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1 Basic Vector Operations

The basic structure of multivariable calculus is the vector. By convention we assume in this class that vectors
are column vectors:

U1
V2
VvV = IU3
U’!L
The transpose of this vector, v7, is a row vector:
VT = [’Ul Vg Vg - Un]

The inner product, also known as the dot product, reduces two vectors of equal length to a scalar:

x-y=x"y =Y wy
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In contrast, the outer product takes two vectors and produces an n X n matrix:

riyrs T1Y2 - T1Yn
T2yr T2Y2
X X yT = xyT = .
TnlY1 TnlYn

2 Multivariable Functions and Vector Calculus

A multivariable function takes a number of variables (or a vector) as parameters and returns a single value.

In domain terms, a multivariable function f(x) maps from an n-dimensional vector space down to a scalar
domain. The gradient is the basic vector derivative operation. Given a scalar function f(x),

Vix) = |7




yields a vector representing the direction and the rate of change of the function f within R"-space.
Example 1: Let f(x) =17x =), z;. Then the gradient of f is

Example 2: Let f(x) = x7x =Y, 2?. Then the gradient of f is

21’1
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The product and chain rules hold when dealing with gradients and vector-valued functions, but looks
slightly different:

e Product Rule: V(f(x)g(x)) = f(x)Vg(x) + Vf(x)g(x), where f and g are both vector-to-scalar
functions (f : R — R and ¢ : R” — R).

e Chain Rule: £ f(g(t)) = Vf(g(t))T%, where f(x) is a vector-to-scalar function and ¢(t) is a standard

one-parameter vector-valued function (f : R — Rand g : R — R™). Note that in because g is a vector-
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valued function, the partial derivative 3} is itself a vector: 37 = [W 2oL ]

It is important to note the vector operations that make these rules work. In the case of the Product
Rule, the input functions f(x) and g(x) are both scalar, but their gradients V f and Vg are vectors. Thus,
V(fg) is the sum of two scalar-multiplied vectors, and is therefore a vector. Similarly, V f(g(t)) and 898—(;)
are both vectors, and so their dot product is the scalar one would expect from a partial derivative of a scalar
function.

Gradients are very useful when plotted on a map of the variable field, such as a contour map. The
gradient points in the direction of the steepest rate of change of f(x) as one moves up and down the variable
axes. On a contour map of a hill, for instance, this represents the direction of fastest ascent. As with scalar

derivatives, V f(x) = 0 when the function f is at a local extremum (maximum or minimum).

3 DMatrices, Eigenvalues and Eigenvectors
Let A be an n X n matrix, b be an n-element vector, and ¢ be a scalar. The function

1
f(x)= ixTAX +bTx +ec

is a scalar function. The term x” Ax can be thought of as the curvature in direction x. If A is sym-
metric (i.e., a;; = a;j;), then Vf = Ax+b. If A is not symmetric, then Vf = A’x+b, where A’ = 14+ AT

As a side note, If Ax = Ax where ) is some scalar value, then the vector x is an eigenvector of A and A
is an eigenvalue of A. This will come up again later.



4 Jacobians and Hessians

So far, we have assumed that our function f has a scalar value. But what if we have a vector-valued function
f:R™ — R™? This function takes an m-element input vector and returns an n-element output vector. The
gradients of each vector element f(x); form the rows of a special m x n matrix called the Jacobian:

on ... Oh

oz OL.m
J=1: )

Ofn Ofn

oz 0T

Armed with the Jacobian, we can now express the chain rule for a vector-valued multivariable function:

0 dg
Il ) = J=2
o flole) = T2
Another useful matrix is the Hessian V2 f, which is a matrix of a scalar-valued function f(x)’s second-
order derivatives:

_o%f . a2f
(0x1)? Oxpn0x1
2 . . _ 82 f
V= : - B {WLJ‘
9%f 8% f
Ox10x, [CESE

Definition: A matrix A is positive semidefinite if Vx xT Ax > 0. This also means that all the eigen-
values of A are positive. This definition is important because if f is at a maximum, then —V2f is positive
semidefinite. Similarly, V2f is positive semidefinite when f is at a minimum.

1

Example: Let f(x) = ix7Ax = 27 4+ 23, and let A = I = . To find the extrema, we calculate

1
the gradient Vf = x. Setting Vf = x to 0, we find the local extremum at the origin. To determine the
orientation of this extremum, we compute the Hessian:

2, 82(a:2+z2) . 1
Vof= [ 92,0z, o 1
Since all elements in V2 f are positive, we know that the extremum is a minimum.
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Example: Let f(x) = 3x7Ax = —a7 — 23, and let A = —J = To find the extrema, we

)
calculate the gradient V f = x. Setting V f = x to 0, we find the local extremum at the origin. To determine
the orientation of this extremum, we compute the Hessian:

2, _ [8%(—22—22) _ -1
Vaf= { 02,07, i ]
Since all elements in V2 f are negative, we know that the extremum is a maximum.

5 Newton’s Method

We now have all the tools we need for Newton’s method of approximating a vector-valued function. This is
basically the second-order expansion of a Taylor series about some point xg:



= Flox0) + V1 x0) (= x0) + 5 (¢ x0) V2 (x0) x — o)

The gradient of this approximation is:

V= V2f(x0)(x — o) + Vf(x0)

Remember that this is an approximation about a point xo, and becomes less accurate as one travels from
this point. We can use this gradient to find the maximum of f by setting V f to 0 and solving for Xmax:

Xmax — X0 — (sz(X()))_lv'f(Xo)

Recall that the Hessian V2 f is a matrix, so to remove it from one side of the equation you must multiply
both sides by the inverse matrix (VZf)~!.



