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Abstract. In this paper, we introduce a new problem, named audio-
visual video parsing, which aims to parse a video into temporal event
segments and label them as either audible, visible, or both. Such a prob-
lem is essential for a complete understanding of the scene depicted inside a
video. To facilitate exploration, we collect a Look, Listen, and Parse (LLP)
dataset to investigate audio-visual video parsing in a weakly-supervised
manner. This task can be naturally formulated as a Multimodal Multiple
Instance Learning (MMIL) problem. Concretely, we propose a novel hy-
brid attention network to explore unimodal and cross-modal temporal
contexts simultaneously. We develop an attentive MMIL pooling method
to adaptively explore useful audio and visual content from different tempo-
ral extent and modalities. Furthermore, we discover and mitigate modality
bias and noisy label issues with an individual-guided learning mechanism
and label smoothing technique, respectively. Experimental results show
that the challenging audio-visual video parsing can be achieved even
with only video-level weak labels. Our proposed framework can effec-
tively leverage unimodal and cross-modal temporal contexts and alleviate
modality bias and noisy labels problems.

Keywords: Audio-visual video parsing, weakly-supervised, LLP dataset.

1 Introduction

Human perception involves complex analyses of visual, auditory, tactile, gustatory,
olfactory, and other sensory data. Numerous psychological and brain cognitive
studies [3,20,46,51] show that combining different sensory data is crucial for
human perception. However, the vast majority of work [9,26,48,64] in scene
understanding, an essential perception task, focuses on visual-only methods
ignoring other sensory modalities. They are inherently limited. For example,
when the object of interest is outside of the field-of-view (FoV), one would rely
on audio cues for localization. While there is little data on tactile, gustatory, or
olfactory signals, we do have an abundance of multimodal audiovisual data, e.g.,
YouTube videos.

Utilizing and learning from both auditory and visual modalities is an emerg-
ing research topic. Recent years have seen progress in learning representa-
tions [1,2,19,23,37,38], separating visually indicated sounds [8,11,12,13,65,66,10,70],
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Fig. 1: Our audio-visual video parsing model aims to parse a video into different
audio (audible), visual (visible), and audio-visual (audi-visible) events with correct
categories and boundaries. A dog in the video visually appears from 2nd second
to 5th second and make barking sounds from 4th second to 8th second. So, we
have audio event (4s-8s), visual event (2s-5s), and audio-visual event (4s-5s) for
the Dog event category.

spatially localizing visible sound sources [37,45,55], and temporally localizing
audio-visual synchronized segments [27,55,63]. However, past approaches usually
assume audio and visual data are always correlated or even temporally aligned.
In practice, when we analyze the video scene, many videos have audible sounds,
which originate outside of the FoV, leaving no visual correspondences, but still
contribute to the overall understanding, such as out-of-screen running cars and a
narrating person. Such examples are ubiquitous, which leads us to some basic
questions: what video events are audible, visible, and “audi-visible,” where and
when are these events inside of a video, and how can we effectively detect them?

To answer the above questions, we pose and try to tackle a fundamental
problem: audio-visual video parsing that recognizes event categories bind to
sensory modalities, and meanwhile, finds temporal boundaries of when such
an event starts and ends (see Fig. 1). However, learning a fully supervised
audio-visual video parsing model requires densely annotated event modality and
category labels with corresponding event onsets and offsets, which will make
the labeling process extremely expensive and time-consuming. To avoid tedious
labeling, we explore weakly-supervised learning for the task, which only requires
sparse labeling on the presence or absence of video events. The weak labels are
easier to annotate and can be gathered in a large scale from web videos.

We formulate the weakly-supervised audio-visual video parsing as a Multi-
modal Multiple Instance Learning (MMIL) problem and propose a new framework
to solve it. Concretely, we use a new hybrid attention network (HAN) for lever-
aging unimodal and cross-modal temporal contexts simultaneously. We develop
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an attentive MMIL pooling method for adaptively aggregating useful audio
and visual content from different temporal extent and modalities. Furthermore,
we discover modality bias and noisy label issues and alleviate them with an
individual-guided learning mechanism and label smoothing [42], respectively.

