relatively more accurate than full-trace
footprint. The reason is that the conversion from footprint to
miss ratio is usually but not always accurate. The results of
perlbench suggest that the accuracy may be improved through
sampling.

The miss ratios in the other 8 programs are mostly under
1%. ABF sampling is not configured to give accurate results.
Still, the sampling results are mostly accurate, including the
capture of 0.3% sharp drop of miss ratio in h264ref at 2MB
cache size, 0.5% drop of miss ratio in hmmer, and near perfect
prediction in sjeng in all cache sizes. In bzip2 and dealII, ABF
sampling does not detect the miss ratio drop but instead predict
the (basically) correct miss ratio for larger cache sizes.

The other sampling methods are not as cost effective. Over-
sampling is more accurate when miss ratios are small, e.g.
around 0.4% in namd and near 0% in povray. This is expected
because over-sampling is the same as higher precision, i.e.
setting approximation threshold to 0.1%. However, the im-
proved accuracy, 0.4% in namd and 0.2% in povray, comes
at 10 times the cost. Furthermore, since the sample length
is 10 times greater, the hibernation length is also 10 times
longer. As a result, over-sampling performs much worse on all
programs with phase behavior, mcf, wrf, zeusmp. In zeusmp,
over-sampling predicts almost 1% below the actual miss ratio,
while ABF is almost entirely accurate (and finds 17 phases,
shown in Table II).
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Figure 4: MRCS for 16 benchmarks
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Fig. 4: Miss ratios of the 16 test programs in fully-associative LRU cache of all sizes from 256KB to 8MB, including the accurate
results by full-trace reuse distance analysis (full rd) and approximate results by full-trace footprint (full fp) and three sampling
techniques: ABF, over- and under-sampling. The effect of cache size is often non-linear, which ABF captures the non-linear
locality with 0.09 second overhead (Table II).

Under-sampling is faster than ABF but the precision is
significantly worse. The results give strong evidence that ABF
sampling is the minimal-cost solution for precise prediction.

D. Symbiotic Optimization

We first describe a set of optimization methods and then
compare their performance.

1) Bounded-Bandwidth Symbiosis: Footprint symbiosis as
described in Section II-D finds the co-run schedule whose total
miss ratio is minimal. In practice, however, memory bandwidth
plays a decisive role as shown earlier in Figure 2. The co-run
slowdown increases at slower rate when the miss ratio is below

0.6% (when the bandwidth starts to saturate) and then at a
much faster rate afterwards. In symbiotic optimization, we set
an upper bound on the miss ratio. We first require that no co-
run miss ratio exceed the threshold in the symbiotic schedule.
If no such schedule exists, we gradually lift the threshold until
we find a schedule. Based on the results in Figure 2, we set the
initial threshold, which is 37% of the peak memory bandwidth
on the test machine.

Without the bandwidth ceiling, an optimal schedule may be
arbitrarily unbalanced. For example, when dividing 4 programs
into two pairs, the total miss ratio may be the lowest but one
pair incurs all the misses and over-burden the memory bus.
However, upper bounding differs from balancing. Under the



bandwidth ceiling, the best schedule may still be unbalanced.
This is an important consequence of non-linearity when opti-
mizing for shared cache. Because the aggregate effect is non-
linear, imbalance is required for optimization.

2) Distributed Intensity (DI): Distributed intensity (DI)
was developed by Zhuravle [37]. It sorts co-run programs by
decreasing solo-run miss rate and assigns them round-robin
into groups. The resulting schedule effectively balances the
sum of the miss rates in each group. For reproducible results,
we use the miss rate measured in complete solo executions.
As discussed earlier, solo-run miss rates are not composable.
However, this is not a serious problem for DI because it
does not compute the co-run miss rate. Its goal is to balance
rather than to optimize. It banishes imbalance but does not
rank the remaining schedules (by shared-cache performance).
For example, in group G = (mcf,mcf, libquantum, dealII),
mcf has the highest solo-run miss rate. When dividing them
into two pairs, grouping mcf, libquantum gives 3% worse
performance than grouping dealII, libquantum, but DI can-
not differentiate between them.

