Chenliang Xu

Prepared on April 9, 2024

Contact	3005 Wegmans Hall 250 Hutchison Road University of Rochester Rochester, NY 14627	Еман: chenliang.xu@rochester.edu Web: https://www.cs.rochester.edu/~cxu22
Appointments	Associate Professor Department of Computer Science University of Rochester Rochester, NY	7/2022 - Present
	Assistant Professor Department of Computer Science University of Rochester Rochester, NY	9/2016 - 6/2022
Research Interests	My research originates in computer vision and understanding, audio-visual learning, vision and	
Education	Doctor of Philosophy Computer Science and Engineering University of Michigan Ann Arbor, MI	2016
	Master of Science Computer Science and Engineering University at Buffalo Buffalo, NY	2012
	Bachelor of Science Information and Computing Science Nanjing University of Aeronautics and Astronaut Nanjing, China	2010 tics
Distinctions	James P. Wilmot Distinguished Professorship for "some of the most promising young men and wome	2021 en in the early stages of their academic careers"
	University of Rochester Research Awards for the project "applying AI-powered computer vision	2021 <i>techniques on synthetic x-ray diffraction data</i> "
	Best Paper Award at the 17th ACM SIGGRAPH for the paper "3D human avatar digitization from a si	
	Best Paper Award at the 14th Sound and Music for the paper "audio-visual source association for strin	
	University of Rochester AR/VR Pilot Award for the project "real-time synthesis of a virtual talking	face from acoustic speech" 2017
	Best Open Source Code Third Prize at IEEE CV for the paper "evaluation of super-voxel methods for ea	
	Best Demo Prize at the 2nd Greater New York M for the demo "streaming hierarchical video segmentation	
Publications	Google Scholar: https://scholar.google.com/cita	tions?user=54HfyDIAAAAJ
	Peer-Reviewed Articles and Proceedings <i>CVPR, ICCV, and ECCV are premier computer vision</i> <i>as of 8/2023, CVPR has h5-index 422, ICCV 228, and</i> <i>and conferences in Engineering and Computer Science</i>	ECCV 238. CVPR is also ranked 1st of all journals

- P101. Nguyen Nguyen, Jing Bi, Ali Vosoughi, Yapeng Tian, Pooyan Fazli, and Chenliang Xu. Oscar: Object state captioning and state change representation. In *Findings of the Association for Computational Linguistics: NAACL 2024*, 2024 (NAACL)
- P100. Zeliang Zhang, Mingqian Feng, Zhiheng Li, and Chenliang Xu. Discover and mitigate multiple biased subgroups in image classifiers. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024 (CVPR)
- P99. Rongyi Zhu, Zeliang Zhang, Susan Liang, Zhuo Liu, and Chenliang Xu. Learning to transform dynamically for better adversarial transferability. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024 (CVPR)
- P98. Ali Vosoughi, Shijian Deng, Yapeng Tian, Chenliang Xu, and Jiebo Luo. Cross modality bias in visual question answering: A causal view with possible worlds vqa. *IEEE Transactions on Multimedia*, pages 1–16, 2024. (TMM)
- P97. Zeliang Zhang, Wei Yao, Susan Liang, and Chenliang Xu. Random smooth-based certified defense against text adversarial attack. In *Findings of the Association for Computational Linguistics: EACL* 2024, 2024. (EACL)
- P96. Jinyang Jiang, Zeliang Zhang, Chenliang Xu, Zhaofei Yu, and Yijie Peng. One forward is enough for neural network training via likelihood ratio method. In *International Conference* on Learning Representations, 2024. (ICLR)
- P95. Luchuan Song, Pinxin Liu, Guojun Yin, and Chenliang Xu. Adaptive super resolution for one-shot talking head generation. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, 2024. (ICASSP)
- P94. Ali Vosoughi, Luca Bondi, Ho-Hsiang Wu, and Chenliang Xu. Learning audio concepts from counterfactual natural language. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, 2024. (ICASSP)
- P93. Zidian Xie, Shijian Deng, Pinxin Liu, Xubin Lou, Chenliang Xu, and Dongmei Li. Characterizing anti-vaping posts for effective communication on instagram using multimodal deep learning. *Nicotine and Tobacco Research*, 26(Supplement_1):S43–S48, 2024

2023

P92. Jerardo E Salgado, Samuel Lerman, Zhaotong Du, Chenliang Xu, and Niaz Abdolrahim. Automated classification of big x-ray diffraction data using deep learning models. *npj Computational Materials*, 9(1):214, 2023.

(npj Comp. Mater.)

- P91. Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Av-nerf: Learning neural fields for real-world audio-visual scene synthesis. In *Neural Information Processing Systems*, pages 1–19, 2023. (NeurIPS)
- P90. Luchuan Song, Guojun Yin, Zhenchao Jin, Xiaoyi Dong, and Chenliang Xu. Emotional listener portrait: Neural listener head generation with emotion. In *IEEE/CVF International Conference on Computer Vision*, pages 20839–20849, 2023. (ICCV)
- P89. Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer, Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where mitigating one amplifies others. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20071–20082, 2023. (CVPR)
- P88. Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Egocentric audio-visual object localization. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 22910–22921, 2023. (CVPR)

- P87. Zheng Zhang, Zheng Ning, Chenliang Xu, Yapeng Tian, and Toby Jia-Jun Li. Peanut: A human-ai collaborative tool for annotating audio-visual data. In ACM Symposium on User Interface Software and Technology, pages 1–18, 2023. (UIST)
- P86. Joseph S. German, Guofeng Cui, Chenliang Xu, and Robert A. Jacobs. Rapid runtime learning by curating small datasets of high-quality items obtained from memory. *PLOS Computational Biology*, 19(10):1–32, 2023.

(PLOS Comp. Biology)

- P85. Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Neural acoustic context field: Rendering realistic room impulse response with neural fields. In *IEEE/CVF International Conference on Computer Vision Workshops*, pages 1–4, 2023 (AV4D workshop)
- P84. Jing Bi, Nguyen Nguyen, Ali Vosoughi, and Chenliang Xu. Misar: A multimodal instructional system with augmented reality. In *IEEE/CVF International Conference on Computer Vision Workshops*, pages 1–4, 2023 (AV4D workshop)
- P83. Yiyang Su, Ali Vosoughi, Shijian Deng, Yapeng Tian, and Chenliang Xu. Separating invisible sounds toward universal audio-visual scene-aware sound separation. In *IEEE/CVF International Conference on Computer Vision Workshops*, pages 1–4, 2023

(AV4D workshop)

- P82. Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Av-nerf: Learning neural fields for real-world audio-visual scene synthesis. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2023. (Sight and Sound Workshop)
- P81. Luchuan Song, Jing Bi, Chao Huang, and Chenliang Xu. Audio-visual action prediction with soft-boundary in egocentric videos. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2023. (Sight and Sound Workshop)

2022

- P80. Zhiheng Li, Anthony Hoogs, and Chenliang Xu. Discover and mitigate unknown biases with debiasing alternate networks. In *European Conference on Computer Vision*, pages 270–288, 2022. (ECCV)
- P79. Luchuan Song, Xiaodan Li, Zheng Fang, Zhenchao Jin, Yuefeng Chen, and Chenliang Xu. Face forgery detection via symmetric transformer. In ACM International Conference on Multimedia, pages 4102–4111, 2022.

