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1 Maximum Entropy (Logistic Regression or Log-Linear)

P (y|x) =
1
Zx

e
P

i λifi(x,y)

Zx =
∑
y

e
P

i λifi(x,y)

e.g., In NLP, we may use

f100(x, y) =

{
1 if x=word that ends with ‘tion’ and y=Noun ,
0 if otherwise .

The above is more general binary classification where we are only deciding whether an example
belongs to a class or NOT. Here, we can have features contributing to multiple classes according to
their weights. For binary classification, the decision boundary is linear, as with perceptron or SVM.
A major difference from SVMs is that, during training, every example contributes to the objective
function, whereas in SVMs only the examples close to the decision boundary matter.

If we plot this function, we get a sigmoid-like graph. We can draw analogy between maximum
entropy and neural network, and consider features as the input nodes in the neural network.

If we take the log of equation (1), we get a linear equation

logP =
∑
i

λifi + c

What should λ be?

max
i

log

(
N∏
n=1

P (yn|xn)

) 1
N

= max
∑
n

1
N

log
(

1
Zx

e
P

i λifi

)

=
1
N

∑
n

(∑
i

λifi − logZx

)
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In the above equation, maximizing λi is easy, but maximizing Zx is not. To maximize for λi, we
turn it into a concave form and find the point where the derivative w.r.t. λ is zero (hill climbing)

L =
1
N

∑
n

∑
i

λifi − log
∑
y

e
P

i λifi(xn,y) (1)

∂L

∂λj
=

1
N

∑
n

fj −
1
Zx

∂

∂λj
(
∑
y

e
P

i λifi) (2)

=
1
N

∑
n

[
fj −

1
Zx

∑
y

fje
P

i λifi(y,xn)

]
(3)

=
1
N

∑
n

fj −
∑
y

fjP (y|xn) (4)

=
1
N

∑
n

fj(xn, yn)−
∑
y

fjP (y|xn) (5)

We can morph (6) into expectation form by defining joint probability as follows:

P (y, x) = P (y|x)P (x) (6)

P (x) =
1
N

∑
n

I(xn = x) (7)

P (y|x) =
c(xn = x, yn = y)

c(xn = x)
(8)

Rewriting equation(6) in expectation form, we get:

∂L

∂λj
= EP [fj ]− EP [fj ] (9)

where the first term (before the minus) is a constant, and the complexity of calculating the second
term depends on the number of classes in the problem. Now we have:

λ← λ+ η
∂L

∂λ
(10)

We will justify why we chose log linear form instead of something else. Assume we want to find
the maximum entropy subject to constraints on the feature expectations:

max
P (y|x)

H(y|x) (11)

min
P (y|x)

−H(y|x) (12)

s.t. EP [fi]− EP [fi] ∀i (13)∑
y

P (y|x) = 1 ∀x (14)
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To put this into words, we want to build a model such that for each feature, our model should
match the training data. We have

H(y|x) =
∑
x,y

P (x)P (y|x) log
1

P (y|x)
(15)

Find the maximum entropy of the above equation as follows

L(P, λ, µ) =f0 +
∑
j

λjfi (16)

=
∑
x,y

P (x)P (y|x) logP (y|x) (17)

+
∑
i

λi

(∑
x,y

P (x)P (y|x)fi − P (x)P (y|x)fi

)
(18)

+
∑
x

µx

(∑
y

P (y|x)− 1

)
(19)

∂L

∂P (y|x)
= P (x) (logP (y|x) + 1) +

∑
i

λiP (x)fi + µx = 0 (20)

logP (y|x) = −1 +
∑
i

λifi −
µx

P (x)
(21)

P (y|x) = e
−1−

µx

P (x) e
P

i λifi (22)

=
1
Zx

e
P

i λifi (23)

The above result shows that maximum entropy has log-linear form. If we solve the dual of the
problem
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max
λ,µ

g(λ, µ) = EP

[∑
i

λifi − logZx

]
+ EP

[∑
i

λifi

]
− EP

[∑
i

λifi

]
(24)

= EP [− logZx] + EP

[∑
i

λifi

]
(25)

= EP [− logZx] + EP

[∑
i

λifi

]
(26)

= EP

[∑
i

λifi − logZx

]
(27)

= EP logP (y|x) (28)

=
1
N

∑
n

logP (yn|xn) (29)

The result from above is the problem we started with. This justifies why we use
1
Zx

e
P

i λifi

form for maximum entropy.
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