3) Co-run Optimization: There are 12870 subsets of 8
programs in our test suite of 16 programs. We take each 8-
program set as a scheduling problem: how to divide the 8
programs to run on our 4-core test machine to minimize the
total slowdown. Because of the testing strategy (i.e. running
each program multiple times), the length difference among test
programs does not matter.

For each test, there are 35 possible schedules.1 We rank
them and for each one, calculate the relative slowdown as the
difference with the best schedule. Symbiotic optimization is to
choose the schedule with 0 relative slowdown.

Figure 5 shows the (cumulative) distribution of relative
slowdowns in all 12870 tests, with the slowdown on the x-
axis and the cumulative percentage on the y-axis. An (x, y)
point means that y portion of relative slowdowns is less than
or equal to x.

Full-trace symbiosis has the best performance. 11% of its
relative slowdowns are 0 (optimal), 62% within 0.1, and 92%
within 0.2. ABF sampling is the next best, equally as good as
the best for 90% of tests. The deviation for the remaining 10%
is small.

DI shows the performance of balancing. Among all tests,
4.8% is optimal, 38% within 0.1, and 62% within 0.2. DI
is as good as optimization for half of tests, which means
that balancing is sufficient for 50% of the cases (with no or
little relative slowdown), but optimization can further improve
performance for the other 50%, especially the ones with a
large slowdown. Across all 12870 tests, the arithmetic average
is 0.08 for full-trace symbiosis, 0.12 for ABF, and 0.24 for DI.
The difference between symbiotic optimal and actual optimal
is 0.08 for 8 programs or just 0.01 per program. ABF sampling
is per program 0.5% worse than full trace and 1.5% worse than
optimal.

The figure shows the relative slowdown of the median
solution (out of 35 solutions) for each of the 12870 tests. It

1Instead of running 35× 12870 = 450450 tests, we can simply compute
all the results by testing all 4-program co-runs, which means 1820 tests for
16 programs.

indicates the expected performance from a random choice. The
average relative slowdown is 0.55. DI reduces this slowdown
gap by 56%, ABF sampling 78%, and full-trace symbiosis
85%.

The median distribution shows that the difference between
the best and the median solutions is less than 0.1 in 50% of
cases but increases quickly and dramatically to over 50% in the
remaining cases. It means that the first 50% of the groups are
not very sensitive to co-run scheduling, but the others are. For
the 50% that are sensitive groups, the average relative slow-
down is 0.14 for full-trace symbiosis, a slight increase from
0.08. ABF goes from 0.12 to 0.19. DI performs significantly
worse, from 0.24 to 0.42. It shows that optimization is most
beneficial for sensitive tasks.

Worst-case Analysis: There are six tests for which
symbiosis has over 0.5 relative slowdown. In all of them,
it made the wrong decision by picking the group bzip2,
zeusmp, lbm, omnetpp. The error occurs because the slowdown
is uneven within the group. It makes footprint composition
inaccurate.

There are five tests for which DI has 1.8 or higher relative
slowdown. In the five, DI picks the group bizp2, soplex, lbm,
sphinx3, and their individual slowdowns are: 1.97, 2.4, 1.63,
2.22. They are among the most cache-sensitive programs but
all have a low solo-run miss rate. However, the miss rate
increases dramatically when they co-run with others. Since DI
assumes the same miss rate in co-run as in solo run, it cannot
anticipate the change.

Evenness in Co-run Slowdown: We
define uneveness(G) =

∑
i |slowdown(gi) −

average(G)|/average(G)/|G|, where G is a co-run
group and average(G) =

∑
i slowdown(gi)/|G| is its

average slowdown. When everyone has the group average,
unevenness is 0. Otherwise, unevenness gives the average
relative deviation by each program from the group average.