(ACM Multimedia)

- P78. Zhiheng Li, Martin Renqiang Min, Kai Li, and Chenliang Xu. Stylet2i: Toward compositional and high-fidelity text-to-image synthesis. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18197–18207, 2022. (CVPR)
- P77. Jing Shi, Ning Xu, Haitian Zheng, Alex Smith, Jiebo Luo, and Chenliang Xu. Spaceedit: Learning a unified editing space for open-domain image editing. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19730–19739, 2022. (CVPR)
- P76. Guangyao Li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen, and Di Hu. Learning to answer questions in dynamic audio-visual scenarios. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19108–19118, 2022. Oral Presentation (CVPR)
- P75. Guangyuan Li, Jun Lv, Yapeng Tian, Dou Qi, Chengyan Wang, Chenliang Xu, and Jing Qin. Transformer-empowered multi-scale contextual matching and aggregation for multi-contrast mri super-resolution. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20636–20645, 2022. (CVPR)
- P74. Zhengyuan Yang, Jingen Liu, Jing Huang, Xiaodong He, Tao Mei, Chenliang Xu, and Jiebo Luo. Cross-modal contrastive distillation for instructional activity anticipation. In *International Conference on Pattern Recognition*, pages 5002–5009, 2022. (ICPR)

- P73. Tong Shan, Casper E. Wenner, Chenliang Xu, Zhiyao Duan, and Ross K. Maddox. Speech-innoise comprehension is improved when viewing a deep-neural-network-generated talking face. *Trends in Hearing*, 26, 2022. (Trends in Hearing)
- P72. Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Audio-visual object localization in egocentric videos. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2022. (Sight and Sound Workshop)

- P71. Jing Bi, Jiebo Luo, and Chenliang Xu. Procedure planning in instructional videos via contextual modeling and model-based policy learning. In *IEEE/CVF International Conference on Computer Vision*, pages 15611–15620, 2021. Oral Presentation (ICCV)
- P70. Samuel Lerman, Charles Venuto, Henry Kautz, and Chenliang Xu. Explaining local, global, and higher-order interactions in deep learning. In *IEEE/CVF International Conference on Computer Vision*, pages 1224–1233, 2021. (ICCV)
- P69. Zhiheng Li and Chenliang Xu. Discover the unknown biased attribute of an image classifier. In *IEEE/CVF International Conference on Computer Vision*, pages 14970–14979, 2021. (ICCV)
- P68. Jing Shi, Yiwu Zhong, Ning Xu, Yin Li, and Chenliang Xu. A simple baseline for weaklysupervised scene graph generation. In *IEEE/CVF International Conference on Computer Vision*, pages 16393–16402, 2021. (ICCV)
- P67. Yiwu Zhong, Jing Shi, Jianwei Yang, Chenliang Xu, and Yin Li. Learning to generate image scene graph from natural language supervision. In *IEEE/CVF International Conference on Computer Vision*, pages 1823–1834, 2021. (ICCV)
- P66. Yapeng Tian and Chenliang Xu. Can audio-visual integration strengthen robustness under multimodal attacks? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5601–5611, 2021. (CVPR)
- P65. Yapeng Tian, Di Hu, and Chenliang Xu. Cyclic co-learning of sounding object visual grounding and sound separation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2745–2754, 2021. (CVPR)
- P64. Lele Chen, Chen Cao, Fernando De la Torre, Jason Saragih, Chenliang Xu, and Yaser Sheikh. High-fidelity face tracking for ar/vr via deep lighting adaptation. In *IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 13059–13069, 2021. (CVPR)
- P63. Jing Shi, Ning Xu, Yihang Xu, Trung Bui, Franck Dernoncourt, and Chenliang Xu. Learning by planning: Language-guided global image editing. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13590–13599, 2021. (CVPR)
- P62. Sizhe Li, Yapeng Tian, and Chenliang Xu. Space-time memory network for sounding object localization in videos. In *British Machine Vision Conference*, pages 1–13, 2021. (BMVC)
- P61. Ziyi Kou, Guofeng Cui, Shaojie Wang, Wentian Zhao, and Chenliang Xu. Improve cam with auto-adapted segmentation and co-supervised augmentation. In *IEEE/CVF Winter Conference* on Applications of Computer Vision, pages 3598–3606, 2021. (WACV)
- P60. Shaojie Wang, Wentian Zhao, Ziyi Kou, Jing Shi, and Chenliang Xu. How to make a blt sandwich? learning vqa towards understanding web instructional videos. In *IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 1130–1139, 2021. (WACV)
- P59. Zhong Li, Lele Chen, Celong Liu, Fuyao Zhang, Zekun Li, Yu Gao, Yuanzhou Ha, Chenliang Xu, Shuxue Quan, and Yi Xu. Animated 3d human avatars from a single image with gan-based texture inference. *Computers & Graphics*, 95:81–91, 2021. (CG)
- P58. Yankun Gao, Zidian Xie, Li Sun, Chenliang Xu, and Dongmei Li. Characteristics and user

engagement of anti-vaping posts on instagram: Observational study. JMIR Public Health and Surveillance, 7(11):e29600, 2021.

