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Abstract

As an important complement to person re-identification,
text-based person search in large-scale database is con-
cerned greatly for person search applications. Given lan-
guage description of a person, existing frameworks search
the images in the dataset that describe the same person, by
computing the affinity score between the description and
each image. In this paper, we first propose an efficient
patch-word matching model, which can accurately capture
the local matching details between image and text. In par-
ticular, it computes the affinity between an image and a
word as the affinity of the best matching patch of the image
toward the word. Compared with the state-of-the-art frame-
work, it achieves competitive performance, but yields low-
complexity structure. In addition, we put forward a signifi-
cant limitation of affinity-based model, it is overly sensitive
to the matching degree of a corresponding image-word pair.
For this limitation, we feed a creative adaptive threshold
mechanism into the model, it automatically learns an adap-
tive threshold for each word, and effectively “compress” the
affinity score between a word and an image when the score
exceeds the word’s threshold. Extensive experiments on the
benchmark dataset demonstrate the effectiveness of the pro-
posed framework, which outperforms other approaches for
text-based person search. To provide a deeper insight into
the proposed model, we visualize the matching details be-
tween spatial patches of images and words of texts on typi-
cal examples, and illustrate how adaptive threshold mecha-
nism compresses the affinity score and benefits the final rank
of different images toward a text description.

1. Introduction

Text-based person search, as a new research topic of per-

son search, has attracted remarkable attention for its strong

applicability and effectiveness. As shown in Figure 1, given

a query text description of a specific person, it aims to re-

trieve images that best match to the description from a large-

Figure 1. Overview of text-based person search.

scale person image database. Comparing to image-based

person search (aka. person re-identification), it does not

need any images of the query person, which are more diffi-

cult to obtain than text descriptions in many cases. Compar-

ing to attribute-based person search, it can describe a person

in a more accurate and comprehensive way than simply us-

ing a fixed number of predefined attributes, and it does not

require the process to label the persons manually, which is

tedious when the attribute list is large.

Li et al. [6] first introduce the topic of text-based per-

son search and propose a Gated Neural Attention mecha-

nism (GNA-RNN) model to solve the task. Given a query

text description, the GNA-RNN model computes the affin-

ity scores between the text and each image in the database,

and recommends the top few images with highest affinity

scores as the search result. To obtain an image-text affinity

score, the model first computes the affinity score between

the image and each word in the text, then implements an at-

tention mechanism to learn the weight of each word, and fi-

nally computes the image-text affinity score as the weighted
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sum of image-word affinity scores. Their model is demon-

strated to remarkably outperform other CNN-RNN models

that have different network architectures or utilize different

supervisions for training.

However, the GNN-RNA has two significant limitations.

First, it is not sensitive to the spatial position of person’s

key attributes, which may lead to false high affinity for non-

corresponding image-word pairs. For example, for a given

word (phrase) “yellow shirt”, an image containing a person

with yellow shorts and a white shirt may have high affinity

score, as GNA-RNN directly constructs the affinity between

the word and the whole image. In this case, their model

attends only to the global existence of attributes “yellow”

and “shirt”, even though they are not in the same region of

the image or referring to the same object.

Second, the GNN-RNA is overly sensitive to the match-

ing degree of a corresponding image-word pair. For ex-

ample, the word “shirt” may gain different affinity scores

with two images in which the persons wear different kinds

of shirts. Because “shirt” is a key word, it has high word

weight, which is learned by the attention mechanism, this

will further enlarge the difference of the two images’ affin-

ity scores toward a text that contains word “shirt”. Assum-

ing that an image doesn’t match one or two key words, it

must not describe the same person as the text. But if it per-

fectly matches other key words of the text, it may still gain

higher affinity score than the true corresponding image that

matches all key words, but not in such perfect fashion.