Figure 6 shows a histogram of unevenness values from all
1820 cases of 4-program co-runs. 73.7% of them have 10%
or less deviation from the group average. 92% have 20% or
less. The most uneven are 9 cases (0.5%) whose deviation
is between 30% and 35%. One of them is the group, bzip2,
zeusmp, lbm, omnetpp. Their co-run slowdowns are are 1.71,
1.40, 1.29, and 2.11. The group average is 1.62, and the
average deviation, i.e. unevenness, is 17%.

V. RELATED WORK

This section reviews mainly techniques of program sym-
biosis and locality sampling.

a) The Footprint Theory: Optimization must be built
on theory, which in this case is the higher-order theory of
locality (HOTL) [33]. As a metric, footprint quantifies the
active data usage in all timescales. The HOTL theory shows
that as the window size increases, the footprint is not only
monotone [30] but also concave [33]. Hence it is strictly
increasing unless it reaches a plateau. If it reaches a plateau,
it will stay flat. The concavity is useful in two ways. First, the
inverse function is well defined, which is the data residence
time in cache [33]. Second, the footprint can be used to
compute other locality metrics including the miss ratio curve
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Fig. 6: Unevenness of 1820 co-run slowdowns, measured by
the deviation from the average slowdown

and the reuse distance [33]. In HOTL conversion, the concavity
of the footprint ensures the monotonicity of the miss ratio. The
HOTL conversion connects the two classic theories of locality:
the working set theory Denning et al. for primary memory [9],
[10] and the theory of stack algorithms by Mattson et al. for
cache memory [18]. These and related theories are recently
surveyed in [11]. This paper extends the theory with the
notion of common logical time. Furthermore, it defines a linear
model between locality and performance. These extensions are
necessary for symbiotic optimization.

In this study, we have re-implemented the footprint analy-
sis, and the results confirmed that the footprint theory is largely
accurate (Figure 4). Through another independent implemen-
tation, Wires et al. recently showed that the footprint analysis
can be used for disk access traces to predict the server cache
performance with a high accuracy [28].

b) Program Symbiosis in Shared Cache: Zhuravlev
et al. developed distributed intensity (DI) scheduling, which
equalizes the sum of solo-run miss rates in each group [37].
Many other techniques address the problem of contention in a
shared multicore processor through data-driven analysis, e.g.
machine learning [8]. They do not aim to optimize co-run

performance. Jiang et al. showed that optimal group scheduling
is NP-complete [14]. They gave an exact solution based on
integer programming. Such a solution requires knowing the
co-run performance beforehand. Xiang et al. composed cache
sharing performance using reuse distance and footprint and
showed the benefit of cache-conscious task regrouping in two
tests [32]. The relation between miss ratio and performance
was qualitative rather than quantitative. Mars et al. developed
Bubble-up [17] to improve QoS in addition to throughput.
The model is based on execution time. It requires a dedicated
environment for training, and new training is needed for
each machine. Our model is based entirely on footprint. It
is machine independent and does not require solo testing.

c) Footprint Sampling: Xiang et al. gave the first tech-
nique for footprint sampling [33]. It sets the sample length and
frequency as follows. Once a sample is started, the sampling
continues until the analysis has seen the amount of data equal
to the cache size. This length is the cache lifetime, which
is the resident time of an accessed cache block, i.e. between
the last time of access and the time of its eviction. Xiang
et al. set the hibernation interval to be 10 seconds. The
sampling time ranges between 0% and 80% of the original
run time, with an average of 19%. Although 18% is hidden
by shadow profiling, the interference between the sampling
task and the original program can slow down a program by
as much as 2.1%. Xiang et al. used sampling to predict solo-
run miss ratios. ABF sampling has four differences. The first
is approximate prediction. As a result, the sample length is
bounded for a given cache size, while the lifetime in Xiang et
al. is unbounded, e.g. when the working set of a program is
smaller than cache. Second, the total cost is also bounded in
ABF sampling (by the hi/bi ratio) but not in Xiang et al. Third,
ABF sampling does not collect a sample unless a program has
multiple phases, while Xiang et al. always takes a sample.
Finally, ABF sampling is used for symbiotic optimization,
while Xiang et al. evaluated only miss ratio prediction.

d) Reuse Distance Sampling: Zhong and Chang [35]
adopted the approach of bursty sampling [1], [4], [7] to mea-
sure reuse distance. An execution is divided into occasional



sampling “bursts” separated by long hibernation periods. The
scale-tree algorithm of reuse distance analysis [36] is adapted
to use a single node for a hibernation period. They found
that sampling was 99% accurate and reduced the measurement
overhead by as much as 34 times and on average 7.5 times.