- P57. Yapeng Tian, Dingzeyu Li, and Chenliang Xu. Unified multisensory perception: Weaklysupervised audio-visual video parsing. In *European Conference on Computer Vision*, pages 436–454, 2020. *Spotlight Presentation* (ECCV)
- P56. Lele Chen, Guofeng Cui, Celong Liu, Zhong Li, Ziyi Kou, Yi Xu, and Chenliang Xu. Talkinghead generation with rhythmic head motion. In *European Conference on Computer Vision*, pages 35–51, 2020. (ECCV)
- P55. Jie Chen, Zhiheng Li, Jiebo Luo, and Chenliang Xu. Learning a weakly-supervised video actor-action segmentation model with a wise selection. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9901–9911, 2020. *Oral Presentation* (CVPR)
- P54. Zhiheng Li, Wenxuan Bao, Jiayang Zheng, and Chenliang Xu. Deep grouping model for unified perceptual parsing. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4053–4063, 2020. (CVPR)
- P53. Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan Allebach, and Chenliang Xu. Zooming slow-mo: Fast and accurate one-stage space-time video super-resolution. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3370–3379, 2020. (CVPR)
- P52. Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu. Tdan: Temporally deformable alignment network for video super-resolution. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3360–3369, 2020. (CVPR)
- P51. Jing Bi, Vikas Dhiman, Tianyou Xiao, and Chenliang Xu. Learning from interventions using hierarchical policies for safe learning. In AAAI Conference on Artificial Intelligence, pages 10352–10360, 2020. Oral Presentation (AAAI)
- P50. Jing Shi, Ning Xu, Trung Bui, Franck Dernoncourt, Zheng Wen, and Chenliang Xu. A benchmark and baseline for language-driven image editing. In Asian Conference on Computer Vision, pages 636–651, 2020. Oral Presentation (ACCV)
- P49. Lele Chen, Justin Tian, Guo Li, Cheng-Haw Wu, Erh-Kan King, Kuan-Ting Chen, Shao-Hang Hsieh, and Chenliang Xu. Tailorgan: Making user-defined fashion designs. In *IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 3241–3250, 2020. (WACV)
- P48. Sefik Emre Eskimez, Ross K. Maddox, Chenliang Xu, and Zhiyao Duan. End-to-end generation of talking faces from noisy speech. In *International Conference on Acoustics, Speech, and Signal Processing*, pages 1948–1952, 2020. (ICASSP)
- P47. Haitian Zheng, Lele Chen, Chenliang Xu, and Jiebo Luo. Pose flow learning from person images for pose guided synthesis. *IEEE Transactions on Image Processing*, 30:1898–1909, 2020. (TIP)
- P46. Baojie Fan, Yang Cong, Yandong Tang, Jiandong Tian, and Chenliang Xu. Structured and consistent multi-layer multi-kernel subtask correction filter tracker. *IEEE Transactions on Circuits and Systems for Video Technology*, 31(6):2328–2342, 2020. (TCSVT)
- P45. Yankun Gao, Zidian Xie, Li Sun, Chenliang Xu, and Dongmei Li. Electronic cigarette–related contents on instagram: Observational study and exploratory analysis. *JMIR Public Health and Surveillance*, 6(4):e21963, 2020.
- P44. Zhiheng Li, Geemi P. Wellawatte, Maghesree Chakraborty, Heta A. Gandhi, Chenliang Xu, and Andrew D. White. Graph neural network based coarse-grained mapping prediction. *Chemical Science*, 11(9524-9531), 2020.

- P43. Yapeng Tian, Di Hu, and Chenliang Xu. Co-learn sounding object visual grounding and visually indicated sound separation in a cycle. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2020. (Sight and Sound Workshop)
- P42. Yapeng Tian, Chenliang Xu, and Dingzeyu Li. Deep audio prior: Learning sound source sepration from a single audio mixture. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2020. (Sight and Sound Workshop)
- P41. Yapeng Tian, Dingzeyu Li, and Chenliang Xu. Weakly-supervised audio-visual video parsing toward unified multisensory perception. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2020. (Sight and Sound Workshop)
- P40. Lele Chen, Guofeng Cui, Ziyi Kou, Haitian Zheng, and Chenliang Xu. What comprises a good talking-head video generation? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2020. (Sight and Sound Workshop)

- P39. Zhong Li, Lele Chen, Celong Liu, Yu Gao, Yuanzhou Ha, Chenliang Xu, Shuxue Quan, and Yi Xu. 3d human avatar digitization from a single image. In ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry, pages 1–8, 2019.
 Best Paper Award (VRCAI)
- P38. Jing Shi, Jia Xu, Boqing Gong, and Chenliang Xu. Not all frames are equal: Weakly-supervised video grounding with contextual similarity and visual clustering losses. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10444–10452, 2019. (CVPR)
- P37. Lele Chen, Ross K. Maddox, Zhiyao Duan, and Chenliang Xu. Hierarchical cross-modal talking face generation with dyanmic pixel-wise loss. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7832–7841, 2019. (CVPR)
- P36. Wentian Zhao, Shaojie Wang, Zhihuai Xie, Jing Shi, and Chenliang Xu. Gan-em: Gan based em learning framework. In *International Joint Conference on Artificial Intelligence*, pages 4404– 4411, 2019. (IJCAI)
- P35. Hao Huang, Luowei Zhou, Wei Zhang, Jason J. Corso, and Chenliang Xu. Dynamic graph models for modeling higher-order interactions in activity recognition. In *British Machine Vision Conference*, pages 1–12, 2019. (BMVC)
- P34. Yawen Lu, Sophia Kourian, Carl Salvaggio, Chenliang Xu, and Guoyu Lu. Single image 3d vehicle pose estimation for augmented reality. In *IEEE Global Conference on Signal and Information Processing*, pages 1–5, 2019. (GlobalSIP)
- P33. Yan Yan, Chenliang Xu, Dawen Cai, and Jason J. Corso. A weakly supervised multi-task ranking framework for actor-action semantic segmentation. *International Journal of Computer Vision*, 128:1414–1432, 2019. (IJCV)
- P32. Robert A. Jacobs and Chenliang Xu. Can multisensory training aid visual learning?: A computational investigation. *Journal of Vision*, 19(11):1–12, 2019. (JOV)
- P31. Sefik Emre Eskimez, Ross K. Maddox, Chenliang Xu, and Zhiyao Duan. Noise-resilient training method for face landmark generation from speech. *IEEE/ACM Transactions on Audio, Speech and Language Processing*, 28(1):27–38, 2019. (TASLP)
- P30. Bochen Li, Karthik Dinesh, Chenliang Xu, Gaurav Sharma, and Zhiyao Duan. Online audio-visual source association for chamber music performances. *Transcations of the International Society for Music Information Retrieval*, 2(1):29–42, 2019. (TISMIR)
- P29. Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization in the wild. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 5–8, 2019.
 Oral Presentation (Sight and Sound Workshop)

- P28. Yapeng Tian, Chenxiao Guan, Justin Goodman, Marc Moore, and Chenliang Xu. Audiovisual interpretable and controllable video captioning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 9–12, 2019. (Sight and Sound Workshop)
- P27. Lele Chen, Haitian Zheng, Ross K. Maddox, Zhiyao Duan, and Chenliang Xu. Sound to visual: Hierarchical cross-modal talking face video generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–4, 2019.

