
CSC 446 Notes: Lecture 10

Typed by Shibo Wang

February 22, 2012

1 Message Passing: Sum-Product (Review)

From last class, we know that

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn)

rm→n(xn) =
∑
−→xm\xn

fm(−→xm)
∏

n′∈N(m)\{n}

qn′→m(xn′)

qn→m(xn) means the information propagated from variable node n to factor node fm; rm→n(xn)
is the information propagated from factor node fm to variable node n. And our goal is to compute
the marginal probability for each variable xn:

P (xn) =
1
Z

∏
m∈M(n)

rm→n(xn).

The joint distribution of two variables can be expressed as

P (xi, xj) =
1
Z

(
∏

m∈M(i)

rm→i(xi))(
∏

m∈M(j)

rm→j(xj))

In the original problem, the marginal probability of variable xn is obtained by summing the
joint distribution over all the variables except xn:

P (xn) =
1
Z

∑
x1

...
∑
xn−1

∑
xn+1

...
∑
xN

∏
m

fm(−→xm).

And by pushing summations inside the products, we obtain the efficient algorithm above.

1

Figure 1: An example of max-product

2 Max-Sum

In practice, sometimes we wish to find the set of variables that maximizes the joint distribution
P (x,N) = 1

Z

∏
m fm(−→xm). Removing the constant factor, it can be expressed as

max
x1,...,xN

∏
m

fm(−→xm)

= max
x1

... max
xN

∏
m

fm(−→xm)

Figure 1 shows an example, in which the shadowed variables xj , xk, and xl block the outside
information flow. So to compute P (xi|xj , xk, xl), we can forget everything outside them, and just
find assignments for inside variables:

max
inside var

∏
m

fm(−→xm).

Like the sum-product algorithm, we can also make use of the distributive law for multiplication
and push maxs inside the products to obtain an efficient algorithm. We can put max whenever
we see

∑
in the sum-product algorithm to get the max-sum algorithm, which now actually is

max-product (Viterbi) algorithm. For example,

rm→n(xn) = max−→xm\xn

fm(−→xm)
∏

n′∈N(m)\{n}

qn′→m(xn′)

Since products of many small probabilities may lead to numerical underflow, we take the loga-
rithm of the joint distribution, replacing the products in the max-product algorithm with sums, so
we obtain the max-sum algorithm.

max
∏

fm −→ max log
∏

fm −→ max
∑

log fm

2

Figure 2: An example of tree decomposition

3 Tree Decomposition

If we consider a decision problem instead of a numerical version, the original max-product algorithm
will be:

findx1, ..., xN s.t.
∧
m

fm(−→xm).

We need to find some assignments to make it 1, which can be seen as a reduction from the
3-SAT problem (constraint satisfaction). So the problem is NP-complete in general.

To solve the problem, we force the graph to look like a tree, which is tree decomposition. Figure
2 shows an example.

Given a Factor Graph, we first need to make a new graph (Dependency Graph) by replacing
each factor with a clique, shown in Figure 3. Then we apply the tree decomposition.

Tree decomposition can be explained as: given graph G = (V,E), we want to find ({Xi}, T),
Xi ⊆ V , T = tree over{Xi}. It should satisfy 3 conditions:

1.
⋃

i Xi = V , which means the new graph should cover all the vertex;
2. For (u, v) ∈ E, ∃Xi such that u, v ∈ Xi;
3. If j is on the path from i to k in T , then (Xi ∩Xk) ⊆ Xj (running intersection property).
Using this method, we can get the new graph in Figure 3 with X1 = {A, B}, X2 = {B, C,D}, and

X3 = {D,E}. The complexity of original problem is O((N +M)(k+l)2l−1), with l = maxm |N(m)|.
By tree decomposition, we can obtain l = maxi |Xi|. Figure 4 shows the procedure to do tree
decomposition on a directed graphical model.

3

Figure 3: Dependency graph for tree decomposition (vertex for each variables)

Figure 4: The procedure of tree decomposition on a directed graphical model (we can directly get
Dependency Graph by moralization)

4

Figure 5: An example of Vertex Elimination on a single cycle

A new concept is the treewidth of a graph:

treewidth(G) = min
({Xi},T)

max
i
|Xi| − 1

For example, treewidth(tree) = 1, treewidth(cycle) = 2, and the worst case, treewidth(Kn) =
n− 1 (Kn is a complete graph with n vertices). If the treewidth of the original graph is high, the
tree decomposition becomes impractical.

Actually, finding the best tree decomposition is NP-complete. One practical way is Vertex
Elimination:

1. choose vertex v (heuristicly, choose v with fewest neighbors);
2. create Xi for v and its neighbors;
3. remove v;
4. connect v’s neighbors;
5. repeat the first four steps until no new vertex.
Vertex Elimination cannot ensure to find the optimum solution. Figure 5 shows an example of

this method on a single cycle.
Another way to do tree decomposition is Triangulation:
1. find cycle without chord (shortcut);
2. add chord;
3. repeat the first two steps until triangulated (no cycles without chords).
The cliques in the new graph are Xi in the tree decomposition.

5

