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OBJECTIVE Actor-Action Understanding Problems Experiments: Single- and Multiple-label Actor-Action Recognition

Without loss of generality, let V = {v4,...,v,} denote a video with " supervoxels Single-Label Multiple-Label
In a video segmentation represented as a graph G = (V,€) .

We use X to denote the set of actor labels and ) to denote the set of action labels.
Consider a set of random variables X for actor and another Yy for action. Then the
general actor-action understanding problem is specified as a posterior maximiza-
tion:

Our paper marks the first effort in the computer vision community to jointly
consider various types of actors undergoing various actions.

Classification Accuracy

Model| Actor Action | <A, A>
Naive Bayes| 70.51 74.40 56.17
JointPS| 72.25 72.65 61.66

Trilayer| 75.47 75.74 64.88

Mean Average Precision

Actor Action | <A, A>
76.85 78.29 60.13
76.81 76.75 63.87

78.42 79.27 66.86

- We seek to formulate the general actor-action understanding problem and
instantiate it at various granularities.

- We demonstrate that inference jointly over actors and actions outperforms
inference independently over them.

Setup.
- Dense trajectory features (Wang et aI IJCV’'13).
- One-vs-all SVM models with RBF-X° kernels.

Nalve Bayes. Train separate classifiers over X and ) , then score them together.

(x*,y") = argmax, ,P(x,y|V)

A2D---The Actor-Action Dataset Single-Label Actor-Action Recognition. | o |
- Here, X and y are simply scalars * and v, respectively, depicting the single actor

R et i L e - e || and action label to be specified for a give video V .
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Joint Product Space. Train a classifier for each actor-action tuple in £ =4 xXJ .

Trilayer. Learn classifiers over the actor space X', the action space ) and the joint
actor-action space Z . During inference, it separately infers the nalve Bayes terms
and the joint product space terms and then takes a linear combination of them to
yield the final score.

It models not only the across-actor-action but also the common characteristics
among the same actor performing different actions as well as the different actors
performing the same action.

Average Per Class Accuracy
Model| Actor Action | <A, A>
Naive Bayes| 43.02 40.08 16.35
JointPS| 40.89 38.50 20.61
Conditional | 43.02 41.19 22.55

Unary Term Only
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- oo T A S e + e i€V i€V je& (i) - Train one-vs-all SVM classifiers on supervoxels Average Per Class Accuracy
Joint Product Space Model considers a new set of random variables z = {z1, ..., 2.} using supervoxel’s grouth-truth label. Model| Actor Action | <A, A>

Naive Bayes| 44.78 42.59 19.28
JointPS| 41.96 40.09 21.73
Conditional| 44.78 41.88 24.19
Bilayer| 44.46 43.62 23.43
Trilayer| 45.70 46.96 26.46

defined again on all supervoxels in a video and take labels from the actor-action - The inference output is a dense labeling of
product space Z2=Xx) . video voxels in space-time, and we evaluate on

P(x,y|V) = =1[PE)]] ] P2, 2) the sparsely labeled frames.
We have collected a new dataset consisting of 3782 videos from YouTube; these W v v es(
Z

videos are hence unconstrained “in-the-wild” videos with varying characteristics. e (2. 2 o1 (25, ] o (1wl [ i)
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notations from MTurk, then we manually one actor andior action. Terms w(y;|z;) and w(z;]y:) are classification scores of conditional classifiers, which elimbing Jumping

filter each video to ensure the labeling qual- are explicitly trained for this trilayer model: separate classifiers for the same action

ity as well as the temporal coherence. I ciaht it ones as well & actors in the background mat are not por- (1 CONAItioned on the actor are able to exploit the characteristics unique to that actor-
forming an action. aCthn tuple
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