(Sight and Sound Workshop)

2018

- P26. Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization in unconstrained videos. In *European Conference on Computer Vision*, pages 252–268, 2018.
 (ECCV)
- P25. Lele Chen, Zhiheng Li, Ross K. Maddox, Zhiyao Duan, and Chenliang Xu. Lip movements generation at a glance. In *European Conference on Computer Vision*, pages 538–553, 2018. (ECCV)
- P24. Li Ding and Chenliang Xu. Weakly-supervised action segmentation with iterative soft boundary assignment. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6508–6516, 2018. (CVPR)
- P23. Luowei Zhou, Chenliang Xu, and Jason J. Corso. Towards automatic learning of procedures from web instructional videos. In *Proc. of AAAI Conference on Artificial Intelligence*, pages 7590–7598, 2018. *Oral Presentation* (AAAI)
- P22. Tianlang Chen, Chenliang Xu, and Jiebo Luo. Improving text-based person search by spatial matching and adaptive threshold. In *IEEE Winter Conference on Applications of Computer Vision*, pages 1879–1887, 2018. (WACV)
- P21. Lele Chen, Yue Wu, Adora M. DSouza, Anas Z. Abidin, Axel Wismüller, and Chenliang Xu. Mri tumor segmentation with densely connected 3d cnn. In SPIE Medical Imaging 2018: Image Processing, volume 105741, pages 105741F1–8, 2018. Oral Presentation (SPIE MI)
- P20. Sefik Emre Eskimez, Ross K. Maddox, Chenliang Xu, and Zhiyao Duan. Generating talking face landmarks from speech. In *International Conference on Latent Variable Analysis and Signal Separation*, pages 372–381, 2018. (LVA/ICA)
- P19. Lele Chen, Sefik Emre Eskimez, Zhiheng Li, Zhiyao Duan, Chenliang Xu, and Ross K. Maddox. Toward a visual assistive listening device: Real-time synthesis of a virtual talking face from acoustic speech using deep neural networks. *The Journal of the Acoustical Society of America*, 143(3):1813–1813, 2018.
- P18. Maghesree Chakraborty, Chenliang Xu, and Andrew D. White. Encoding and selecting coarse-grain mapping operators with hierarchical graphs. *The Journal of Chemical Physics*, 149(13):134106, 2018.

- P17. Bochen Li, Chenliang Xu, and Zhiyao Duan. Audio-visual source association for string ensembles through multi-modal vibrato analysis. In *Sound and Music Computing Conference*, pages 159–166, 2017. *Best Paper Award* (SMC)
- P16. Yan Yan, Chenliang Xu, Dawen Cai, and Jason J. Corso. Weakly supervised actor-action segmentation via robust multi-task ranking. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1022–1031, 2017. (CVPR)
- P15. Tingting Han, Hongxun Yao, Chenliang Xu, Xiaoshuai Sun, Yanhao Zhang, and Jason J. Corso. Dancelets mining for video recommendation based on dance styles. *IEEE Transactions on Multimedia*, 19(4):712–724, 2017. (TMM)

- P14. Amos Newswanger and Chenliang Xu. One-shot video object segmentation with iterative online fine-tuning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 1–5, 2017. (CVPR Workshop)
- P13. Lele Chen, Sudhanshu Srivastava, Zhiyao Duan, and Chenliang Xu. Deep cross-modal audio-visual generation. In *ACM International Conference on Multimedia Thematic Workshops*, pages 349–357, 2017. (ACM MM Workshop)
- P12. Luowei Zhou, Chenliang Xu, Parker Koch, and Jason J. Corso. Watch what you just said: Image captioning with text-conditional attention. In *ACM International Conference on Multimedia Thematic Workshops*, pages 305–313, 2017. (ACM MM Workshop)

2016 and Before

- P11. Chenliang Xu and Jason J. Corso. Actor-action semantic segmentation with grouping process models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3083–3092, 2016.
 Spotlight Presentation (CVPR)
- P10. Chenliang Xu and Jason J. Corso. Libsvx: A supervoxel library and benchmark for early video processing. *International Journal of Computer Vision*, 119(3):272–290, 2016. (IJCV)
- P9. Chenliang Xu, Shao-Hang Hsieh, Caiming Xiong, and Jason J. Corso. Can humans fly? action understanding with multiple classes of actors. In *IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pages 2264–2273, 2015. (CVPR)
- P8. Chenliang Xu, Richard F. Doell, Stephen Jose Hanson, Catherine Hanson, and Jason J. Corso. A study of actor and action semantic retention in video supervoxel segmentation. *International Journal of Semantic Computing*, 7(4):353–375, 2013. (IJSC)
- P7. Chenliang Xu, Spencer Whitt, and Jason J. Corso. Flattening supervoxel hierarchies by the uniform entropy slice. In *IEEE/CVF International Conference on Computer Vision*, pages 2240–2247, 2013. (ICCV)
- P6. Chenliang Xu, Richard F. Doell, Stephen Jose Hanson, Catherine Hanson, and Jason J. Corso. Are actor and action semantics retained in video supervoxel segmentation? In *IEEE International Conference on Semantic Computing*, pages 286–293, 2013.

Oral Presentation (ICSC)

- P5. Pradipto Das, Chenliang Xu, Richard F. Doell, and Jason J. Corso. A thousand frames in just a few words: Lingual description of videos through latent topics and sparse object stitching. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2634–2641, 2013. (CVPR)
- P4. Chenliang Xu, Caiming Xiong, and Jason J. Corso. Streaming hierarchical video segmentation. In *European Conference on Computer Vision*, pages 626–639, 2012.

Oral Presentation (ECCV)

- P3. Chenliang Xu and Jason J. Corso. Evaluation of super-voxel methods for early video processing. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 1202–1209, 2012. (CVPR)
- P2. S. Oh, A. Perera, I. Kim, M. Pandey, K. Cannons, H. Hajimirsadeghi, A. Vahdat, G. Mori, B. Miller, S. McCloskey, Y.-C. Cheng, Z. Huang, C.-H. Lee, C. Xu, R. Kumar, W. Chen, J. J. Corso, L. Fei-Fei, D. Koller, V. Ramanathan, K. Tang, A. Joulin, and A. Alahi. Trecvid 2013 genie: Multimedia event detection and recounting. In *NIST TRECVID Workshop*, 2013.
- P1. A. Perera, S. Oh, M. Pandey, T. Ma, A. Hoogs, A. Vahdat, K. Cannons, H. Hajimirsadeghi, G. Mori, S. McCloskey, B. Miller, S. Venkatesha, P. Davalos, P. Das, C. Xu, J. J. Corso, R. Srihari, I. Kim, Y.-C. Cheng, Z. Huang, C.-H. Lee, K. Tang, L. Fei-Fei, and D. Koller. Trecvid 2012 genie: Multimedia event detection and recounting. In *NIST TRECVID Workshop*, 2012.

