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1. Introduction

Video captioning [8] aims to automatically generate a

natural language sentence to describe the dynamic, poten-

tially complex multimodal scene inside of a video. Most of

the previous works [8, 10] focus on exploring better vision-

and-language modelings and put less emphasis on the mul-

timodal aspect of video captioning, where audio often re-

veals important in-scene and out-of-scene information and

contributes to the language generation in its unique ways.

For example, it adds the difficulty to describe the singing

event by watching the audio-mute video in Fig. 1. Although

this is not new to the multimedia community, many works

over there aim to optimize the video captioning metrics with

an uninterpretable fusion strategy. The basic questions as

to what extent different modalities (auditory and visual)

contribute to a particular sentence, and furthermore, to

individual words in a sentence remain underexplored. It

is our belief that unfolding these questions is valuable to

making fundamental progress on video captioning.

At first glance, it is seemingly impossible to answer the

above questions. The first challenge is that there is no an-

notation denoting the individual contributions of the audi-

tory or visual modality made to texts in any of the exist-

ing video captioning datasets—such a process is difficult

to quantify without breakthroughs in Neurophysiology and

Psychophysics. Instead, we study these questions from a

computational perspective, where we mine signals from au-

dio and video and compete their associations to text.

The second challenge lies on the computational frame-

work. Recurrent neural networks (RNNs) are widely used

as decoders for video captioning. Despite the success in

modeling sequential dependencies, RNN decoder-based ar-

chitectures have inherent limitations to perform modality-

interpretable video captioning. When generating a word,

besides using current provided/attended features and previ-

ous words, these models always exploit hidden states of the

RNN decoder. The latter contains memorized information

from different modalities, which makes the models impossi-

ble to disentangle the contributions from individual modal-

ities for predicting the words.

In this paper, we aim to disentangle the interplay of

the two modalities and make the first attempt to inter-

pretable audio-visual video captioning. Concretely, we

propose a novel multimodal convolutional neural network-

Humans:            (1) people singing and dancing.              

(2) a group of people singing and dancing.

Interpretability:  a group of people are singing and dancing.

Controllability:  (a) a man and a woman are singing a song.

(b) a group of people are singing and dancing.

(c) a group of women are dancing.

Figure 1. Audio-visual video captioning with interpretability on

word generation and controllability on sentence prediction. The

automatically detected audio/visual activated words are high-

lighted with red/blue. We see that visual modality is dominated

when generating people and dancing, and audio content is more

informative for predicting singing. The trained single model can

generate different sentences by setting an audio-visual controller

as different values.

based audio-visual video captioning framework without a

RNN decoder to ease the design of interpretable structure,

and introduce a modality-aware feature aggregation module

with defined activation energy to distinguish which modal-

ity is more informative for generating words. In addition,

the interpretability endows our framework ability on audio-

visual controllable sentence generation. In practice, we

introduce an audio-visual controller to manipulate the pa-

rameters in the modality-aware feature aggregation mod-

ule allowing the proposed model generate diverse modality-

aware captions.

2. Overview of Proposed Approach

Given an input visual and audio clip pair {V,A}, our

captioning network aims to generate a natural language sen-

tence S = (s1, s2, . . . , sTs
) containing Ts words. Un-

like previous RNN-based encoder-decoder video captioning

networks, we propose a 2D MMCNN-based audio-visual

video captioning framework illustrated in Fig. 2, which is

capable of learning decoupled audio-text and visual-text

deep feature hierarchies and is more convenient for achiev-

ing modality interpretability. We utilize pre-trained CNN

models to extract visual features v ∈ RTv×Dv and audio

features a ∈ RTa×Da from the input visual clip V and au-

dio clip A. Here, we sample Tv video frames from the given

visual clip V and Ta seconds from the given audio clip A.

Visual feature dimension for each frame is Dv and audio
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Figure 2. The proposed audio-visual interpretable and controllable video captioning framework. During testing, words in the sentence

will be predicted one-by-one. The input video frames only contain content of the video game, but there is man speaking sound in the

audio channel. The word man will be inferred from activated the auditory modality, and the words playing and minecraft are mainly from

visual modality. We make modality selection decision based on values of audio activation energy and visual activation energy. There is an

audio-visual controller α in the modality-aware aggregation module, which balances the importance between audio and visual modalities

during sentence prediction.
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Figure 3. Residual Network with k residual units in the proposed MMCNN and an example for illustrating the masked convolution operation

in residual units. On the right, there is a 3×3 masked convolution kernel colorized by red and black boxes for processing a visual-text joint

embedding. The masked convolution will only use features from red boxes and cannot access information in black boxes. When predicting

the word is, the network will only use source visual information and words sos, a, and man (previous words).

feature dimension for each second audio segment is Da. To

explore temporal structures of audio and visual modalities

individually, we use two separated LSTMs: one takes vi-

sual feature v as input and the other takes audio feature a
as input. They model temporal dependencies independently

for the two modalities and implicitly align them with the

textual sequence. Concerning the interpretability on word

generation, we build two separated MMCNNs: one for each

modality. Taking the aggregated hidden states from the au-

dio LSTM and the sentence S as inputs, our audio-text MM-

CNN will predict a joint deep audio-text embedding F a.

