Learning from Interventions with Hierarchical Policies for Safe Learning

Jing Bi 1, Vikas Dhiman ${ }^{2}$, Tianyou Xiao ${ }^{1}$, Chenliang Xu^{1}

${ }^{1}$ \{jbi5@ur., txiao3@u., chenliang.xu@ \}rochester.edu, ${ }^{2}$ vdhiman@ucsd.edu
university of ROCHESTER

SUMMARY

Motivation:

- Methods for solving compounding error often need to execute imperfect policy in the environment, which is infeasible in real world setting.
- The state~of \sim the \sim art Learning from Intervention fails to account for delay caused by the expert's reaction time and only learns short~term behavior.

Contributions:

PROBLEM FORMULATION

An agent interacting with an environment in discrete time steps which is considered as a Goal~conditioned MDP

Hierarchical Policies

The structure of hierarchical policy with triplet network
Result and Analysis

Figure 1: Top view of the map in CARLA simulator and real~ world environment where experiments were conducted.

igure 2: Comparison of the number of data~samples per iteration needed to train the various algorithms.

Figure 3: Evaluation of the effect of k on our proposed Subgoal+LbB algorithm.

Figure 4: Distances and times without expert's intervention.

AAAI-20, New York