In multicore reuse distance, Schuff et al. modeled locality
in multi-threaded code for both private and shared cache [21].
Wu et al. called them private and concurrent reuse distances
(PRD/CRD) [29]. Schuff et al. combined the sampling tech-
nique of Zhong and Chang with parallel analysis to reduce
the measurement overhead to the level of the fastest single-
threaded analysis [21].

Reuse distance sampling causes a program to slowdown by
at least integer factor, while the cost of ABF sampling is mostly
less than 1%. There are two main reasons for the difference.
Asymptotically, reuse distance takes more than linear time to
measure but footprint takes linear time. Second, the hibernation
period in reuse distance sampling is still instrumented and its
memory accesses analyzed, but the hibernation period in ABF
sampling has zero overhead.

e) Address Sampling: Using the virtual memory pag-
ing support, StatCache collects the access trace to sampled
addresses to estimate the cache miss ratio [2]. As part of the
IBM framework for continuous program optimization (CPO),
Cascaval et al. sampled TLB misses to approximate reuse
distance [6]. IBM PowerPC has hardware support so a program
can track accesses to specific memory locations. They studied
the relation between the sampling rate and the accuracy. They
found that marking every fiftieth instruction gathers about
every thousandth address. The measure reuse distances are
treated as a probability density function. The accuracy is
defined by Hellinger Affinity Kernel (HAK), which gives the
probability that two density functions are the same. Similar
hardware support of address sampling is used by Tam et al.
to estimate the miss ratio curve [26] and by the HPCS tool
for locality optimization, e.g. array regrouping [16]. These
techniques are fast but require hardware or OS support. In
addition, the metric measured, especially reuse distance, is not
composable, so it cannot optimize shared cache symbiosis [11].

f) Time Sampling: Beyls and D’Hollander developed
efficient sampling in the SLO tool for program tuning [3]. A
modified GCC compiler is used to instrument every reference
to arrays and heap data. To uniformly select samples, it skips
every k accesses before taking the next address as a sample.
To track only reuses, it keeps a sparse vector 200MB indexed
by lower-order bits. When being sampled, the index of the
chosen address is inserted into the vector. A full check is called
whenever the same index is accessed. The overhead comes
from two sources. The first is when a full check is called,
but it is infrequent. The algorithm uses reservoir sampling
which means that the frequency in theory is constant regardless
of the length of the execution. The second is address and
counter checking, which are two conditional statements for
each memory access. Using sampling, they reduced the anal-
ysis overhead from 1000-fold slow-down to only a factor of 5
and the space overhead to within 250MB extra memory [3].
Using the tool, they were able to double the speed of five
already hand optimized SPEC2000 benchmarks. The SLO tool
measures reuse time which is not a direct measure of locality
or cache usage.

VI. SUMMARY

In this work, we have defined common logical time and
co-run miss ratio based on the common logical time. We have
validated the linearity assumption that co-run performance
correlates linearly with the logical miss ratio. It enables for
the first time to minimize co-run slowdown without co-run
testing. In addition, we have developed ABF sampling to
bound the analysis error and the total cost. Experimental
evaluation shows ABF sampling takes less than 0.1 second
per program, and ABF symbiosis is on average 0.12 relative
slowdown from optimal co-run (for 8 programs). We conclude
that ABF sampling and miss-ratio minimization gives a cost-
effective solution for optimal program symbiosis in shared
cache.
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