In this paper, we propose a novel patch-word match-

ing model with adaptive threshold mechanism to addresses

the above limitations. First, for the patch-word matching

model, instead of directly constructing the affinity between

the word and global image feature, we construct the affinity

between the word and local features of spatial patches from

the image, and use the best matching patch-word affinity to

represent the image-word affinity. Note that [5] proposes an

identity-aware two-stage framework that also leverages spa-

tial visual information on this task, but it needs two atten-

tion modules with an extra decoder LSTM sub-network to

compute the image-text affinity score. We demonstrate that

our proposed model can achieve competitive performance

by simply incorporating a word attention module without

the need of a decoder LSTM sub-network. To overcome the

second limitation, we feed a novel adaptive threshold mech-

anism into the model. For each word, it learns a threshold

that can be considered as the boundary to judge whether an

image matches the word. When an image’s affinity score

towards a word exceeds the word’s predicted threshold, we

use effective approaches to reduce the gap between this

affinity score and the threshold. As a result, images that

match a specific word will gain similar affinity score to-

ward this word, which decreases the model’s sensitivity to

the matching degree of corresponding image-word pair.

In summary, we make the following contributions:

• We propose a novel patch-word matching model for text-

based person search. It starts the prediction by capturing

affinity between image’s local patches and text’s words,

and use effective approaches to figure out the image-text

affinity score step by step.

• We devise an significant adaptive threshold mechanism

into the framework. For each word, it predicts a thresh-

old as a trigger to “compress” the affinity score related to

the word. We test different approaches to decide when to

compress and how to compress.

• We perform extensive experiments to demonstrate the ef-

fectiveness of the proposed framework, which outperforms

the state-of-the-art model. We provide deep insight into

patch-word matching details of several instances and illus-

trate how adaptive threshold mechanism makes an effect

on image-text affinity score.

2. Related Work
Different from the application of person re-identification

[14, 19, 3, 15, 13] and attribute-based person search [8, 11,

2], text-based person search retrieves person through nat-

ural language description. Natural language can accurately

depict the person with fewer restrictions than just using pre-

defined attributes, and it is a good complement to person

re-identification when corresponding image is difficult to

get. Li et al. [6] first propose the task of text-based per-

son search, and implement a GNA-RNN model, which is

demonstrated to outperform other CNN-RNN frameworks.

Li et al. [5] improve the performance of search by propos-

ing identity-aware two-stage framework, the stage-1 net-

work screens easy incorrect matchings and also provides

initial training point for training stage-2 network, and stage-

2 network refines matching results by a novel latent co-

attention mechanism.

For jointly textual-visual modeling on different task,

incorporating the spatial information of visual modality

into networks demonstrates its strong capacity to improve

model’s performance. For image captioning, Xu et al. [16]

propose a creative framework that can decide which spa-

tial regions of images to attend for each captioning step.

For visual question answering, Yang et al. [17] present

stacked attention network, it uses two attention layers to

locates the relevant visual clues, and achieves better per-

formance for question answering. For sentiment prediction,

You et al. [18] feed each word as well as its corresponding

image patch into a tree-structure LSTM, which remarkably

improves the sentiment classification result than directly in-

corporating the global image feature.

Besides feeding attention mechanism that learns effec-

tive weights for different words or local image patches,
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learning adaptive thresholds for different words, images or

categories is also demonstrated to be useful to some tasks.

For example, to improve the multi-label learning, Li et al

[7] implement an independent network to learn a specific

threshold for each category. When predicting the object

categories for an image based on multi-label model, it in-

cludes one category if its confidence score is greater than

its corresponding threshold. For image captioning, Lu et

al. [9] learn a sentinel gate each step, from the combination

of spatial image feature as well as the visual sentinel vec-

tor, it trades off how much new information the network is

considering from the image with what it already knows in

the decoder memory for this step. Motivated by their work,

we learn a threshold for each word to determine whether

to compress the corresponding affinity score. This mecha-

nism significantly mitigates the oversensitivity problem for

affinity-based network.

3. The Model
We introduce our text-based person search framework,

where the input is an image-text pair and the output is the

predicted affinity score of the pair. For an image-text pair,

a higher affinity score represents higher probability that the

image and text describe the same person. When we retrieve

images for a text, we compute the affinity scores between

the text and all the images in the candidate pool, and select

images that have the highest affinity score toward the text.

