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CSC 446 
Lecture Notes 

SUPPORT VECTORS 
prepared by Phyo Thiha 

 
(Note: Please read more about the Wolfe dual in a separate note shared on class website 
at http://www.cs.rochester.edu/u/gildea/2012_Spring/wolfe.pdf) 
According to Wolfe duality, we have 
 
   min f0(x) s.t. fi(x) ≤ 0 for i=1...I -----------------(1) 
 
Suppose we take Lagrangian of equation (1), 
 
   g(λ) = L(x, λ) = f0(x) + Σ λi fi(x) 
 
   max_λ g(λ) s.t. λi ≥ 0    -----------------(2) 
 
 
Equation (1) is called primal problem and (2) is called dual. If we solve this duality, it’s 
always true that 
 
   g(λ) ≤ f0(x) 
 
for ∀x where ‘λ’ is feasible.  This relationship is called weak duality.  To visualize this 
relationship- 
 

 
 
In gradient descent problem, how do we know when to stop?  One way to test that is to 
find a point in dual problem.  There, we know that ‘p’ > ‘d’ and we can see the gap as 
how much room there is for improvement in our gradient descent. 
 
In SVM, we will utilize the above knowledge.  We will morph the first problem (primal) 
into second form (dual) and solve the second one.  Then we will map it back to the 
original problem.  We will also assume strong duality (where d = p) 
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Note: Why did we choose the dual instead of the primal? Because in dual, we’re dealing 
with ‘λ’, which is not dependent on anything else whereas in primal, we have fi(x) 
constraint to deal with (therefore, more complex) 
------------------------------------------------------------------------------------------------------------ 
 
Above plan of utilizing duality to solve SVM works ONLY IF 
 
1) f0 and fi are convex (this is a convex optimization problem) 
 

 
 
2) f0 and fi are differentiable 
3) feasible set has an interior (Slater’s condition) 
 
If all these assumptions are true, then strong duality holds.  Suppose we have found, 
 
   d* = g(λ*) 
 
Case 1: Suppose λi = 0 (meaning the bound is tight).  This means 
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   g(λ) = min_x L(x, λ) 
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   g(0) = L(x’, 0)     ----------------(3) 
 

From (2) and (3),  fi(x’) < 0    [because i
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From (4) and (5),  
   ∑ ∇λ+∇=

i
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i

ii )x(f is zero) ----------------(6) 

(6) tells us that we are at the minimum value in the constraint. Therefore, 
 
   x’ = x* 

   p* = f0(x*) = d* 
That is, max of ‘g’ is min of ‘L’ and we satisfy the strong duality.  END of case λi = 0. 
 
========== 
Case 2: λi > 0 
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   x’ = argmin_x L(x, λi
*) [in other words, x’ is the ‘x’ that  

         gives us the min. point]  
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   g(λ*) = L(x’, λ*) = f0(x’) + fi(x’) 
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There are more complex conditions where two constraints interplay (called Slater’s 
condition), but we won’t go into that. 
= = = = = = = =  
Karush Kuhn Tucker (KKT) conditions 
 

  1) 0
x
L
=

∂
∂  

  2) fi(x) ≤ 0 (feasible) and  
  3) λi ≥ 0 (feasible) 
  4) λI fi(x) = 0 (complementary slack) 
 
If we can find L(x, λ) such that it satisfies above conditions, we have solved the 
optimization problem. 
= = = = = = = = =  
 
We will use KKT for solving SVM.  We want 
 

   2w
2
1max  s.t.  1)xw(y nTn ≥  

where ‘yn’ represents each data point in the training and can be ±1. 
 
We’ll add the constant (bias?) back in.  That is pretty much equivalent to saying that it’s 
okay for some labels to be on the wrong side of the boundary (esp. in cases where data is 
linearly inseparable). 
 
For each data point which is on the wrong side of the boundary, we will penalize for it. 
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where ‘c’ is capacity and ‘ξ’ is the penalizing term (should always be positive). 
 
   ξn ≥ 0      µn 
 
   1)bxw(y n

nTn ≥ξ++    αn 

 
Let’s solve: 
  L(x, ξ) = L(w, b, ξ, α, µ) 
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Since µn ≥ 0,  
  c - αn ≥ 0 
  c ≥ αn      ----------------(8) 
 
Substitute µn in equation (7), 
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From equation (8), max_α g(α) s.t.  αn ≥ 0, αn ≤ c (this gives us a boundary to 
focus our optimization problem on instead of trying for all possible space. 
 
[Disclaimer/Apology: I was not able to get some of the jumps in calculation that Dan 
assumed in class.  Also, I’m still shaky myself w.r.t. some of the concepts/assumptions 
that we made before calculating SVM.  It’d be the best if you ask Dan or read some more 
explanation online]. 
 