Technical Reports and Theses

- T8. Lele Chen, Guofeng Cui, Ziyi Kou, Haitian Zheng, and Chenliang Xu. What comprises a good talking-head video generation?: A survey and benchmark. *arXiv preprint arXiv:2005.03201*, 2020.
- T7. Yapeng Tian, Chenxiao Guan, Justin Goodman, Marc Moore, and Chenliang Xu. An attempt towards interpretable audio-visual video captioning. *arXiv preprint arXiv:1812.02872*, 2018.
- T6. Yapeng Tian, Chenliang Xu, and Dingzeyu Li. Deep audio prior. *arXiv preprint arXiv:1912.10292*, 2019.
- T5. Burkay Donderici, Caleb New, and Chenliang Xu. Assembling semantically-disentangled representations for predictive-generative models via adaptation from synthetic domain. *arXiv* preprint arXiv:2002.09818, 2020.
- T4. Jing Bi, Tianyou Xiao, Qiuyue Sun, and Chenliang Xu. Navigation by imitation in a pedestrianrich environment. *arXiv preprint arXiv:1811.00506*, 2018.
- T3. Li Ding and Chenliang Xu. Tricornet: A hybrid temporal convolutional and recurrent network for video action segmentation. *arXiv preprint arXiv:1705.07818*, 2017.
- T2. Chenliang Xu, Caiming Xiong, and Jason J. Corso. Action understanding with multiple classes of actors. *arXiv preprint arXiv:1704.08723*, 2017.
- T1. Chenliang Xu. Scale-adaptive video understanding. PhD thesis, University of Michigan, 2016.

FUNDING Current Projects (sorted by the start date)

 F18. PI: Audio-Visual Referential Dialogue
 \$100,000

 SOURCE: Sony Group Corporation
 9/2023-8/2024

 OBJECTIVE: Develop models that interact efficiently across vision, audio, and language modalities, with rich user interaction and spatiotemporal awareness capabilities.

- F17. **PI: Towards Robust and Fair AI Algorithms against Multiple Shortcuts** SOURCE: The New York State Center of Excellence in Data Science 9/2023-8/2024 OBJECTIVE: A seed project to generate preliminary results that can be used for future proposals to design a novel, scalable human-machine collaborative system to assist humans in discovering unknown biases in any image classifiers.
- F16.
 Sub-PI: From Human-Powered to Automated Video Description
 \$493,380

 for Blind and Low Vision Users
 7/2023-6/2028

 SOURCE: National Institutes of Health (NIH)
 0BJECTIVE: Develop an AI-based tool in collaboration with sighted describers and blind and low-vision individuals that more efficiently produces video descriptions and offers on-demand access to visual information in online videos.
- F15. Co-PI: CDS&E: Inferring Lattice Dynamics from Temporal
 \$375,000

 X-ray Diffraction Data
 8/2022-7/2025

 SOURCE: National Science Foundation (NSF) #2202124
 8/2022-7/2025

OBJECTIVE: Develop machine learning methods to detect rare lattice-level mechanisms responsible for phase transformation and plastic deformation under extreme conditions.

- F14. Co-PI: Time-resolved classification of x-ray diffraction data\$574,050using deep-learning-powered computer vision techniques7/2022-6/2025SOURCE: National Nuclear Security Administration (NNSA)0BJECTIVE: Develop automated deep-learning-powered computer vision techniques for classifying crystal structures and phase fractions from synthetic X-ray diffraction data.
- F13. Sub-PI: MILLY–MultI-directional Loosely-Linked ArchetYpe Models
for Perceptually-enabled Task Guidance\$959,641
1/2022-1/2026SOURCE: Defense Advanced Research Projects Agency (DARPA)1/2022-1/2026

OBJECTIVE: Develop AR/VR technologies that allow the AI assistant to perceive the user's intention and environment and provide them with just-in-time feedback through speech and aligned graphics.

F12. PI: Egocentric 3D Audio-Visual Scene Understanding \$399,753 SOURCE: Meta 9/2021-8/2024 OBJECTIVE: Develop AI algorithms that integrate surrounding 3D auditory and visual percepts for scene understanding via audio-visual grounding, separation, and generation with egocentric videos and AR applications as foci.

Completed Projects (sorted by the end date)

F11. PI: III: Small: Collaborative Research: Scalable Deep Bayesian\$199,134Tensor Decomposition10/2019-9/2023

SOURCE: National Science Foundation (NSF)

OBJECTIVE: Develop new tensor decomposition methods to discover various complicated entity relationships and handle the rapid data growth of real applications.

- F10.
 PI: Explore Audio-Visual Model Robustness under Common Corruptions
 \$60,000

 SOURCE: Sony Group Corporation
 10/2022-9/2023

 OBJECTIVE: Study flexibility and robustness of audio-visual multimodal recognition models under common corruptions.
- F9. **PI: Identify Hidden Biases of AI Algorithms via Human-Machine Collaboration \$60,000** SOURCE: The New York State Center of Excellence in Data Science 10/2021-6/2023 OBJECTIVE: Design a novel, scalable human-machine collaborative system to assist humans in discovering unknown biases in any image classifiers.
- F8. Co-PI: Artificial Intelligence for effective communication on
health effects of electronic cigarettes through Instagram\$20,000SOURCE: UR Goergen Institute for Data Science10/2021-10/2022

OBJECTIVE: A seed project to identify potentially effective ways of communicating with the public about the health risks of electronic cigarette use on the most popular social media platform in youth, i.e., Instagram.

- F7. PI: BIGDATA: F: Audio-Visual Scene Understanding SOURCE: National Science Foundation (NSF)
 \$666,000

 OBJECTIVE: Develop algorithms to achieve a human-like audio-visual bimodal scene understanding that overcomes the limitations in single-modality analysis through big data analysis of Internet videos.
- F6. Co-PI: CDS&E: D3SC: Applying Video Segmentation to Coarse-grain
Mapping Operators in Molecular Simulations\$488,605
8/2018-7/2022

SOURCE: National Science Foundation (NSF)

OBJECTIVE: Apply advances in computer vision, e.g., video segmentation and action recognition, to improve models of multiscale systems in chemistry.

F5. Co-PI: Capturing nanoscale lattice variations by applying AI-powered
computer vision techniques on synthetic x-ray diffraction data\$70,226SOURCE: University of Rochester Research Awards7/2021-6/2022

OBJECTIVE: A seed project to generate a planning study and preliminary XRD synthetic data that can be used for future proposals to national programs for deep learning model developments.

F4. PI: RI: Small: Learning Dynamics and Evolution towards Cognitive
Understanding of Videos\$465,990
9/2018-8/2021

SOURCE: National Science Foundation (NSF)

OBJECTIVE: Develop computational models to study higher-order inference in understanding web instructional videos.