To facilitate our investigations, we collect a Look, listen, and Parse (LLP)
dataset that has 11, 849 YouTube video clips from 25 event categories. We label
them with sparse video-level event labels for training. For evaluation, we label
a set of precise labels, including event modalities, event categories, and their
temporal boundaries. Experimental results show that it is tractable to learn audio-
visual video parsing even with video-level weak labels. Our proposed HAN model
can effectively leverage multimodal temporal contexts. Furthermore, modality
bias and noisy label problems can be addressed with the proposed individual
learning strategy and label smoothing, respectively. Besides, we make a discussion
on the potential applications enabled by audio-visual video parsing.

The contributions of our work include: (1) a new audio-visual video parsing
task towards a unified multisensory perception; (2) a novel hybrid attention
network to leverage unimodal and cross-modal temporal contexts simultaneously;
(3) an effective attentive MMIL pooling to aggregate multimodal information
adaptively; (4) a new individual guided learning approach to mitigate the modality
bias in the MMIL problem and label smoothing to alleviate noisy labels; and
(5) a newly collected large-scale video dataset, named LLP, for audio-visual
video parsing. Dataset, code, and pre-trained models are publicly available in
https://github.com/YapengTian/AVVP-ECCV20.

2 Related Work

In this section, we discuss some related work on temporal action localization,
sound event detection, and audio-visual learning.

Temporal Action Localization. Temporal action localization (TAL) methods
usually use sliding windows as action candidates and address TAL as a clas-
sification problem [9,25,29,47,48,67] learning from full supervisions. Recently,
weakly-supervised approaches are proposed to solve the TAL. Wang et al. [60]
present an UntrimmedNet with a classification module and a selection module
to learn the action models and reason about the temporal duration of action
instances, respectively. Hide-and-seek [49] randomly hides certain sequences while
training to force the model to explore more discriminative content. Paul et al. [40]
introduce a co-activity similarity loss to enforce instances in the same class to be
similar in the feature space. Inspired by the class activation map method [68],
Nguyen et al. [36] propose a sparse temporal pooling network (STPN). Liu et
al. [28] incorporate both action completeness modeling and action-context sepa-
ration into a weakly-supervised TAL framework. Unlike actions in TAL, video
events in audio-visual video parsing might contain motionless or even out-of-
screen sound sources and the events can be perceived by either audio or visual
modalities. Even though, we extend two recent weakly-supervised TAL methods:

https://github.com/YapengTian/AVVP-ECCV20
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Fig. 2: Some examples from the LLP dataset.

STPN [36] and CMCS [28] to address visual event parsing and compare them
with our model in Sec. 6.2.
Sound Event Detection. Sound event detection (SED) is a task of recognizing
and locating audio events in acoustic environments. Early supervised approaches
rely on some machine learning models, such as support vector machines [7],
Gaussian mixture models [17] and recurrent neural networks [39]. To bypass
strongly labeled data, weakly-supervised SED methods are developed [6,22,31,62].
These methods only focus on audio events from constrained domains, such as
urban sounds [44] and domestic environments [32] and visual information is
ignored. However, our audio-visual video parsing will exploit both modalities
to parse not only event categories and boundaries but also event perceiving
modalities towards a unified multisensory perception for unconstrained videos.
Audio-Visual Learning. Benefiting from the natural synchronization between
auditory and visual modalities, audio-visual learning has enabled a set of new
problems and applications including representation learning [1,2,19,23,35,37,38],
audio-visual sound separation [8,11,12,13,65,66,10,70], vision-infused audio in-
painting [69], sound source spatial localization [37,45,55], sound-assisted action
recognition [14,21,24], audio-visual video captioning [41,53,54,61], and audio-
visual event localization [27,55,56,63]. Most previous work assumes that tem-
porally synchronized audio and visual content are always matched conveying
the same semantic meanings. However, unconstrained videos can be very noisy:
sound sources might not be visible (e.g., an out-of-screen running car and a
narrating person) and not all visible objects are audible (e.g., a static motorcycle
and people dancing with music). Different from previous methods, we pose and
seek to tackle a fundamental but unexplored problem: audio-visual video parsing
for parsing unconstrained videos into a set of video events associated with event
categories, boundaries, and modalities. Since the existing methods cannot directly
address our problem, we modify the recent weakly-supervised audio-visual event
localization methods: AVE [55] and AVSDN [27] adding additional audio and
visual parsing branches as baselines.

