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1 Notations

We first formalize some notations. Conditional probability of Xi is denoted as:

P (Xi = xi|X1, X2, . . . , Xi−1, Xi+1, . . . , XN ) =
1
Z

∑
P (X1, X2, . . . , Xi−1, Xi = xi, Xi+1, . . . , XN )

Conditional probability of Xi with respect to Xj and Xk is denoted as:

P (Xi|Xj , Xk) =
1
Z

∑
Xt,t6=i,j,k

P (Xi, Xj , Xk) (1)

Conditional independence is denoted as:

Xi ⊥⊥ Xa|Xj , Xk ⇔ P (Xi|Xa, Xj , Xk) = P (Xi|Xj , Xk)

In (1), note there are 2N−3 terms in the summation. Because of conditional independence, the probability
can be simplified as

P (Xi|X1, X2, . . . , Xi−1, Xi+1, . . . , XN ) = P (Xi|Parent(Xi))

Only 2M terms are involved, where M is the max number of parents.

2 Example
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To compute P (X7|X2), we have

P (x7|x2) =
1
Z

∑
X3

∑
X4

∑
X5

∑
X6

P (X3|x2)P (X4|X3)P (X5|X4)P (X6|X5)P (x7|X6)

Suppose every variable Xi is binary, then the summation has 24 = 16 terms. On the other hand, we can use
the same trick in dynamic programming by recording every probabilities we have computed for reuse. For
example, in above example, if we define

f5(x5) =
∑
X6

P (X6|X5 = x5)P (x7|X6) (2)

f4(x4) =
∑
X5

P (X5|X4 = x4)f5(X5) (3)

f3(x3) =
∑
X4

P (X4|X3 = x3)f4(X4) (4)

f2(x2) =
∑
X3

P (X3|X2 = x2)f3(X3) (5)

Then the probability above can be computed as

P (X7 = x7|X2 = x2) =
1
Z

∑
X3

∑
X4

∑
X5

∑
X6

P (X3|X2 = x2)P (X4|X3)P (X5|X4)P (X6|X5)P (X7 = x7|X6) (6)

=
1
Z

∑
X3

∑
X4

∑
X5

P (X3|x2)P (X4|X3)P (X5|X4)f5(X5) (7)

=
1
Z

∑
X3

∑
X4

P (X3|x2)P (X4|X3)f4(X4) (8)

=
1
Z

∑
X3

P (X3|x2)f3(X3) (9)

=
1
Z

f2(x2) (10)

There are 4 sums and each sum needs to compute 2x2 probabilities, so a total of 16 steps.

3 Factor Graph

Factor graph is an undirected bipartite graph. There are two types of vertex in a factor graph, factor vertices
and variable vertices. Factor vertices correspond to the function fm in the above example, and each distinct
variable vertex corresponds to a distinct variable. If factor function fm is a function of Xi, its factor vertex
is connected to Xi. So the factor graph for above example is,
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For more examples,

Note that in the figures above, factor graphs illustrate that the shadowed variable nodes block the
information flow from one variable node to another except the last one. In the last example, the two parent
nodes are independent, although this cannot be seen from the graph structure. However, the blockage can be
read from the table of the factor node in the center. Also note that the last two graphs have same undirected
shape, but their factor graphs are different.

4 Message Passing (Belief Propagation)

We assume that the factor graph is a tree here. For each variable vertex n and its neighboring factor vertex
fm, the information propagated from n to fm is,

qn→m(Xn) =
∏

m′∈M(n)/m

rm′→n(Xn)

where M(n) is the set of factors touching Xn. This table contains the information propagated from variable n
to its neighboring factor vertex fm. For each factor vertex fm and its neighboring variable n, the information
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propagated from fm to n is,

rm→n(Xn) =
∑
−−→
Xm\Xn

fm(
−−→
Xm)

∏
n′∈N(m)\{n}

qn′→m(Xn′)

where N(m) is the set of variables touching fm.
∑
−−→
Xm\Xn

is the sum is over all variables connected to fm

except Xn. This table contains the information propagated from factor fm to its neighbor variable n. Note
that if variable vertex n is a leaf, qn→m = 1, and if factor vertex m is a leaf, rm→n = fm(Xn).

The procedure of message passing or belief propagation is first to propagate the information from leaf
vertices to the center (i.e., from leaves to internal nodes) by filling in the tables for each message. Once all
the messages variable xn have been computed, the marginal probability of xn is computed by combining the
incoming messages:

P (Xn) =
1
Z

∏
m∈M(n)

rm→n(Xn)

To compute marginal probabilities for all variables, the information is propagated from center back to leaves.

5 Running Time

Suppose in a factor graph, there are N variable vertices and M factor vertices. For every variable vertex n,
|M(n)| < k and for every factor vertex fm, |N(m)| < l, the running time is,

O((N + M)(k + l)2l−1)
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