3.1. Patch-word Matching Model

To capture the matching details between local regions in

an image and words in a text description, we create a patch-

word matching model for image-text affinity score comput-

ing. The model receives an input image-text pair and ap-

plies three steps to output an image-text affinity score. First,

it computes the affinity score between each local patch of

the image and each word of the text. Then, for each word, it

computes its affinity score toward the image as the affinity

score between the word and its corresponding best match-

ing patch of the image. Finally, it figures out the image-text

affinity score as the weighted sum of image-word affinity

scores, where we implement an attention mechanism to pre-

dict the weight of each word.

An overview of our model is shown in Figure 2. Specif-

ically, it contains four parts: an image encoder, a text en-

coder, a word attention sub-network and a computing part

to predict the image-text affinity score. For an input image-

text pair (I, T ), we define (W1, ...,Wn) as the word set

of the text. Same as [6], the image encoder is a VGG-

16 model, which is pre-trained on person re-identification

dataset. However, for image I , instead of extracting its

global feature from the last fully-connected layer of the im-

age encoder, we extract the feature of I from the last pooling

layer, which is a 7 × 7 × 512 tensor. In other words, the

image has been down-sampled to a total of 49 patches (7

× 7), and each patch has a 512-dimensional feature vector.

After that, we apply two m-neuron fully-connected layers

to map each 512-dimensional feature into appropriate m-

dimension space. We denote the jth patch’s feature as f j
I ∈

R
m, where j ∈ {1, 2, ..., 49}. Same as [6], we set m to 512.

The text encoder is a combination of word-embedding

layer and LSTM layer. For word Wi of text T , the word

embedding layer first embeds it into a m-dimensional word

embedding feature xi, then LSTM layer outputs its corre-

sponding hidden state hi. Here, hi can be considered as

the augmented feature of word Wi with context of previous

words. Similar to image encoding, we feed hi into two m-

neuron fully-connected layers that map it into appropriate

space, and we denote the output as f i
W ∈ R

m.

For the jth patch and the ith word, our network computes

the inner-product of f j
I and f i

W as the corresponding patch-

word affinity score, denoted as Aji
IW . For word Wi and

image I , we denote the image-word affinity score as Ai
IW

and compute it as the following:

Ai
IW = max

j
Aji

IW , j ∈ {1, 2, ..., 49} . (1)

We use a simple example to illustrate the advantage of con-

sidering image patches and significance of Eq. 1. For a

phrase “a man wears a yellow shirt”, the feature of word

“shirt” extracted by LSTM should keep the information of

both attributes “yellow” and “shirt”, because LSTM has

memory of previous words. Therefore, only when both at-

tributes exist in a single patch of an image, this patch will

gain highest affinity score toward word “shirt”. According

to Eq. 1, our model will compute the affinity score between

this image and word “shirt” as the affinity score between

this patch and the word, since this patch is the best matching

patch toward this word. On the other hand, if attributes “yel-

low” and “shirt” exist in different patches of an image, the

affinity score between this image and word “shirt” should be

lower, since there aren’t any patches gain such high affinity

score toward this word as last situation. Therefore, this de-

sign overcomes the first limitation of GNA-RNN [6], which

directly extracts the image-word affinity using global im-

age feature and thus not sensitive to the spatial position of

person’s key attributes.

To compute the final image-text affinity score, we incor-

porate a word attention sub-network into the model, which

will output the weight of each word. Specifically, we ob-

tain the attention weight of word Wi by feeding the LSTM

hidden state hi into a fully-connected layer with one output

neuron. We add a sigmoid unit at the top to map the output

attention weight to the range of (0, 1). We use giW to denote

the attention weight of word Wi in the text description T .

Parameters of the attention sub-network are updated with

the whole model.
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Figure 2. The structure of the proposed patch-word matching framework. It contains an image encoder (red), a text encoder (green), a word

attention sub-network (orange) and a computing part to predict the image-text affinity score.