3 LLP: The Look, Listen and Parse Dataset

To the best of our knowledge, there is no existing dataset that is suitable for our
research. Thus, we introduce a Look, Listen, and Parse dataset for audio-visual
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video scene parsing, which contains 11,849 YouTube video clips spanning over 25
categories for a total of 32.9 hours collected from AudioSet [15]. A wide range
of video events (e.g., human speaking, singing, baby crying, dog barking, violin
playing, and car running, and vacuum cleaning etc.) from diverse domains (e.g.,
human activities, animal activities, music performances, vehicle sounds, and
domestic environments) are included in the dataset. Some examples in the LLP
dataset are shown in Fig. 2.

Videos in the LLP have 11,849 video-level event annotations on the presence
or absence of different video events for facilitating weakly-supervised learning.
Each video is 10s long and has at least 1s audio or visual events. There are 7,202
videos that contain events from more than one event categories and per video has
averaged 1.64 different event categories. To evaluate audio-visual scene parsing
performance, we annotate individual audio and visual events with second-wise
temporal boundaries for randomly selected 1,849 videos from the LLP dataset.
Note that the audio-visual event labels can be derived from the audio and visual
event labels. Finally, we have totally 6,626 event annotations, including 4,131
audio events and 2,495 visual events for the 1,849 videos. Merging the individual
audio and visual labels, we obtain 2,488 audio-visual event annotations. To do
validation and testing, we split the subset into a validation set with 649 videos
and a testing set with 1,200 videos. Our weakly-supervised audio-visual video
parsing network will be trained using the 10,000 videos with weak labels and the
trained models are developed and tested on the validation and testing sets with
fully annotated labels, respectively.

4 Audio-Visual Video Parsing with Weak Labels

We define the Audio-Visual Video Parsing as a task to group video segments
and parse a video into different temporal audio, visual, and audio-visual events
associated with semantic labels. Since event boundary in the LLP dataset was
annotated at second-level, video events will be parsed at scene-level not ob-
ject/instance level in our experimental setting. Concretely, given a video sequence
containing both audio and visual tracks, we divide it into T non-overlapping
audio and visual snippet pairs {Vt, At}Tt=1, where each snippet is 1s long and Vt
and At denote visual and audio content in the same video snippet, respectively.
Let y t = {(yat , yvt , yavt )|[yta]c, [y

t
v]c, [y

t
av]c ∈ {0, 1}, c = 1, ..., C} be the event label

set for the video snippet {Vt, At}, where c refers to the c-th event category and
yat , yvt , and yavt denote audio, visual, and audio-visual event labels, respectively.
Here, we have a relation: yavt = yat ∗ yvt , which means that audio-visual events
occur only when there exists both audio and visual events at the same time and
from the same event categories.

In this work, we explore the audio-visual video parsing in a weakly-supervised
manner. We only have video-level labels for training, but will predict precise event
label sets for all video snippets during testing, which makes the weakly-supervised
audio-visual video parsing be a multi-modal multiple instance learning (MMIL)
problem. Let a video sequence with T audio and visual snippet pairs be a bag.
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Fig. 3: The proposed audio-visual video parsing framework. It uses pre-trained
CNNs to extract snippet-level audio and visual features and leverages multimodal
temporal contexts with the proposed hybrid attention network (HAN). For each
snippet, we will predict both audio and visual event labels from the aggregated
features by the HAN. Attentive MMIL pooling is utilized to adaptively predict
video-level event labels for weakly-supervised learning (WSL) and individual
guided learning is devised to mitigate the modality bias issue.

Unlike the previous audio-visual event localization [55] that is formulated as a
MIL problem [30] where an audio-visual snippet pair is regarded as an instance,
each audio snippet and the corresponding visual snippet occurred at the same
time denote two individual instances in our MMIL problem. So, a positive bag
containing video events will have at least one positive video snippet; meanwhile
at least one modality has video events in the positive video snippet. During
training, we can only access bag labels. During inference, we need to know not
only which video snippets have video events but also which sensory modalities
perceive the events. The temporal and multi-modal uncertainty in this MMIL
problem makes it very challenging.

5 Method

First, we present the overall framework that formulates the weakly-supervised
audio-visual video parsing as an MMIL problem in Sec. 5.1. Built upon this
framework, we propose a new multimodal temporal model: hybrid attention
network in Sec. 5.2; attentive MMIL pooling in Sec. 5.3; addressing modality
bias and noisy label issues in Sec. 5.4.

