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1 Introduction

Game theory is not like the reinforcement learning which we have just talked about. In the game theory,
the condition that one is playing against someone else is considered. Furthermore, game theory is not about
learning, it does not learn from data or previous instances, but tries to figure out what to do given a specific
game rule.

A game could be described using a game matrix. The two players are called row player and column player.
The value of each element in the matrix denotes the reward for the player. Such a matrix model could be
applied to many situations, e.g., board games, bets. A good example would be the rock-paper-scissors game,
which has a matrix M like

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

Note that here, the game has the same set of choices for both players, which is not necessary in general.
Moreover, the above matrix satisfies that

M = −MT ,

which makes the game symmetric. Also, we could find that this is a zero-sum game, where one player gets
his/her reward from the other, with the total amount never changed.

2 Definition of the Problem

Define p as the row player’s strategy, and q to be that of the column player. p and q are both probability
distributions. Then, the expected reward with respect to the strategies is

E(p, q) =
∑

i

pi

∑
j

qjmij .

If we consider the problem from the perspective of the row player (which will be the same if we choose
the column player), our goal is to maximize the reward E of the row player, i.e., to find a strategy p that
maximizes the row value vr and

vr = max
p

min
q
E(p, q),

where the minimization means that our rival (the column player) does whatever that is worst for us, and
the maximization chooses the strategy that is best for us given the strategy of the column player. Similarly,
the column value vc is

vc = min
q

max
p

E(p, q),

which reflects the fact that the row player does whatever that could maximize his/her reward, and that the
column player chooses a best strategy to minimize it.
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3 Some Simplification

Before solving the optimization problem, we should first do some simplification by showing that, when
assuming the column player’s strategy, we do not have to consider all the variations of q.

If we choose one possibility of q with probability of 1, i.e., the column player only does one action, say,
action j, from the available action set, we have

min
q
E(p, q) ≤ min

j
E(p, j), (1)

where E(p, j) =
∑

i pimij from its definition.
Now, let us consider the strategy of the column player using the structure of vc, i.e., the column player

assumes a p at first, and then choose an action l = argminj E(p, j) to make a worst result for the row player.
This leads to

∀p, q, E(p, q) =
∑

j

qjE(p, j) ≥
∑

j

qjE(p, l) = E(p, l),

which could be rewritten as

min
q
E(p, q) ≥ min

j
E(p, j). (2)

Combining Equation 1 and Equation 2, we have

min
q
E(p, q) = min

j
E(p, j),

which means that instead of considering all possibilities of q, we could consider only one move at a time. In
the context of the Rock-Paper-Scissors game, this is to say that q = (1, 0, 0) or (0, 1, 0) or (0, 0, 1).

Using this equality, the row value vr that we want to maximize is simplified as

max
p

min
q
E(p, q)⇒ max

p
min

j
E(p, j) = max

p
min

j

∑
i

pimij .

Similarly, vc could be simplified as

min
q

max
i

∑
j

qjmij .

4 Nash Equilibrium

The objective functions vr and vc that have been simplified as above still contain two min/max operations,
which makes them too complicated to solve. In order to get rid of one of the min/max, we could introduce
a variable v and adding a new constraint for compensation. If we do the same for the case of vc, we could
come up with

max
p,v

v min
q,v

v

s.t.
∑

i

pimij ≥ v ∀j s.t.
∑

j

qjmij ≤ v ∀i

∑
i

pi = 1
∑

j

qj = 1

pi ≥ 0 ∀i qj ≥ 0 ∀j

where the left one is for vr and right one vc. For the left one, we could simplify a little bit more by firstly
adding onto the game matrix a constant such that all of its entries are positive, and define

yi = pi/v, ∀i,

2



then the model is updated as the left one below

min
y

∑
i

yi max
x

∑
j

xj

s.t.
∑

i

yimij ≥ 1 ∀j s.t.
∑

j

xjmij ≤ 1 ∀i

yi ≥ 0 ∀i xj ≥ 0 ∀j
The model on the right is obtained by introducing ∀j, xj = qj/v for the vc model. What we just came

up with are actually special cases of the following general models

min
y

bTy max
x

cTx

s.t. ATy ≥ c s.t. Ax ≤ b
y ≥ 0 x ≥ 0

which are a pair of duals in the linear programming (LP) theory, and thus have the same optimization result.
The set of strategy (p, q) under such condition is called Nash Equilibrium, which could be mathematically
described as

(p, q)
s.t. E(p, q) = max

p′
E(p′, q)

E(p, q) = max
q′

E(p, q′)

When the Nash Equilibrium has been reached, both players know the strategy of each other, and they
all get the best reward using their current strategies against those of the rivals. Hence neither of them need
to change the current strategy.

5 Proof of the LP Duality

The LP duality that we used to reach the Nash Equilibrium is proved as follows. We will start from the
previous linear programming model on the left and will get the other one using the primal-dual method.

Firstly, the Lagrangian of the model is calculated as

L(y,λ,µ) =
∑

i

yi +
∑

j

λj(1−
∑

i

yimij)−
∑

i

µiyi

=
∑

j

λj +
∑

i

yi(1−
∑

j

λjmij − µi)

Then by defining

g(λ,µ) = min
y
L(y,λ,µ) =


−∞, if ∃i, 1−

∑
j

λjmij − µi 6= 0

∑
j

λj , o.w.

we will have the dual problem as below

max g(λ,µ) =
∑

j

λj

s.t. 1−
∑

j

λjmij − µi = 0, ∀i

λj ≥ 0, ∀j
µi ≥ 0, ∀i
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Due to the constraint ∀i, µi ≥ 0, we could remove µi in the first constraint and update it as

1−
∑

j

λjmij ≥ 0⇒
∑

j

λjmij ≤ 1

If we replace λ with x, this dual is exactly the same as the linear programming model for vc, which
proves that the previous two LP models are dualities. Note that here, we did not do the proof for general
cases, which is easy to get using the variables of b and c, which is set to 1 in our proof.

Recall that we also applied the primal-dual in the SVM, the difference is that in SVM, we go to the
domain of the dual to make the problem easier to solve, while here, we generally use the duality to prove
that the two model are duals, which gives us the Nash Equilibrium.

4


	Introduction
	Definition of the Problem
	Some Simplification
	Nash Equilibrium
	Proof of the LP Duality