- F3. Sub-PI: BOCA BOdy-worn Camera Analysis in Public Safety
 \$74,982

 SOURCE: National Institute of Standards and Technology (NIST),
 7/2019-11/2020

 OBJECTIVE: Investigate contextual information (e.g., detected objects, body parts, and their spatiotemporal relations, detected audio events in the scene) to improve the first-person-view activity recognition performance.
- F2. PI: Anomaly Detection for Videos Applied in Manufacturing Settings
 \$40,259

 SOURCE: The New York State Center of Excellence in Data Science
 10/2019-3/2020

 OBJECTIVE: Develop a state-of-the-art deep learning-based computer vision framework for anomaly detection videos applied in manufacturing processes.
 10/2019-3/2020

F1.Co-PI: Real-Time Synthesis of a Virtual Talking Face from Acoustic Speech\$50,000SOURCE: University of Rochester AR/VR Pilot Program8/2017-7/2018OBJECTIVE: Develop a real-time talking face by analyzing the correlations between auditory
and visual signals to assist hearing-impaired people.8/2017-7/2018

Research Gift Donations (total \$368,000)

		10 (0001
	Adobe, \$7,000	12/2021
* (Corning, \$70,000	11/2021
* .	Adobe, \$10,000	9/2021
* `	Wilmot Professorship, \$10,000	7/2021
* .	InnoPeak Technology, \$30,000	3/2021
* .	Adobe, \$7,000	3/2021
* (Corning, \$30,000	3/2021
* .	Adobe, \$7,500	11/2020
* .	Adobe, \$28,500	Fall 2019
* (Corning, \$30,000	10/2019
* `	Viscovery, \$55,000	9/2018
* '	Tencent AI Lab Rhino-Bird, \$60,000	6/2018
*]	NVIDIA, GPU Donations	8/2017
*]	Markable AI, \$30,000	8/2017

Participated Major Efforts

	* NRT-HDR: Interdisciplinary Graduate Training in the Science, Technology, and Applications of Augmented and Virtual Reality SOURCE: NSF #1922591	\$1,560,000 9/2019-8/2024
	OBJECTIVE: The project will train a new cohort of Ph.D. students with a unique s tencies in the AR/VR domain and human-data-system interfaces.	
	 * HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science SOURCE: NSF #1934962 OBJECTIVE: The University of Rochester and Cornell University jointly establ Data Science Cooperative Institute (GDSC). 	\$550,266 9/2019-8/2022 ish the Greater
	 REU Site: Computational Methods for Understanding Music, Media, and Minds SOURCE: NSF #1659250 OBJECTIVE: Students in the University's REU will engage in interdisciplinar combines machine learning, audio engineering, music theory, and cognitive science 	
Professional Services	Associate Editor * IEEE Transactions on Multimedia (IEEE TMM)	2022—Present
	ORGANIZING COMMITTEE * ICME Tutorial "Multimedia Deepfake Detection" * CVPR Tutorial "Audio-Visual Scene Understanding" * WACV Tutorial "Audio-Visual Scene Understanding" * CVPR Workshop "Brave New Ideas For Motion and Spatio-Temporal Representations	2024 2021 2021 2021 2017
	AREA CHAIR * IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) * ACM Multimedia	2024 2023, 2024
	Senior Program Committee/Meta-Reviewer * AAAI Conference on Artificial Intelligence * International Joint Conference on Artificial Intelligence (IJCAI)	2022 2021
	 PROGRAM COMMITTEE * IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) * European Conference on Computer Vision (ECCV) * IEEE/CVF International Conference on Computer Vision (ICCV) * AAAI Conference on Artificial Intelligence (AAAI) * Neural Information Processing Systems (NeurIPS) * International Conference on Learning Representations (ICLR) * Conference on Empirical Methods in Natural Language Processing (EMNLP) 	2016—2023 2018—2022 2015—2021 2017—2021 2016, 2021 2022 2020

	 * British Machine Vision Conference (BMVC) * Annual Conference of the North American Chapter of the 	2015—2019, 2021
	Association for Computational Linguistics (NAACL-HLT) * Asian Conference on Computer Vision (ACCV) * Annual Conference of the European Association for Computer Graphics * International Conference on Semantic Computing (ICSC)	2019 2016—2018 2019 2017 2017
	 * International Symposium CompIMAGE'16 * XXIIIrd ISPRS Congress * ISPRS Geospatial Week – Image Sequence Analysis * IEEE/ISPRS 3rd Joint Workshop on Multi-Sensor Fusion for 	2016 2016 2015
	 * Indian Conference on Computer Vision, Graphics and Image Processing 	2015 2014
	INTERNATIONAL ADVISORY COMMITTEE * International Conference on Computer Vision & Image Processing (CVIP)	2021
	JOURNAL REVIEWER * IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAN * IEEE Transactions on Image Processing (IEEE TIP) * IEEE Transactions on Multimedia (IEEE TMM) * International Journal of Computer Vision (IJCV) * Computer Vision and Image Understanding (CVIU)	AI) 2016—2021 2015—2021 2013—2021 2016—2017, 2020 2016—2020
	 * IEEE Transcations on Circuits and Systems for Video Technology (IEEE TCSVT) * Pattern Recognition (PR) * Autonomous Robots 	2014—2019 2016—2019 2018
	 Signal Processing: Image Communication Journal of Visual Communication and Image Representation ISPRS Journal of Photogrammetry and Remote Sensing Machine Vision and Applications 	2016—2017 2017 2017 2016
	 * IET Computer Vision * Electronic Letters on Computer Vision and Image Analysis * Image and Vision Computing (IVC) * OSA Biomedical Optics Express * IPSJ Transactions on Computer Vision and Applications 	2014, 2016 2016 2014—2015 2014 2013
	GRANT PANELIST/REVIEWER * National Science Foundation (CISE/IIS, Panelist) * National Science Foundation (Ad-hoc Reviewer) * National Science Foundation (CISE/CNS, Panelist) * National Science Foundation (CISE/IIS, Panelist) * University Research Awards (UR, Reviewer)	2021 2020 2019 2019 2018
University Services	 * UR CS PhD Admissions Committee Chair * UR Data Science PhD Program Planning Committee * UR CS Undergraduate Curriculum Committee * UR CS Lab Committee * UR CS PhD Admissions Committee * UR GIDS Working Group Co-Chair * UR Sproull Fellowship Review Panel * UR GIDS MS Admissions Committee * UR Outstanding Dissertation Award Committee * UR CS Faculty Search Committee * UR CS Website Committee 	2022—Present 2022—Present 2019—Present 2018—2022 2017—2022 2020—2021 2021 2018—2020 2019 2019 2018
Talks	 MILLY: MultI-Directional Loosely-Linked ArchetYpe Models for PTG DARPA PTG PI Meeting DARPA PTG PI Meeting DARPA PTG Kickoff Meeting 	11/2022 5/2022 11/2021
	The Fragile Audio-Visual Integration under Adversarial AttacksCVPR Workshop on Sight and Sound	6/2021
	Cyclic Co-Learning of Sounding Object Visual Grounding and Sound Separation Facebook Reality Labs 	4/2021