5.1 Audio-Visual Video Parsing Framework

Our framework, as illustrated in Fig. 3, has three main modules: audio and
visual feature extraction, multimodal temporal modeling, and attentive MMIL
pooling. Given a video sequence with T audio and visual snippet pairs {Vt, At}Tt=1,
we first use pre-trained visual and audio models to extract snippet-level visual
features: {f tv}Tt=1 and audio features: {f ta}Tt=1, respectively. Taking extracted
audio and visual features as inputs, we use two hybrid attention networks as the
multimodal temporal modeling module to leverage unimodal and cross-modal
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temporal contexts and obtain updated visual features {f̂ tv}Tt=1 and audio features

{f̂ ta}Tt=1. To predict audio and visual instance-level labels and make use of the
video-level weak labels, we address the MMIL problem with a novel attentive
MMIL pooling module outputting video-level labels.

5.2 Hybrid Attention Network

Natural videos tend to contain continuous and repetitive rather than isolated
audio and visual content. In particular, audio or visual events in a video usually
redundantly recur many times inside the video, both within the same modality
(unimodal temporal recurrence [34,43]), as well as across different modalities
(audio-visual temporal synchronization [23] and asynchrony [59]). The observa-
tion suggests us to jointly model the temporal recurrence, co-occurrence, and
asynchrony in a unified approach. However, existing audio-visual learning meth-
ods [27,55,63] usually ignore the audio-visual temporal asynchrony and explore
unimodal temporal recurrence using temporal models (e.g., LSTM [18] and
Transformer [58]) and audio-visual temporal synchronization using multimodal
fusion (e.g., feature fusion [55] and prediction ensemble [21]) in a isolated way.
To simultaneously capture multimodal temporal contexts, we propose a new
temporal model: Hybrid Attention Network (HAN), which uses a self-attention
network and a cross-attention network to adaptively learn which bimodal and
cross-modal snippets to look for each audio or visual snippet, respectively.

At each time step t, a hybrid attention function g in HAN will be learned
from audio and visual features: {f ta, f tv}Tt=1 to update f ta and f tv, respectively.

The updated audio feature f̂ ta and visual feature f̂ tv can be computed as:

f̂ ta = g(f ta, f a, f v) = f ta + gsa(f ta, f a) + gca(f ta, f v) , (1)

f̂ tv = g(f tv, f a, f v) = f tv + gsa(f tv, f v) + gca(f tv, f a) , (2)

where f a = [f1a ; ...; fTa ] and f v = [f1v ; ...; fTv ]; gsa and gca are self-attention and
cross-modal attention functions, respectively; skip-connections can help preserve
the identity information from the input sequences. The two attention functions
are formulated with the same computation mechanism. With gsa(f

t
a, f a) and

gca(f ta, f v) as examples, they are defined as:

gsa(f ta, f a) =

T∑
t=1

wsat f
t
a = softmax(

f taf
′

a√
d

)f a , (3)

gca(f ta, f v) =

T∑
t=1

wcat f
t
v = softmax(

f taf
′

v√
d

)f v , (4)

where the scaling factor d is equal to the audio/visual feature dimension and
(·)′

denotes the transpose operator. Clearly, the self-attention and cross-modal
attention functions in HAN will assign large weights to snippets, which are similar
to the query snippet containing the same video events within the same modality
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Fig. 4: Attentive MMIL Pooling. For event category c, temporal and audio-visual
attention mechanisms will adaptively select informative event predictions crossing
temporal and modality axes, respectively, for predicting whether there is an event
at the category.

and cross different modalities. The experimental results show that the HAN
modeling unimodal temporal recurrence, multimodal temporal co-occurrence,
and audio-visual temporal asynchrony can well capture unimodal and cross-modal
temporal contexts and improves audio-visual video parsing performance.

5.3 Attentive MMIL Pooling

To achieve audio-visual video parsing, we predict all event labels for audio and
visual snippets from temporal aggregated features: {f̂ ta, f̂ tv}Tt=1. We use a shared
fully-connected layer to project audio and visual features to different event label
space and adopt a sigmoid function to output probability for each event category:

pta = sigmoid(FC(f̂ ta)) , (5)

ptv = sigmoid(FC(f̂ tv)) , (6)

where pta and ptv are predicted audio and visual event probabilities at timestep t,
respectively. Here, the shared FC layer can implicitly enforce audio and visual
features into a similar latent space. The reason to use sigmoid to output an event
probability for each event category rather than softmax to predict a probability
distribution over all categories is that a single snippet may have multiple labels
rather than only a single event as assumed in Tian et al. [55].

