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Introduction

• Expectation maximization (EM) algorithm is to find the 
maximum likelihood solution for models having latent variables. 
– A typical example is the Gaussian mixture model (GMM), which 

requires a Gaussian assumption. However, natural images are highly 
non-Gaussian.

• Generative adversarial network (GAN) has been proved to be 
powerful in learning data distribution. 
– Previous work has shown that GAN can be modified to perform 

maximum likelihood estimation (MLE). 

• We propose GAN-EM: a GAN based EM learning framework that 
can maximize the likelihood of images and estimate the latent 
variables. 
– It can perform image clustering, semi-supervised classification, 

and dimensionality reduction, etc. 



3

Related Works – Deep EM

• Neural-EM (N-EM) [Greff et al. 2017] trains the parameters of EM using 
a NN, which derives a differentiable clustering model, and is used for 
unsupervised segmentation. It can cluster constituent objects. 
– Neural-EM aims to learn the param. of the mixture models using NNs. 
– In GAN-EM, the goal is to learn the weights of neural networks, i.e., the 

generator, whose output is the generated samples based on the 
currently learned mixture models. 

– Therefore, the NN plays a different role between these two models.

• Generative mixture of networks (GMN) [Banijamali et al. 2017] first 
uses K-means to obtain prior knowledge of the dataset, and then treats 
each network as a cluster. 

• Variational deep embedding (VaDE) [Jiang et al. 2017] combines 
GMM with variational autoencoder (VAE), which keeps the Gaussian 
assumption. In M-step, VaDE maximizes the lower bound on the log-
likelihood given by Jensen inequality. In E-step, a neural network is used 
to model the mapping from data to class assignment.
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Related Works – GAN Clustering

• GANMM [Yu and Zhou 2018]: Similar to GMM, they fit GANs into 
the GMM (GANMM). In GANMM, hard label assignment strategy 
limits the model to K-means, which is an extreme case of EM for 
mixture model. 
– First, we use soft label assignment, rather than the hard assignment 

in GANMM. To the best of our knowledge, our work is the first to 
achieve general EM process using GAN. 

– Second, we use only one GAN, rather than 𝐾 GANs where 𝐾 is the 
number of clusters. Our model is scalable with respect of 𝐾. 

– Experimental results show that our GAN-EM outperforms GANMM by 
a big margin.

• Other GAN-based methods: Categorical generative adversarial 
networks (CatGAN) [Springenberg 2015], InfoGAN [Spurr et al. 
2017], adversarial autoencoder [Makhzani et al. 2015], feature 
matching GAN [Salimans et al. 2016] and pixelGAN autoencoder 
[Makhzani and Frey 2017] 
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Methodology

• M-step: 
– Update parameters by training GAN
– Loss: label assignment from E-step

• E-step:
– Sample from G, train E-net
– Update label assignment (soft)
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• Finally, the E-net is used for 
prediction. 
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Methodology
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Methodology

• In the ideal case, where NN researches global minima, the 
convergence can be guaranteed. 

• The solution of NN optimization is local minima instead of global 
minima, which cannot guarantee the likelihood to increase 
monotonically. 

• However, the experiment results show that the error rate for 
clustering decreases smoothly and converges within 20 epochs in 
most cases . 
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Experiments

• Unsupervised Clustering: we perform unsupervised 
clustering on MNIST and CelebA datasets. 

• Evaluate the error rate: 
– Used in most other clustering methods

Predicted label for the ith sampleGround truth label

Number of all samplesOne-to-one mapping from GT to predicted 
labels of all samples in the cluster
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Experiments

• Unsupervised Clustering: GAN-EM achieves SOTA results 
on MNIST with 10, 20 and 30 clusters and on CelebA. 
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Experiments

• Unsupervised Clustering: we perform unsupervised 
clustering on MNIST and CelebA datasets. Results from G.
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Experiments

• Unsupervised Clustering: we perform unsupervised 
clustering on MNIST and CelebA datasets. Results from G.
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Experiments

• Semi-Supervised Classification: add supervision to the 
training of the E-net
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Experiments

• Semi-Supervised Classification: adding supervision to the 
training of the E-net. Results from G.

SVHN
(1000 labels)
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Experiments
• Dimensionality Reduction: add a new layer to the E-net 

before the output layer
– After convergence of training, we take the output of this newly 

added layer as extracted features.
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Conclusion

• Achieve general EM process using GAN. 
• The new GAN-EM can perform clustering, semi-supervised 

classification, dimensionality reduction, etc. 
• It can also be embedded by many other GAN variants and 

better results are expected. 

• Try it yourself! 
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Thank you! Questions?