Similarly, we can obtain a joint deep visual-text embedding

F v from the visual-text MMCNN. The modality-aware ag-

gregation module takes these embeddings as inputs along

with an audio-visual controller and generates a feature for

the final sentence generation. The sentence generator pre-

dicts words parallel during training and one-by-one during

inference.

2.1. Multimodal Convolutional Neural Network

Taking the visual-text MMCNN as an example, we intro-

duce the detail. The visual-text MMCNN mainly contains

two parts: visual-text tensor construction and joint deep

visual-text feature extraction.

Tensor Construction: For a target sentence S, we first

extract word embedding et ∈ RDs for each word st in S
and then combine all words into a matrix e ∈ RTs×Ds .

Given the aggregated visual hidden states hv ∈ RTv×Dv

for a video clip V and word embedding e for the sen-

tence, we construct a 3D tensor Iv ∈ RTs×Tv×Dvs , where

Dvs = Dv + Ds and Ivij = [ei h
v
j ]. Note that, for design-

ing an autoregressive language model, the first word in the

sentence will be set to < sos >. This tensor is then input to

the joint deep feature learning module.

Joint Deep Feature Learning: To learn joint deep rep-

resentations for visual and textual modalities, we feed the

tensor Iv into a deep residual 2D CNN network fv . The

joint visual-text embedding F v ∈ RTs×Tv×Dvs can be ob-

tain: F v = fv(I
v). Following the deign of residual blocks

in the ResNet and considering computation efficiency, we

utilize the residual block layout as illustrated in Fig. 3.

Similarly, we can build a audio-text MMCNN to predict

the joint deep embedding F a ∈ RTs×Ta×Das .

2.2. ModalityAware Aggregation

The modality-aware aggregation module will adaptively

select features over different time steps and across different

modalities for captioning generation.

Given F a ∈ RTs×Ta×Das and F v ∈ RTs×Tv×Dvs , we

first use two fully connected layers to align the two tensors

with a same feature dimension Dc, and then construct a new

tensor F c ∈ RTs×Tc×Dc by concatenating the two tensors

along the audio-visual channel, where Tc = Tv + Ta.

Let F c
i ∈ RTc×Dc be the i-th row of F c. We will use

F c
i to generate a feature vector xi ∈ RDc , and then pre-

dict the (i + 1)-th word Si+1. The naive and simple way

to generate xi from F c
i is by max-pooling or mean-pooling.

Since mean-pooling will regard the Tc feature vectors are
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equally important and max-pooling will highly mix infor-

mation from different feature vectors, the two methods are

modality-ambiguous. Motivated by a self-attention mech-

anism in [4], we introduce a modality-aware aggregation

module to compute xi from F c
i :

xi =

Tc
∑

j=1

wjF
c
ij , (1)

where F c
ij ∈ RDc and wj ∈ [0, 1]. We define respec-

tive activation energies for audio and video, and measure

the dominant one that generates a noun or a verb word.

The visual activation energy is defined as: evi =
∑Tv

j=1
w2

j .

Similarly, the audio activation energy can be computed as:

eai =
∑Tc

j=Tv+1
w2

j . When the generated word is a noun

or a verb, if evi > eai , visual content is more important for

generating the word; if evi < eai , the word is more related

to the auditory modality. In this way, our model will have

interpretable ability for modality selection during word gen-

eration. The weights in Eq. 1 can be computed by:

w1, ..., wTc
= softmax(u) , (2)

u = fc3(δ(fc2(fc1(Fi)))) , (3)

where the first Fully-Connected (FC) layer fc1 aggregates

features at each position j of Fi, fc1(Fi) ∈ RTc , the sec-

ond and third FC layers have ⌊Tc/2⌋ and Tc output neurons,

respectively. Here, u ∈ RTc , and δ is the ReLU function.