In the end, the affinity score AIT for image-text pair (I,

T) is computed as:

AIT = σ(
∑
i

(Ai
IW giW )) , (2)

where σ(·) denotes the sigmoid function mapping the

image-text affinity score to the range of (0, 1).

For training sample creation, we randomly choose the

corresponding image-text pairs of dataset as positive sam-

ples and randomly generate non-corresponding image-text

pairs as negative samples. We set the ratio between positive

and negative samples to 1:3, which achieves the best perfor-

mance. In the end, given the training samples, the training

process minimizes the cross-entropy loss:

L1 = − 1

N

N∑
k=1

(yk log(Ak) + (1− yk) log(1−Ak)) ,

(3)

where Ak denotes the predicted affinity score for the kth

sample, and yk denotes its ground truth label, with 1 rep-

resenting a positive image-text pair and 0 representing an

negative one. The network is trained with the Adam opti-

mizer with a learning rate of 0.0004, and the batch size is

set as 128.

3.2. Adaptive Threshold Mechanism

The final image-text affinity score is calculated as the

weighted sum of image-word affinity score. If a word gains

high weight, the affinity score between this word and the

image will have a huge effect on the final image-text affin-

ity score. Ideally, for two images that do match this word

(e.g. word “shirt” and images with persons wearing differ-

ent kinds of shirts), their affinity scores toward this word

should be same, so that this word will not generate any

bias for the rank relation between them. Unfortunately,

their predicted affinity score toward this word may be dif-

ferent. This difference will be amplified by the high word

weight, and thus makes bias for the final image rank. For

example, if a non-corresponding image “perfectly” matches

some key words of a text description, its affinity scores to-

ward these key words will be extremely high, and this will

falsely make its affinity score toward the text higher than

the affinity scores of corresponding images. Motivated by

this problem, we propose a novel adaptive threshold mech-

anism. For each word, we predict a threshold as the word’s

boundary to judge whether an image matches the word. If

their affinity score is lower than the word’s threshold, it in-

dicates that the image does not match the word, and we do

not process their affinity score. In contrast, if their affinity

score is higher than the threshold, it means that the image

does match the word, and we “compress” the affinity score

to make it close to the threshold. As a result, for images that
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match a word, their affinity scores toward the word will be

close to each other, which mitigates the above problem.

Our proposed adaptive threshold mechanism consists

of two steps: learning the threshold of each word, and

post-processing the image-word affinity score based on the

threshold. Specifically, we first train the patch-word match-

ing model, then for each word Wit of the tth text Tt in the

training set, we generate its threshold label as the following:

litW = f(Ait
I1W , ..., Ait

InW ) , I1, ...In ∈ C , (4)

where C is the set of all training images that describe the

same person as Tt, A
it
ImW is the affinity score between im-

age Im and word Wit predicted by the patch-word match-

ing model. We respectively set f(·) as the max, mean and

min operation and name them as max, mean and min la-

beling approaches. We will compare their performance in

Section 4. Words in validation/test set can be labeled in

the same way as reference. On the other hand, for each

word Wit, we can get its predicted hidden state hit from the

LSTM layer and its predicted attention weight gitW . There-

fore, we can train a model F(·) that minimizes the following

loss function:

L2 =
N∑
t=1

Mt∑
i=1

(gitW (litW − F(hit)))
2 , (5)

where Mt is the total word number of text Tt and N is the

total text number of training set. Here, F(·) is a multilayer

perceptron that aims to predict the threshold of a word from

its corresponding predicted hidden state. For word Wit, we

also use its predicted attention weight gitW as its learning

weight to train the model, we find that feeding it into loss

function leads to better result.

