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1 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov Chain (a series of states with probabilities of transitioning
from one state to another) where the states are hidden (latent) and each state has an emission as a random
variable. The model is described as follows:

• Ω : the set of states, with yi ∈ Ω denoting a particular state

• Σ : the set of possible emissions with xi ∈ Σ denoting a particular emission

• P ∈ RΩ×Ω
[0,1] : the matrix with each element giving the probability of a transition

• Q ∈ RΩ×Σ
[0,1] : the matrix with each element giving the probability of an emission

• Π : the matrix with each element giving the probability of starting in each state

The probability distribution of an HMM can be decomposed as follows:

P (x1, . . . xn, y1, . . . , yn) = Π(y1)
n−1∏
i=1

P (yi, yi+1)
n∏

i=1

Q(yi, xi)

An example HMM is given:
Ω = {1, 2}

Σ = {a, b, c}

P =

(
1
3

2
3

1
2

1
2

)

Q =

(
1 0 0
1
3

1
2

1
6

)
One possible sequence of observations would be:

1 2 2 1 1 2 1 1 2

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a b c a a a a a b

We can consider multiple problems relating to HMMs.

1. Decoding I: Given x1, . . . , xn, P,Q,Π, determine the sequence y1 . . . yn that maximizes P (Y1, . . . Yn|X1, . . . Xn).

2. Decoding II: Given x1, . . . , xn and t, determine the distribution of yK , that is, for all values a of yt,
P (yt = a|X1, . . . , Xn).

3. Evaluation: Given x1, . . . xn, determine P (X1, . . . Xn).
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4. Learning: Given a sequence of observations, x(1)
1 , . . . x

(1)
n , . . . x

(k)
1 , . . . x

(k)
n , learn P,Q,Π that maximize

the likelihood of the observed data.

We define two functions, α and β.

αt(a) := P (X1 = x̂1, . . . , Xt = x̂t, Yt = a)

βt(a) := P (Xt+1 = x̂t+1, . . . , Xn = x̂n, Yt = a)

which are also recursively defined as follows:

αt+1(a) =
∑
c∈Ω

αt(c)P (c, a)Q(a, x̂t+1)

βt−1(a) =
∑
c∈Ω

Q(c, x̂t)βt(c)P (a, c)

We return to the Decoding II problem. Given x1, . . . , xn and t, determine the distribution of YK , that is,
for all values a of Yt, P (Yt = a|X1, . . . , Xn). To do this, we rewrite the equation as follows:

P (yt = a|X1, . . . , Xn) =
P (X1, . . . , Xn, Yt = a)

P (X1, . . . , Xn)
.

However, we need to calculate P (X1, . . . , Xn). We can do this using either α or β.

P (X1, . . . , Xn) =
∑
a∈Ω

αn(a)

=
∑
a∈Ω

β1(a)Π(a)Q(a, x̂1)

The Decoding I problem can be solved with Dynamic Programming. (Given x1, . . . , xn, P,Q,Π, determine
the sequence y1 . . . yn that maximizes P (Y1, . . . Yn|X1, . . . Xn).) We can fill in a table with the following
values:

T [t, a] = max
y1...yt,yt=a

P (y1, . . . yt|X1, . . . Xt)

which means that each value is the probability of the most likely sequence at time t with the last emission
being a. This can be computed using earlier values with the following formula:

T [t+ 1, a] = max
c∈Ω

T [t, c]P (c, a)Q(a, x̂t+1)

To compute the most likely sequence, we simply solve

max
a∈Ω

T [n, a]

The learning problem can be solved using EM. Given the number of internal states, and x1, . . . xn, we want
to figure out P , Q, and Π. In the E step, we want to compute an expectation over hidden variables:

L(θ, q) =
∑

y

q(y|x) log
P (X,Y |θ)
q(Y |X)

For HMM’s, the number of possible hidden state sequences is exponential, so we use dynamic programming
to compute expected counts of individual transitions and emissions:

P (a, b) ∝
n−1∑
i=1

q(Yi = a, Yi−1 = b|X1 . . . Xn) (1)

Q(a, b) ∝
n∑

i=1

q(Yi = a|X1 . . . Xn)I(X = w) (2)

The new P is defined as:

P new(a, b) ∝
n−1∑
i=1

αi(a)P old(a, b)βi+1Qold(b, x̂i+1)
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