2.3. AudioVisual Controllable Captioning

The weights {w1, ..., wTc
} indicate the importance of

corresponding features for word generation, and two sets

of weights: {w1, ..., wTv
} and {wTv+1, ..., wTc

} are asso-

ciated with visual and audio features, respectively. We in-

troduce a controller α ∈ [0, 1] to generate two parameters,

αa and αv , to manipulate the audio and visual weights for

audio-visual controllable video captioning:

αv =

{

α
1−α

, if α < 0.5 ,

1, otherwise ,
(4)

αa =

{

1, if α < 0.5 ,
1−α
α

, otherwise .
(5)

With the defined αa and αv , we revisit Eq. 1 to compute the

feature xi for audio-visual controllable word generation:

xi =

Tv
∑

j=1

αvwjF
c
ij +

Tc
∑

j=Tv+1

αawjF
c
ij . (6)

Clearly, the Eq. 1 is a special case of the Eq. 6 (α = 0.5).

Setting the controller to different values during inference,

Humans: (1) girls dance and sing in a gym.

(2) a group of young girls sing and dance.

Our: a group of girls are singing. 

Humans: (1) a man is playing with garrys mod.              

(2) two men demonstrate a video game.

Our: a man is playing a video game. (man is audible)

Figure 4. Audio-visual video captioning results with modality se-

lection visualizations. Here, audio activated words and visual acti-

vated words are highlighted with red and blue texts, respectively.

it will assign different importance to both audio and vi-

sual modalities for audio-visual video captioning to gener-

ate diverse descriptions for a single video. However, when

we directly take a trained model with the modality-aware

aggregation module defined in Eq. 1, it fails to generate

meaningful and logical sentences for certain α values like

α = 1. When α = 1, αa = 0 and αv = 1, but both αv

and αa are equal to 1 for the Eq. 1 during training. There-

fore, the audio-text MMCNN branch may also make con-

tributions to language modeling and we can not ensure that

the visual-text MMCNN learns a individual good language

model, which will lead to inaccurate sentence generation.

To overcome the above issue, we introduce a random

controller α to train the network for keeping training and

testing be more consistent. During training, α will be uni-

formly sampled from [0, 1] for each batch. In this way, the

network can randomly sample different α to penalize audio

or visual modality, which makes the model be able to ex-

plore the associations between words and individual modal-

ities; adaptively learn to be aware of visual-related, audio-

related, or both audio- and visual-related words for sentence

generation and discover corresponding events from audio or

visual modalities. With the competing (αa or αv may be

close to 0), both audio-text and visual-text MMCNNs will

learn good language models.

3. Example Results

In this work, we train and evaluate the proposed audio-

visual video captioning model on the MSR-VTT [10].

MSR-VTT is a large-scale video description dataset, which

has 10,000 video clips over 20 video categories with diverse

video content and descriptions, as well as multimodal audio

and video streams. We use four commonly used automatic

evaluation metrics: BLEU [6], METEOR [2], ROUGE-

L [5], and CIDEr [7] to measure similarity between ground

truth and automatic video description results.

Figure 4 illustrates the audio-visual interpretability on
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Table 1. Performances of the proposed model and other state-of-

the-art methods on MSR-VTT test dataset [10].

Models BLEU-4 METEOR ROUGE-L CIDEr

PickNet [3] 38.9 27.2 59.5 42.1

HRL [9] 41.3 28.7 61.7 48.0

GRU-EVE [1] 38.3 28.4 60.7 48.1

Ours 42.7 28.5 61.5 47.2

modality selection of the proposed MMCNN-based audio-

visual video captioning framework. For the first example,

sound source (man) is not visible, but our network predicts

the word man by activating auditory modality. For the sec-

ond example, the model finds girls from visual informa-

tion and predict the singing based on auditory signal. From

these results, we observe that the auditory signal tends to

be activated when predicting words related to audio events;

and visual information will dominate word generation when

describing visual events. To demonstrate the capability of

the proposed framework on controllable audio-visual video

captioning, some results are illustrated in Fig. 5. We can

find that the proposed framework with a single trained

model by setting different audio-visual controller values can

generate diverse sentences for each video. Fig. 5(I) shows

that the singing audio event dominates the sentence gener-

ation when α <= 0.5; when the audio modality is penal-

ized α >= 0.6, the model infers that this is a scene from

a movie by partially considering the background music and

leveraging whole visual information; when α = 1, only

visual modality is available, the model predicts there is a

soldiers’ talking event. For Fig. 5(II), when α <= 0.2, the

model tries to only describe sound in the video but fails to

generate accurate contents; when α becomes larger, it gen-

erates audio-visual comprehensive descriptions by predict-

ing woman and talking from sound and dish and cooking

from visual domain; when audio modality is further penal-

ized (α >= 0.7), only the visual event is described and

the model is blind on finding who is cooking, because the

woman is not visible in the video.

Table 1 shows the performances of the proposed method

and other SOTA methods on the MSR-VTT test dataset.

We can see that the proposed approach equipped with inter-

pretability and controllability can still achieve comparable

performance with the current SOTA models.
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