Therefore, for a word Wi of text T in the test set, we can

predict its threshold as F(hi) from its predicted hidden state

hi. After that, for image I and word Wi, we compute their

compressed affinity score Âi
IW as:

Âi
IW =

{
Ai

IW Ai
IW < F(hi)

F(hi) + d(Ai
IW ,F(hi)) Ai

IW ≥ F(hi) .
(6)

The definition of d(·) decides the approach to compress

the affinity score, we propose two common approaches as

follows:

• We implement a hard compression by directly clipping

the affinity score as the word’s threshold if it exceeds the

threshold:

d(Ai
IW ,F(hi)) = 0 . (7)

• We implement a soft compression by using a logarithm

function as following to compress the affinity score:

d(Ai
IW ,F(hi)) =

1

α
(log(1 + α(Ai

IW − F(hi)))) , (8)

where α is a hyper-parameter that is determined by the

validation set, and the compression degree increases as α
increases. It should have α ≥ 1 to promise that the gradi-

ent is always not larger than one, which is the prerequisite

of compression.

Without doubt, for test set, if we can directly use the

ground-truth threshold label of each word to compress its

affinity score, the combination of min labeling and hard

compression should achieve best performance, which max-

imizes the benefits of each corresponding image-text pair

in the test set. However, in real experiments, for a word

in the test set, when we use its predicted threshold to com-

press its affinity score toward test images, due to the error

between predicted and labeled threshold, it is more possible

that the model will falsely compress the image-word affin-

ity score of corresponding image-text pairs or not compress

the image-word affinity score of non-corresponding image-

text pairs. The mean, max labeling and soft compression

approaches reduce the probability and strength to compress

affinity score of non-corresponding pairs, but also reduce

the risk to compress affinity score of corresponding pairs.

The best combination of approaches should stride a bal-

ance between compressing the non-corresponding image-

text pairs and not compressing the corresponding image-

text pairs. We will compare their performance in Section 4.

4. Experiments
We perform extensive experiments to evaluate the pro-

posed models. We will first briefly discuss the datasets and

experiment settings. Next, we compare the proposed model

with state-of-the-art models on text-based person search.

In the end, we provide deeper insight into the patch-word

matching details and adaptive threshold mechanism.

4.1. Dataset and Experiment Settings

We evaluate our model based on CUHK-PEDES, the

benchmark text-based person search dataset propose by [6].

CUHK-PEDES dataset contains 40,206 images of 13,003

person. Each image corresponds to two text descriptions.

Same as [6][5], we randomly split the dataset into three sub-

sets for training, validation, and test without having over-

laps with same person. There are 11,003 persons, 33,987

images and 67,974 sentence descriptions in the training set.

The validation set and test set contain 3,128 and 3,091 im-

ages, respectively, and both of them have 1,000 persons.

The top-k accuracy is adopted to evaluate the perfor-

mance of person search. Specifically, given a test text de-

scription, all images in the test set are ranked according to

their affinity score with the text description. If at least one

of the top-k images describe the same person as the text, we

define it as a successful search. Top-k accuracy represents

the percentage of successful search for a specific k.
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4.2. Quantitative Results

We first compare the proposed model with state-of-

the-art text-based person search frameworks. [6] creates

a GNA-RNN model and demonstrates that it remarkably

outperforms other CNN-LSTM frameworks with different

structures or utilize different supervisions for training, these

frameworks include NeuralTalk [12], CNN-RNN [10], QA-

Word [1], EmbBoW [20] and GMM+HGLMM [4]. [5] pro-

poses an identity-aware two-stage framework, which uti-

lizes a pretrain-refine strategy for training the model. It also

incorporates a decoder LSTM with latent semantic attention

to compute the final affinity score.

Table 1. Text-based person search results of the proposed model

and other compared frameworks.

Top-1 Top-5 Top-10

NeuralTalk [12] 13.66 – 41.72

CNN-RNN [10] 8.07 – 30.76

QAWord [1] 11.62 – 42.42

EmbBoW [20] 8.38 – 30.76

GMM+HGLMM [4] 15.03 – 42.27

GNA-RNN [6] 19.05 – 53.64

Two-stage [5] 25.94 – 60.48

PWM(ours) 25.97 48.56 60.02

PWM+ATH(max+soft) (ours) 27.14 49.45 61.02
“–” represents that result is not provided.

Table 1 shows the comparison between different frame-

works. We first focus on the proposed patch-word match-

ing model (PWM) without adaptive threshold mechanism.