Since audio-visual events only occur when sound sources are visible and
their sounds are audible, the audio-visual event probability ptav can be derived
from individual audio and visual predictions: ptav = pta ∗ ptv. If we have direct
supervisions for all audio and visual snippets from different time steps, we can
simply learn the audio-visual video parsing network in a fully-supervised manner.
However, in this MMIL problem, we can only access a video-level weak label ȳ
for all audio and visual snippets: {At, Vt}Tt=1 from a video. To learn our network
with weak labels, as illustrated in Fig. 4, we propose a attentive MMIL pooling
method to predict video-level event probability: p̄ from {pta, ptv}Tt=1. Concretely,
the p̄ is computed by:

p̄ =

T∑
t=1

M∑
m=1

(Wtp �Wav � P )[t,m, :] , (7)
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where � denotes element-wise multiplication; m is a modality index and M =
2 refers to audio and visual modalities; Wtp and Wav are temporal attention

and audio-visual attention tensors predicted from {f̂ ta, f̂ tv}Tt=1, respectively, and
P is the probability tensor built by {pta, ptv}Tt=1 and we have P (t, 0, :) = pta and
P (t, 1, :) = ptv. To compute the two attention tensors, we first compose an input

feature tensor F , where F (t, 0, :) = f̂ ta and F (t, 1, :) = f̂ tv. Then, two different
FC layers are used to transform the F into two tensors: Ftp and Fav, which has
the same size as P . To adpatively select most informative snippets for predicting
probabilities of different event categories, we assign different weights to snippets
at different time steps with a temporal attention mechanism:

Wtp[:,m, c] = softmax(Ftp[:,m, c]) , (8)

where m = 1, 2 and c = 1, . . . , C. Accordingly, we can adaptively select most
informative modalities with the audio-visual attention tensor:

Wav[t, :, c] = softmax(Fav[t, :, c]) , (9)

where t = 1, . . . , T and c = 1, . . . , C. The snippets within a video from different
temporal steps and different modalities may have different video events. The
proposed attentive MMIL pooling can well model this observation with the
tensorized temporal and multimodal attention mechanisms.

With the predicted video-level event probability p̄ and the ground truth label
ȳ , we can optimize the proposed weakly-supervised learning model with a binary
cross-entropy loss function: Lwsl = CE(p̄, ȳ) = −

∑C
c=1 ȳ [c]log(p̄[c]).

5.4 Alleviating Modality Bias and Label Noise

The weakly supervised audio-visual video parsing framework only uses less
detailed annotations without requiring expensive densely labeled audio and
visual events for all snippets. This advantage makes this weakly supervised
learning framework appealing. However, it usually enforces models to only identify
discriminative patterns in the training data, which was observed in previous
weakly-supervised MIL problems [49,50,68]. In our MMIL problem, the issue
becomes even more complicated since there are multiple modalities and different
modalities might not contain equally discriminative information. With weakly-
supervised learning, the model tends to only use information from the most
discriminative modality but ignore another modality, which can probably achieve
good video classification performance but terrible video parsing performance on
the events from ignored modality and audio-visual events. Since a video-level
label contains all event categories from audio and visual content within the
video, to alleviate the modality bias in the MMIL, we propose to use explicit
supervisions to both modalities with a guided loss:

Lg = CE(p̄a, ȳa) + CE(p̄v, ȳv) , (10)

where ȳa = ȳv = ȳ , and p̄a =
∑T
t=1(Wtp � P )[t, 0, :] and p̄v =

∑T
t=1(Wtp �

P )[t, 1, :] are video-level audio and visual event probabilities, respectively.
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However, not all video events are audio-visual events, which means that an
event occurred in one modality might not occur in another modality and then the
corresponding event label will be label noise for one of the two modalities. Thus,
the guided loss: Lg suffers from noisy label issue. For the example shown in Fig. 3,
the video-level label is {Speech, Dog} and the video-level visual event label is only
{Dog}. The {Speech} will be a noisy label for the visual guided loss. To handle
the problem, we use label smoothing [52] to lower the confidence of positive labels
with smoothing ȳ and generate smoothed labels: ȳa and ȳv. They are formulated
as: ȳa = (1 − εa)ȳ + εa

