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In this supplementary material, we have a demo to provide video results of our STVSR method and also compare it to the
best performing two-stage network: DAIN [1]+EDVR [2] among all compared methods. In addition, we further clarify the
implementation details of our network architecture.

Network Architecture
We further illustrate the feature temporal interpolation network in Figure 1 and the proposed STVSR framework in Figure 2

to help readers better understand the overall structure of our proposed network.
To make our paper be concise and easy to follow, we use a simple version of deformable sampling to introduce the

proposed feature temporal interpolation and deformable ConvLSTM. However, in our implementation, as stated in Section
3.4 of the paper, we adopt a Pyramid, Cascading and Deformable (PCD) structure as in [2] to implement the deformable
sampling, which can exploit multi-scale contexts with a feature pyramid. The official PyTorch implementation of the PCD
can be found in https://github.com/xinntao/EDVR.
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Figure 1: Feature temporal interpolation for intermediate LR frames. It will predict an intermediate LR frame feature map
FL
2t from two neighboring feature maps: FL

2t−1 and FL
2t+1, where t = 1, 2, ..., n. Note that the deformable sampling module

on the left samples features from FL
2t−1 with generated sampling parameters from both FL

2t−1 and FL
2t+1; on the contrary, the

deformable sampling module on the right samples features from FL
2t+1.

∗Equal contribution; †Equal advising.

https://github.com/xinntao/EDVR
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Figure 2: Flowchart of the proposed one-stage STVSR framework. The feature extraction and HR frame reconstruction
networks are temporally shared for all frames, in which different frames are processed independently.
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