We could see that it remarkably outperforms other frame-

works except the identity-aware two-stage framework. This

framework also incorporates the image spatial information

into the model, but using a more complex structure. It feeds

spatial attention module and latent semantic module into the

framework and uses a decode LSTM sub-network to fig-

ure out the affinity score. Compared with it, our patch-

word matching model achieves competitive performance,

but yields low-complexity structure, it just leverages a word

attention module and doesn’t need decoder LSTM. On the

other hand, it can be seen that when we incorporates adap-

tive threshold mechanism into the patch-word model, the

performance is further improved and outperforms all other

frameworks of text-based person search for different values

of k. We choose the combination of max labeling and soft

compression for the adaptive threshold mechanism.

Table 2 shows the details of the proposed adaptive

threshold mechanism. We compare different approaches

to label the word threshold and compress the affinity score

as described in Section 3.2. For threshold labeling, we re-

spectively label a word’s threshold as the maximum, mean

and minimum value of the affinity scores between this word

and all corresponding images. For affinity score compres-

Table 2. Comparision of adaptive threshold mechanisms with dif-

ferent approaches to label the threshold and compress the affinity.

Top-1 Top-5 Top-10

PWM 25.97 48.56 60.02

PWM+ATH(min+hard) 14.99 37.58 50.68

PWM+ATH(mean+hard) 22.39 46.39 58.06

PWM+ATH(max+hard) 26.10 49.30 60.62

PWM+ATH(min+soft) 25.60 48.53 60.44

PWM+ATH(mean+soft) 27.06 49.11 60.86

PWM+ATH(max+soft) 27.14 49.45 61.02

sion, we respectively implement the hard and soft com-

pression approaches. From Table 2, we could see that for

adaptive threshold mechanism, generally, the max label-

ing achieves better performance than mean and min label-

ing, and the soft compression achieves better performance

than hard compression. The combination of max labeling

and soft compression achieves best performance than other

approaches, it strides a balance between compressing the

non-corresponding image-text pairs and not compressing

the corresponding image-text pairs.

Figure 3. Top-1 accuracy comparison of different threshold label-

ing approaches with manually curated prediction.

To provide a deeper insight into different threshold la-

beling approaches, we design a manually curated task. For

test image-text pairs, instead of using the predicted thresh-

old to compress the affinity score, we manually generate the

threshold of each word by adding random gaussian noise

with specific standard deviation (SD) to the ground-truth

threshold, and we fix the compression approach as hard

compression. We show the top-1 accuracy on different sit-

uations. From Figure 3, we could see that if the SD of

gaussian noise is zero, which means that we directly use the

ground-truth threshold labeled by different approaches, the

top-1 accuracy based on min labeling reaches nearly 87%,

which is the limit of adaptive threshold mechanism. For

mean and max labeling, the top-1 accuracy is about 60%.

However, the accuracy based on min labeling decreases

sharply as SD increases. It indicates that when there exists

errors between predicted threshold and ground-truth, the er-

ror tolerance capability of min labeling is worse than mean
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Figure 4. Affinity score maps on several typical image-word pairs. For each corresponding image-text pair, we select two words (in red)

from the text and show their affinity score maps toward the image.

Figure 5. Visualization of weighted image-word affinity scores on several examples based on model with/without adaptive threshold

mechanism. The weighted image-word affinity score is the product of image-word affinity score and corresponding word weight.
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and max labeling. On the other hand, the top-1 accuracy

of max labeling is better than mean labeling for different

SD settings, which indicates that regardless of the threshold

prediction model’s performance, implementing max label-

ing leads to better performance. Therefore, we select max

labeling approach for adaptive threshold mechanism.