K and ȳv = (1 − εv)ȳ + εv
K , where εa, εv ∈ [0, 1) are two

confidence parameters to balance the event probability distribution and a uniform
distribution: u = 1

K (K > 1). For a noisy label at event category c, when ȳ [c] = 1
and real ȳa[c] = 0, we have ȳ [c] = (1 − εa)ȳ [c] + εa > (1 − εa)ȳ + εa

K = ȳa[c]
and the smoothed label will become more reliable. Label smoothing technique
is commonly adopted in a lot of tasks, such as image classification [52], speech
recognition [5], and machine translation [58] to reduce over-fitting and improve
generalization capability of deep models. Different from the past methods, we
use smoothed labels to mitigate label noise occurred in the individual guided
learning. Our final model is optimized with the two loss terms: L = Lwsl + Lg.

6 Experiments

6.1 Experimental Settings

Implementation Details. For a 10-second-long video, we first sample video
frames at 8fps and each video is divided into non-overlapping snippets of the
same length with 8 frames in 1 second. Given a visual snippet, we extract a
512-D snippet-level feature with fused features extracted from ResNet152 [16]
and 3D ResNet [57]. In our experiments, batch size and number of epochs are
set as 16 and 40, respectively. The initial learning rate is 3e-4 and will drop by
multiplying 0.1 after every 10 epochs. Our models optimized by Adam can be
trained using one NVIDIA 1080Ti GPU.
Baselines. Since there are no existing methods to address the audio-visual
video parsing, we design several baselines based on previous state-of-the-art
weakly-supervised sound detection [22,62], temporal action localization [28,36],
and audio-visual event localization [27,55] methods to validate the proposed
framework. To make [27,55] possible to address audio-visual scene parsing, we
add additional audio and visual branches to predict audio and visual event
probabilities supervised with an additional guided loss as defined in Sec. 5.4.
For fair comparisons, the compared approaches use the same audio and visual
features as our method.
Evaluation Metrics. To comprehensively measure the performance of different
methods, we evaluate them on parsing all types of events (individual audio,
visual, and audio-visual events) under both segment-level and event-level metrics.
To evaluate overall audio-visual scene parsing performance, we also compute
aggregated results, where Type@AV computes averaged audio, visual, and audio-
visual event evaluation results and Event@AV computes the F-score considering all
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Table 1: Audio-visual video parsing accuracy (%) of different methods on the
LLP test dataset. These methods all use the same audio and visual features as
inputs for a fair comparison. The top-1 results in each line are highlighted.

Event type Methods Segment-level Event-level

Audio

Kong et. al 2018 [22] 39.6 29.1
TALNet [62] 50.0 41.7

AVE [55] 47.2 40.4
AVSDN [27] 47.8 34.1

Ours 60.1 51.3

Visual

STPN [36] 46.5 41.5
CMCS [28] 48.1 45.1
AVE [55] 37.1 34.7

AVSDN [27] 52.0 46.3
Ours 52.9 48.9

Audio-Visual
AVE [55] 35.4 31.6

AVSDN [27] 37.1 26.5
Ours 48.9 43.0

Type@AV
AVE [55] 39.9 35.5

AVSDN [27] 45.7 35.6
Ours 54.0 47.7

Event@AV
AVE [55] 41.6 36.5

AVSDN [27] 50.8 37.7
Ours 55.4 48.0

audio and visual events for each sample rather than directly averaging results from
different event types as the Type@AV. We use both segment-level and event-level
F-scores [33] as metrics. The segment-level metric can evaluate snippet-wise event
labeling performance. For computing event-level F-score results, we extract events
with concatenating positive consecutive snippets in the same event categories
and compute the event-level F-score based on mIoU = 0.5 as the threshold.

6.2 Experimental Comparison

To validate the effectiveness of the proposed audio-visual video parsing network,
we compare it with weakly-supervised sound event detection methods: Kong et
al 2018 [22] and TALNet [62] on audio event parsing, weakly-supervised action
localization methods: STPN [36] and CMCS [28] on visual event parsing, and
modified audio-visual event localization methods: AVE [55] and AVSD [27] on
audio, visual, and audio-visual event parsing. The quantitative results are shown
in Tab. 1. We can see that our method outperforms compared approaches on all
audio-visual video parsing subtasks under both the segment-level and event-level
metrics, which demonstrates that our network can predict more accurate snippet-
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Table 2: Ablation study on learning mechanism, attentive MMIL pooling, hybrid
attention network, and handling noisy labels. Segment-level audio-visual video
parsing results are shown. The best results for each ablation study are highlighted.

