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1 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov Chain (a series of states with probabilities of transitioning
from one state to another) where the states are hidden (latent) and each state has an emission as a random
variable. The model is described as follows:

e () : the set of states, with y; € €2 denoting a particular state
e 3 : the set of possible emissions with x; € ¥ denoting a particular emission

e Pc R%Xl]g : the matrix with each element giving the probability of a transition

L ONS R%Xl]z : the matrix with each element giving the probability of an emission
e II : the matrix with each element giving the probability of starting in each state

The probability distribution of an HMM can be decomposed as follows:

n—1 n
P(LU], eIy Y1y e, yn) = H(?Jl) H P(yi7yi+l) HQ(yhxz)
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An example HMM is given:
Q={1,2}
Y ={a,b,c}
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One possible sequence of observations would be:
122112112
PLELLLLLL
abcaaaaabd
We can consider multiple problems relating to HMMs.
1. Decoding I: Given z1, . .., x,, P, @, 11, determine the sequence y; . ..y, that maximizes P(Yy,...Y,|X1,... X,).

2. Decoding II: Given xq,...,x, and ¢, determine the distribution of yx, that is, for all values a of y;,
Py = a|X1,..., X,).

3. Evaluation: Given z1,...x,, determine P(X1,...X,).



4. Learning: Given a sequence of observations, xgl), . x;“, e xgk), e :c;’“), learn P, @, II that maximize
the likelihood of the observed data.
We define two functions, « and .
al(a) == P(Xy =&1,...,X; =&, Y; = a)
BHa) == P(Xt1 = Toy1,- -, X = &, ¥y = a)
which are also recursively defined as follows:

' a Z o VQ(a, Eyq1)

ceN
B a) =) Qe )P(a,c)
ce
We return to the Decoding II problem. Given z1,...,z, and ¢, determine the distribution of Y, that is,
for all values a of Yy, P(Y; = a|X1,...,X,,). To do this, we rewrite the equation as follows:
P(X17"')X7’L7)/t = a)
Py =a|lXy,...,X,) =
(yt a| 1, ) ) P(Xl,,Xn)
However, we need to calculate P(X1,...,X,). We can do this using either « or §.
P(X1,...,Xn) =) a"(a)
a€es)
= B (@)(a)Q(a, 1)
a€eN
The Decoding I problem can be solved with Dynamic Programming. (Given x1,...,z,, P,Q,II, determine

the sequence ¥ ...y, that maximizes P(Y7,...Y,|X1,...X,).) We can fill in a table with the following
values:

T[t,a] = " r;la;{i P(yy, .- ye| X1, .- Xy)
Y Yr=a

which means that each value is the probability of the most likely sequence at time ¢ with the last emission
being a. This can be computed using earlier values with the following formula:

Tit+1,a] = magZ(T[t, cP(c,a)Q(a, T141)
ce
To compute the most likely sequence, we simply solve

max T'[n, a
acf)

The learning problem can be solved using EM. Given the number of internal states, and z1, . ..x,, we want
to figure out P, @), and II. In the E step, we want to compute an expectation over hidden variables:

P(X, Y1)
Zq le)log = 777

For HMM’s, the number of possible hidden state sequences is exponential, so we use dynamic programming
to compute expected counts of individual transitions and emissions:
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The new P is defined as: )
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