4.3. Qualitative Results

For the following experiments, we provide a deeper in-

sight into how our patch-word matching framework and

adaptive threshold mechanism work. First, we visualize the

matching details between patches and words based on the

patch-word matching model, by showing the affinity score

maps of typical image-word pairs. Specifically, for each

corresponding image-text pair, we select two words from

the text and visualize their affinity scores toward different

patches of the image as Figure 4. From Figure 4, we could

see that the proposed model can accurately capture the cor-

responding word and patch. For the upper left instance, to-

ward word “shirt” and “shorts”, our model respectively as-

signs the patches that correspond to the “shirt” and “shorts”

of a person with highest affinity score. In the same way,

the model can effectively capture the position of “dress”,

“hat”, “jeans” and “bags”. For the bottom right instance,

in addition to nouns, we can see that it can also construct

the relation between image and adjectives, such as word

“pink” and “black”. In fact, the great performance of patch-

word matching makes the proposed computing approach for

image-word affinity quite promising. Besides solving the

attribute position insensitivity problem in Section 1, there

is another reason for us to only select the best matching

patch for image-word affinity computing. That is, for each

word, the corresponding image region size is different, it

will thus make bias if we compute the image-word affin-

ity score as average/global patch-word affinity score as [6].

Further more, some other significant claims are substanti-

ated in this experiments. For example, as an important as-

sumption, we claim that the LSTM layer can keep the infor-

mation of previous words into the current word feature. For

word “bag” in the bottom left instance, its previous word

is “black”. From its affinity score map, we can see that it

has very high affinity score toward the patch corresponds to

“bag”, but also has relatively high affinity score toward the

patches correspond to “black shirt” and “black shoes”, this

demonstrates that attribute “black” is also somewhat kept in

word feature of “bag”.

In the end, we illustrate how adaptive threshold mecha-

nism effectively compress the affinity score in Figure 5. For

each text description, we show the top-6 images (ranked by

score) with highest affinity score toward the text , the im-

age inside a green box indicates a successful search of a

corresponding image. We could see that for the instances

in Figure 5, the model with adaptive threshold mecha-

nism achieves better performance than the model without

it. More importantly, for each instance, we illustrate the

score compression process of two images, which are falsely

ranked by the baseline model but correctly ranked by the

model with adaptive threshold mechanism. Specifically,

for the first instance, a non-corresponding image that de-

scribes “a woman who wears in black and has a multi-

colored bag” gains high affinity score toward the text for

the baseline model, because her “multicolored bag” is too

matched with the word “multicolored bag”, and gets ex-

tremely high affinity (as the green line for words “multicol-

ored” and “bag”). But our adaptive threshold mechanism

computes a threshold for words “multicolored” and “bag”

(as the blue line for words “multicolored” and “bag”) and

compresses the affinity score appropriately (as the red line

for words “multicolored” and “bag”). This image’s affinity

score toward this text is thus decreased remarkably. On the

other hand, for a corresponding image whose affinity score

is not very high on the baseline model, the adaptive thresh-

old mechanism almost doesn’t compress its affinity score

toward any words, and finally its rank is higher than the

non-corresponding image. In a similar way, on the second

instance, the mechanism effectively compresses the affin-

ity score of a non-corresponding image, which is perfectly

matched with words “gray shorts” and “tennis shoes”. It

makes this image’s rank lower than a corresponding image,

whose affinity score is almost not compressed.

5. Conclusions

In this paper, we focus on text-based person search, and

propose a novel patch-word matching model with adaptive

threshold mechanism. In particular, to compute the affinity

score of an image-text pair, the patch-word matching model

first captures the affinity between each local patch of the

image and word of text. After that, it computes the image-

word affinity score as the affinity score between the text and

the best matching patch of the image. Finally, it figures

out the image-text affinity score based on the word attention

mechanism. This framework effectively solves the attribute

position insensitivity problem with low-complexity struc-

ture. For adaptive threshold mechanism, we learn adaptive

thresholds for different words as triggers to compress their

affinity scores. We propose different approaches to control

when to compress and how to compress. This mechanism

solves the matching degree oversensitivity problem. Exten-

sive experiments demonstrate that the proposed model out-

performs the state-of-the-art approaches for text-based per-

son search. In the end, we effectively visualize the patch-

word matching details and illustrate the word-level com-

pressing process on typical examples, which clearly shows

how patch-word matching model works and how adaptive

threshold mechanism improves the rank performance.
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