Loss MMIL Pooling Temporal Net Handle Noisy Label Audio Visual Audio-Visual Type@AV Event@AV

Lwsl Attentive × × 56.9 16.4 17.2 30.2 43.3
Lg Attentive × × 42.3 43.9 34.5 40.3 42.0

Lwsl + Lg Attentive × × 45.1 51.7 35.0 44.0 48.9

Lwsl + Lg Max × × 31.6 43.6 22.5 32.6 39.1
Lwsl + Lg Mean × × 40.2 43.2 35.0 39.5 39.7
Lwsl + Lg Attentive × × 45.1 51.7 35.0 44.0 48.9

Lwsl + Lg Attentive × × 45.1 51.7 35.0 44.0 48.9
Lwsl + Lg Attentive GRU [4] × 52.0 49.4 39.0 46.8 51.0
Lwsl + Lg Attentive Transformer [58] × 53.4 53.8 41.8 49.7 53.3
Lwsl + Lg Attentive HAN × 58.4 52.8 48.4 53.2 54.5

Lwsl Attentive HAN × 39.6 40.5 20.1 33.4 44.9
Lg Attentive HAN × 57.5 52.5 47.4 52.5 53.8

Lwsl + Lg Attentive HAN × 58.4 52.8 48.4 53.2 54.5

Lwsl + Lg Max HAN × 55.7 52.0 48.6 52.1 51.8
Lwsl + Lg Mean HAN × 56.0 51.9 46.3 51.4 52.9
Lwsl + Lg Attentive HAN × 58.4 52.8 48.4 53.2 54.5

Lwsl + Lg Attentive HAN × 58.4 52.8 48.4 53.2 54.5
Lwsl + Lg Attentive HAN Bootstrap [42] 59.0 52.6 47.8 53.1 55.2
Lwsl + Lg Attentive HAN Label Smoothing [52] 60.1 52.9 48.9 54.0 55.4

wise event categories with more precise event onsets and offsets for testing videos.

Individual Guided Learning. From Tab. 2, we observe that the model without
individual guided learning can achieve pretty good performance on audio event
parsing but incredibly bad visual parsing results leading to terrible audio-visual
event parsing; w/ only Lg model can achieve both reasonable audio and visual
event parsing results; our model trained with both Lwsl and Lg outperforms
model train without and with only Lg. The results indicate that the model
trained only Lwsl find discriminative information from mostly sounds and visual
information is not well-explored during training and the individual learning can
effectively handle the modality bias issue. In addition, when the network is trained
with only Lg, it actually models audio and visual event parsing as two individual
MIL problems in which only noisy labels are used. Our MMIL framework can
learn from clean weak labels with Lwsl and handle the modality bias with Lg
achieves the best overall audio-visual video parsing performance. Moreover, we
would like to note that the modality bias issue is from audio and visual data
unbalance in training videos, which are originally from an audio-oriented dataset:
AudioSet. Since the issue occurred after just 1 epoch training, it is not over-fitting.
Attentive MMIL Pooling. To validate the proposed Attentive MMIL Pooling,
we compare it with two commonly used methods: Max pooling and Mean pooling.
Our Attentive MMIL Pooling (see Tab. 2) is superior over the both compared
methods. The Max MMIL pooling only selects the most discriminative snippet
for each training video, thus it cannot make full use of informative audio and
visual content. The Mean pooling does not distinguish the importance of different
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audio and visual snippets and equally aggregates instance scores in a bad way,
which can obtain good audio-visual event parsing but poor individual audio
and visual event parsing since a lot of audio-only and visual-only events are
incorrectly parsed as audio-visual events. Our attentive MMIL pooling allows
assigning different weights to audio and visual snippets within a video bag for
each event category, thus can adaptively discover useful snippets and modalities.
Hybrid Attention Network. We compare our HAN with two popular temporal
networks: GRU and Transformer and a base model without temporal modeling in
Tab. 2. The models with GRU and Transformer are better than the base model
and our HAN outperforms the GRU and Transformer. The results demonstrate
that temporal aggregation with exploiting temporal recurrence is important for
audio-visual video parsing and our HAN with jointly exploring unimodal tempo-
ral recurrence, multimodal temporal co-occurrence, and audio-visual temporal
asynchrony is more effective in leveraging the multimodal temporal contexts.
Another surprising finding of the HAN is that it actually tends to alleviate the
modality bias by enforcing cross-modal modeling.
Noisy Label. Tab. 2 also shows results of our model without handling the noisy
label, with Bootstrap [42] and label smoothing-based method. We can find that
Bootstrap updating labels using event predictions even decreases performance due
to error propagation. Label smoothing-based method with reducing confidence
for potential false positive labels can help to learn a more robust model with
improved audio-visual video parsing results.