 URCS Computer Vision Seminar 	2/2021
Aibee Inc.	1/2021
<i>Audio-Visual Scene Understanding</i>MIT Computer Vision Seminar	10/2020
Learning from Interventions using Hierarchical Policies for Safe Learning NIST PCSR PI Meeting 	7/2020
<i>Learning from Web Instructional Videos</i>UR Warner School LiDA Colloquium Series	2/2020
GAN-EM: GAN Based EM Learning FrameworkInternational Joint Conference on Artificial Intelligence	8/2019
Audio-Visual Scene Understanding	
Corning Inc.Viscovery Inc.	11/2019 5/2019
• UR Laboratory for Laser Energetics	12/2019
 Western New York Image and Signal Processing Workshop 	10/2018
Applications of Multimodal Deep LearningURMC Clinical and Translational Science Institute Analytics Colloquium	4/2018
MRI Tumor Segmentation with Densely Connected 3D CNN SPIE Medical Imaging 	2/2018
From Cross-Modal Generation to Audio-Visual Scene Understanding	
UR Data Science Summer ColloquiumRochester Institute of Technology	6/2018 11/2017
 Towards the What, Who and Where of Video Understanding CVPR Workshop "The DAVIS Challenge on Video Object Segmentation" 	7/2017
Actor-Action Semantic Segmentation with Grouping Process ModelsMidwest Vision Workshop	4/2016
Scale-Adaptive Video Understanding	0 /001 (
University of UtahStevens Institute of Technology	3/2016 3/2016
• University of Rochester	3/2016
Michigan State University	2/2016
Pulling Information from ScalesUMich SPEECS Seminar	1/2016
Action Understanding with Multiple Classes of Actors UMich AI Lab Mini-Symposium 	5/2015
<i>Hierarchical Video Segmentation: Methods, Perception and Application</i>UMich SPEECS Seminar	9/2014
LIBSVX and Video Segmentation Evaluation IEEE CVPR Tutorial on Video Segmentation 	6/2014
Are actor and action semantics retained in video supervoxel segmentation?IEEE International Conference on Semantic Computing	9/2013
CSC 249/449 Machine Vision UR: Spring 2018, Spring 2019, Spring 2020, Fall 2020, Spring 2022	
CSC 298/578 Deep Learning UR: Spring 2017, Fall 2021, Fall 2022	
CSC 577 Advanced Topics in Computer Vision UR: Fall 2016, Fall 2017, Fall 2018, Fall 2019, Spring 2021, Spring 2023	
CSC 413 Intro to Augmented and Virtual Reality (Co-Instructor) UR: Fall 2020, Fall 2021, Fall 2022	
CSC 414 Selected Topics in Augmented and Virtual Reality <i>UR: Spring 2023</i>	
NSF REU Site: Computational Methods for Understanding Music, Media, and Min	ds

Teaching

UR: Summer 2017, Summer 2018 Taught a multi-day deep learning workshop to NSF REU site students.

Pre-College Data Science Program

UR: Summer 2018 Taught a half-day introduction to AI to a group of international high school students visiting UR from China, South Korea, Spain, Haiti, etc.

EECS 598 Foundations of Computer Vision (Grad TA) *UMich: Fall 2015*

Visiting Scholars Hosted	Ali Vosoughi Ph.D. Student of ECE, University of Rochester	Fall 2022—Present
	Daiki Shimada Researcher at Sony R&D Center	Fall 2022—Present
	Robert Jacobs Professor of Brain and Cognitive Science, University of Rochester	Fall 2018
	Baojie Fan Associate Professor, Nanjing University of Posts and Telecommunications	Summer 2018—Spring 2019

STUDENT ADVISING	Ph.D. Advisees	
	D12. Mingqian Feng (UR CS)	2023—Present
	D11. Yunlong Tang (UR CS)	2023—Present
	D10. Zeliang Zhang (UR CS)	2022—Present
	D9. Susan Liang (UR CS)	2022—Present
	D8. Nguyen Manh Nguyen (UR CS)	2022—Present
	D7. Luchuan Song (UR CS)	2022—Present
	D6. Chao Huang (UR CS)	2021—Present
	D5. Jing Bi (UR CS)	MS: 2018—2020; PhD: 2020—Present
	D4. Zhiheng Li (UR CS) DISSERTATION: Discover and Mitigat FIRST APPOINTMENT: Research Scient	UG: Summer 2017; PhD: Graduated 2023 e Biases in Discriminative and Generative Image Models fist at Amazon AWS
	D3. Jing Shi (UR CS) Dissertation: Vision Based Languag First appointment: Research Scient	
	D2. Yapeng Tian (UR CS) DISSERTATION: Audio-Visual Scene L tisensory Perception FIRST APPOINTMENT: Assistant Profe	PhD: Graduated 2022 Inderstanding Towards Unified, Explainable, and Robust Mul- ssor at UT Dallas
	D1. Lele Chen (UR CS) DISSERTATION: High-Fidelity Talking FIRST APPOINTMENT: Staff Research	
	Рн.Д. Сомміттее	
	S32. Nathan Kent (UR CS)	
	S31. Max Wasserman (UR CS)	
	S30. Meng-Huan Wu (UR BCS/CS)	
	S29. Ruoyang Hu (UR BCS/CS)	
	S28. Zhexin Xu (UR BCS/CS)	
	S27. Yiming Gan (UR CS)	Graduated 2023
	S26. Yu Feng (UR CS)	Graduated 2023
	S25. Yu Chen (UR CS)	Graduated 2023
	S24. Songyang Zhang (UR CS)	Graduated 2023
	S23. Haitian Zheng (UR CS)	Graduated 2023
	S22. Wei Zhu (UR CS)	Graduated 2023

S21. Ali K. Shargh (UR ME)	Graduated 2022
0	
S20. Sabyasachi Shivkumar (UR BCS/CS)	Graduated 2022
S19. Weijian Li (UR CS)	Graduated 2022
S18. Wei Xiong (UR CS)	Graduated 2022
S17. Joseph German (UR BCS/CS)	Graduated 2022
S16. Lisa Jin (UR CS)	Graduated 2022
S15. Zhengyuan Yang (UR CS)	Graduated 2021
S14. Shupeng Gui (UR CS)	Graduated 2021
S13. Hanlin Tang (UR CS)	Graduated 2021
S12. Samiha Samrose (UR CS)	Graduated 2021
S11. Taylan Sen (UR CS)	Graduated 2021
S10. Nabil Hossain (UR CS)	Graduated 2020
S9. Haichuan Yang (UR CS)	Graduated 2020
S8. Feng Yang (UR CS)	Graduated 2020
S7. Christopher Bates (UR BCS/CS)	Graduated 2020
S6. Bochen Li (UR ECE)	Graduated 2020
S5. Kushal Kafle (Rochester Institute of Technology)	Graduated 2020
S4. Haofu Liao (UR CS)	Graduated 2019
S3. Jianbo Yuan (UR CS)	Graduated 2019
S2. Yichi Zhang (UR ECE)	Graduated 2019
S1. Sefik Emre Eskimez (UR ECE)	Graduated 2019

