
CSC 446 Notes: Lecture 3

Typed by Carolyn Keenan

January 31, 2012

1 Latex Tips

For exponents, use \exp instead of e. For example : exp (− 1
2σ2 (x− µ)2) rather than e

−1
2σ2 (x−µ)2 .

For logs, use \log. Example : log x2

For expectations, where you need big brackets, you can use \left[ and \right]. Example : E [x] The same
can be done for any kind of brackets or parentheses. Latex makes a bigger space at the end of a sentence.
If you end the sentence with a capital letter, it interprets that as an abbreviation, not an end of sentence.
Example : This sentence should end with N. However, there is only a small space here. To force the sentence
to end, use \@. Example : This sentence does end with N. Here is a sentence after it for comparison. If
you need to use a period and it’s not at the end of a sentence, you can use \ . Example : This sentence has
an abbreviation n. and the space here is too large. This sentence has an abbreviation n. and the space is
normal.

2 Homework Questions

What do we do with the question marks in the data? These represent “abstain” votes. You can leave these
out, or make a third possible value for that variable.

3 Smoothing

The Naive Bayes classifier that we are using in the homework is

P (Y |XN
1 ) ∝ P (Y )

N∏
n=1

P (Xn|Y )

By making the “Naive” independence assumption last time, we were able to factor and get rid of a lot of
potential zeros in the product. Since all of our probabilities are based on counts, any unseen combination of
Xn and Y results in

P (xn|y) =
c(xn, y)
c(y)

= 0.

These zeros can ruin the entire classifier. For example, say there’s one bill where all the Republicans we know
about voted “no”. Now, say we are trying to classify an unknown politician who followed the Republican
line on every other bill, but voted “yes” on this bill. The classifier will say that there is zero probability of
this person being a Republican, since it has never seen the combination (Republican, voted yes) for that bill.
It gives that single feature way too much power. To get rid of that, we can use a technique called smoothing,
and modify the probabilities a little :
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P (xn = k|y) =
c(xn, y) + α

c(y) +Kα

k ∈ {1, ...,K}

Basically we are taking a little bit of the probability mass from things with high probability and giving it
to things with otherwise zero probability. (Republicans might veto this technique, since it’s like redistribution
of wealth!) Note that these probabilities must still sum to 1. This seems great - we’ve gotten rid of things
with zero probability. But doesn’t this contradict what we proved earlier? That is, last week we said that
we can best infer the probability distribution by solving

argmax
θ

N∏
n=1

Pθ(xn)

s.t.
K∑
k=1

θk = 1

which results in the count-based distribution

θ∗ =
c(k)
N

.

How then can we mathematically justify our smoothed probabilities?

3.1 Prior Distributions

We can treat θ as a random variable itself with some probability distribution P (θ). Recall that θ is a vector
of probabilities for each type of event k, so

θ = [θ1, θ2, . . . θK ]T

and
K∑
k=1

θk = 1

Suppose that we have a coin with two outcomes, heads or tails (K=2). We can picture theθ1 and θ2
which we could pick for the probability distribution of these two outcomes. A fair coin has θ1 = 1/2 and
θ2 = 1/2. An weighted coin might have θ1 = 2/3 and θ2 = 1/3. Since we are treating θ as a random variable,
its probability P (θ) is describing the probability that it takes on these values. P (θ) is called a prior, since
it’s what we believe about θ before we even have any observations. For example, we might tend to believe
that the coin will be pretty fair, so we could have P (θ) be a normal curve with the peak where θ1 = 1/2 and
θ2 = 1/2.

3.2 Dirichlet Prior

One useful prior distribution is the Dirichlet Prior :

P (θ) =
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k

=
1
Z

K∏
k=1

θαk−1
k
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This is also written as P (θ;α), Pα(θ), or P (θ|α). α is a vector with the same size as θ, and it is known as
a “hyperparameter”. The choice of α determines the shape of θ’s distribution, which you can see by varying
it. If α is simply a vector of ones, we just get a uniform distribution; all θs are equally probable. In the case
of two variables, we can have α1=100, and α2=50 and we see a sharp peak around 2/3. The larger α1, the
more shaply peaked it gets around α1

α1+α2
.

At this point, we are tactfully ignoring that Γ in the Dirichlet distribution. What is that function, and
what does it do?

3.3 Gamma Function

Γ(x) =
∫ ∞

0

e−ttx−1dt

This function occurs often in difficult, nasty integrals. However, it has the nice property of being equivalent
to the factorial function :

Γ(n) = (n− 1)!

We can prove this using integration by parts:

Γ(x) =
∫ ∞

0

e−ttx−1dt

=
[
−tx−1e−t

]∞
0

+
∫ ∞

0

e−t(x− 1)tx−2dt

= 0 + (x− 1)
∫ ∞

0

e−ttx−2dt

= (x− 1)Γ(x− 1)

Further noting that Γ(1) = 1, we can conclude that Γ(n) = (n − 1)!. This function is used in our Dirichlet
prior to guarantee that

Γ(x) =
∫

P
k θk=1

P (θ)dθ = 1.
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3.4 Justifying the Dirichlet Prior

How can we use this prior to compute probabilities?

P (x = k|θ) = θk

P (x = k) =
∫

P
k θk=1

P (x|θ)P (θ)dθ

=
∫
θk

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k dθ

=
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∫ K∏
k′=1

θ
αk′−1+I(k′=k)
k′ dθ

=
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∏
k′ Γ(αk′ + I(k′ = k))

Γ(
∑
k′ αk′ + I(k′ = k))

=
Γ(
∑K
k=1 αk)

Γ(
∑
αk + 1)

Γ(αk + 1)
Γ(αk′)

Now we use Γ(x) = (x− 1)Γ(x− 1) :

=
αk∑
k′ αk′

Most of the time, all of the αk’s are set to the same number. So, we just showed that

P (x) = =
αk∑
k′ αk′

But what about

P (XN+1|XN
1 ) =

∫
P (XN+1, θ|XN

1 )dθ

=
∫
P (XN+1|θ,XN

1 )P (θ|XN
1 )dθ

=
∫
θk
P (XN

1 |θ)P (θ)
P (XN

1 )
dθ

=
1
Z

∫
θk
∏
n

θXn
1
Z ′

∏
k

θαk−1
k dθ

. . .

=
c(k) + αk
N +

∑
k αk

4 Comparison - Bayesian vs. MLE vs. MAP

4.1 Bayesian

The quantity we just computed is known as the Bayesian:

P (XN+1|XN
1 ) =

c(k) + αk
N +

∑
k αk
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We can compare it to the MLE that we did before:

P (xN+1) follows θ∗

θ∗ = argmax
θ

Pθ(XN
1 )

And a third alternative is the MAP, or Maximum A Posteriori:

P (xN+1) follows θ∗

θ∗ = argmax
θ

P (θ)P (XN
1 |θ)

This is simpler since it does not require an integral. Using the same Lagrange Multipliers technique as we
did before:

argmax
1
Z

∏
k

θαk−1
k

∏
k

θck(k)

s.t.
∑
k

θk = 1

Then we get the result:

θ∗k =
c(k) + αk − 1

N + (
∑
k′ α
′
k)−K
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