7 Limitation

To mitigate the modality bias issue, the guided loss is introduced to enforce that
each modality should also be able to make the correct prediction on its own.
Then, a new problem appears: the guide loss is not theoretically correct because
some of the events only appear in one modality, so the labels are wrong. Finally,
the label smoothing is used to alleviate the label noise. Although the proposed
methods work at each step, they also introduce new problems. It is worth to
design a one-pass approach. One possible solution is to introduce a new learning
strategy to address the modality bias problem rather than using the guided loss.
For example, we could perform modality dropout to enforce the model to explore
both audio and visual information during training.

8 Conclusion and Future Work

In this work, we investigate a fundamental audio-visual research problem: audio-
visual video parsing in a weakly-supervised manner. We introduce baselines and
propose novel algorithms to address the problem. Extensive experiments on the
newly collected LLP dataset support our findings that the audio-visual video
parsing is tractable even learning from cheap weak labels, and the proposed model
is capable of leveraging multimodal temporal contexts, dealing with modality
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(2) Is there a person speaking? A: Yes.
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(a) Asynchronous Separation
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Parsed
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Fig. 5: Potential applications of audio-visual video parsing. (a) Temporally asyn-
chronous visual events detected by audio-visual video parsing highlighted in blue
boxes can provide related visual information to separate Cello sound from the
audio mixture in the red box. (b) Parsed scenes can provide important cues for
audio-visual scene-aware video dense captioning and question answering.

bias, and mitigating label noise. Accurate audio-visual video parsing opens the
door to a wide spectrum of potential applications, as discussed below.
Asynchronous Audio-Visual Sound Separation. Audio-visual sound sep-
aration approaches use sound sources in videos as conditions to separate the
visually indicated individual sounds from sound mixtures [8,11,12,13,65,66]. The
underlying assumption is that sound sources are visible. However, sounding ob-
jects can be occluded or not recorded in videos and the existing methods will fail
to handle these cases. Our audio-visual video parsing model can find temporally
asynchronous cross-modal events, which can help to alleviate the problem. For
the example in Fig. 5 (a), the existing audio-visual separation models will fail to
separate the Cello sound from the audio mixture at the time step t, since the
sound source Cello is not visible in the segment. However, our model can help to
find temporally asynchronous visual events with the same semantic label as the
audio event Cello for separating the sound. In this way, we can improve the ro-
bustness of audio-visual sound separation by leveraging temporally asynchronous
visual content identified by our audio-visual video parsing models.
Audio-Visual Scene-Aware Video Understanding. The current video un-
derstanding community usually focuses on the visual modality and regards
information from sounds as a bonus assuming that audio content should be
associated with the corresponding visual content. However, we want to argue
that auditory and visual modalities are equally important and most natural
videos contain numerous audio, visual, and audio-visual events rather than only
visual and audio-visual events. Our audio-visual scene parsing can achieve a
unified multisensory perception, therefore it has the potential to help us build
an audio-visual scene-aware video understanding system regarding all audio and
visual events in videos(see Figure 5 (b)).
Acknowledgment We thank the anonymous reviewers for the constructive
feedback. This work was supported in part by NSF 1741472, 1813709, and
1909912. The article solely reflects the opinions and conclusions of its authors
but not the funding agents.



Weakly-Supervised Audio-Visual Video Parsing 15

References

1. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: ICCV (2017) 1, 4
2. Aytar, Y., Vondrick, C., Torralba, A.: Soundnet: Learning sound representations

from unlabeled video. In: Advances in Neural Information Processing Systems. pp.
892–900 (2016) 1, 4

3. Bulkin, D.A., Groh, J.M.: Seeing sounds: visual and auditory interactions in the
brain. Current opinion in neurobiology 16(4), 415–419 (2006) 1
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