MS STUDENTS

- M19. Rongyi Zhu (Fall 2022 Present, URCS)
- M18. Shijian Deng (Fall 2021 Fall 2022, URCS then Ph.D. student at UT Dallas)
- M17. Guangyu Sun (Fall 2020 Summer 2022, URCS then Ph.D. student at UCF)
- M16. Rohan Sharma (Summer Fall 2020, UR GIDS then Ph.D. student at SUNY Buffalo)
- M15. Guo Li (Summer 2019 Spring 2020, URCS then SDE at Amazon)
- M14. Guofeng Cui (Spring 2019 Spring 2020, URCS then Ph.D. student at Rutgers University)
- M13. Ziyi Kou (Fall 2018 Spring 2020, URCS then Ph.D. student at Univ. of Notre Dame)
- M12. Justin Tian (Fall 2018 Spring 2019, URCS)
- M11. Jing Bi (Summer 2018 Summer 2020, UR ECE then Ph.D. student at URCS)
- M10. Wei Zhang (Summer 2018 Spring 2019, URCS then SDE at Amazon)
- M9. Hao Huang (Summer 2018 Spring 2019, URCS then Ph.D. student at NYU)
- M8. Wentian Zhao (Summer 2018 Spring 2019, URCS then ML Engineer at Adobe)
- M7. Shaojie Wang (Summer 2018 Spring 2019, URCS then Ph.D. student at WUSTL)
- M6. Jie Chen (Fall 2017 Fall 2019 then Microsoft Research)
- M5. Li Ding (Summer 2017, UR GIDS then Research Engineer at MIT)
- M4. Sudhanshu Srivastava (Spring Summer 2017, URCS then Ph.D. student at UCSB)
- M3. Lele Chen (Spring 2017 Spring 2018, URCS then Ph.D. student at URCS)
- M2. Mingyang Zhou (Spring 2016, Univ. of Michigan then Ph.D. student at UC Davis)
- M1. Yao Li (Spring 2013, SUNY Buffalo)

UNDERGRADUATES

- U29. Pinxin (Andy) Liu (Spring 2023 Present, URCS)
- U28. Ji-Ze Jang (Summer 2021 Summer 2022, URCS)
- U27. Miranda Rublaitus (Summer 2022, NSF REU, Yale University)
- U26. Kalsey Colotl (Summer 2022, NSF REU, NYU)

- U25. Sizhe Li (Spring 2020 Fall 2022, URCS) Finalist for the CRA Outstanding UG Researcher Awards 2023
- U24. Phuong Vu (Fall 2021, URCS)
- U23. Yiyang Su (Summer 2020 Spring 2021, URCS then Ph.D. student at Michigan State Univ.)
- U22. Logan Peters (Summer 2020, Carleton College)
- U21. Theodore Chapman (Summer 2020, NSF REU, URCS)
- U20. Patrick Phillips (Summer 2020, NSF REU, URCS)
- U19. Bryce Elizabeth Yahn (Summer 2020, NSF REU, UR BCS)
- U18. Tianyou Xiao (Summer 2018 Fall 2019, URCS then MS student at Cornell Tech)
- U17. Wenxuan Bao (Summer Fall 2019, Tsinghua University then Ph.D. student at UIUC)
- U16. Ariel Tello (Summer 2019, Xero Research Fellow, URCS)
- U15. Chenxiao Guan (Summer 2018, Xerox Research Fellow, UR CE then MS student at CMU)
- U14. Qiuyue Sun (Summer 2018, URCS)
- U13. Justin Goodman (Summer 2018, NSF REU, University of Maryland)
- U12. Marc Moore (Summer 2018, NSF REU, Mississippi State University)
- U11. Amos Newswanger (Summer Fall 2017, URCS)
- U10. Max Torop (Summer 2017, URCS then MS student at WUSTL)
- U9. Zhiheng Li (Summer-Fall 2017, Wuhan University then Ph.D. student at URCS)
- U8. Wei Zhao (Summer 2017, USTC)
- U7. Wes Smith (Summer 2017, NSF REU, University of Edinburgh then Ph.D. student at URCS)
- U6. Moses Bug (Summer 2017, NSF REU, Brandeis University)
- U5. Shengqi Suizhu (Fall 2016 Spring 2017, URCS)
- U4. Austin Schaffer (Spring 2014, SUNY Buffalo)
- U3. Libing Wu (Spring 2014, SUNY Buffalo)
- U2. Spencer Whitt (Summer 2013, SUNY Buffalo)
- U1. Tyler Ganter (Summer 2013, SUNY Buffalo)

AVE

Software &

DATA SETS

2018 Audio-Visual Event (AVE) dataset is a large video dataset that consists of 4143 10-second videos with both audio and video tracks for 28 audio-visual events and their temporal boundary annotations. It is the largest dataset for sound event detection. http://www.cs.rochester.edu/~cxu22/d/ave/

YouCook2

YouCook2 is the largest task-oriented, instructional video dataset in the vision community. It contains 2000 long untrimmed videos from 89 cooking recipes; on average, each distinct recipe has 22 videos. The procedure steps for each video are annotated with temporal boundaries and described by imperative English sentences. http://youcook2.eecs.umich.edu/

A2D

A dataset and benchmark for action recognition and segmentation with multiple classes of actors. It considers seven actor classes (adult, baby, dog, etc.) and eight action classes (climb, crawl, eat, etc.). It contains 3782 videos with at least 99 instances per valid actor-action tuple. http://www.cs.rochester.edu/~cxu22/a2d/

Video2Text.net

A website and web-service for automatic conversion of videos to natural language sentences based on the video content. This website showcases our work in the vision+language domain. http://www.video2text.net

YouCook

Dataset of third-person cooking videos categorized into six styles of cooking and selected from open-source web videos of different kitchens and complexity levels. It contains object and action bounding boxes as well as multiple natural language descriptions of each video. http://www.cs.rochester.edu/~cxu22/youcook/

2018

2013

2013

LIBSVX

Supervoxel library: a set of methods for early video processing by computing supervoxel segmen-tations as well as a quantitative benchmark for fair comparisons of those segmentations. http://www.supervoxels.com

- Winner Best Demo Prize at 2nd Greater New York Multimedia and Vision Meeting.
 Winner Best Open Source Code 3rd Prize at IEEE CVPR 2012. 6/2012
 - 6/2012