
CSC 446 Notes: Lecture 12

Expectation Maximisation

1 Gradient Ascent ( ∂L
∂θ )

Gradient Ascent ∂L∂θ means the gradient of likelihood function w.r.t. parameters.
Using the gradient ascent, our new parameter θnew is given by :

θnew = θold + η
∂L

∂θ

EM (expectation maximization) generally finds a local optimum of θ more quickly, because in this
method we optimize the q-step before making a jump. It is similar to saying that we make a big jump
first and then take smaller steps accordingly. But for Gradient Ascent method, the step size varies with the
likelihood gradient, and so it requires more steps when the gradient is not that steep.

We are required to find EP (Z|X,θ)[Z|X]

Our θ =


P (Z)
P (X1|Z)
P (X2|Z)

which is a long list of all the possible probabilities, after unfolding each of them.
We should make sure that the parameters (θ = [θ1, θ2], for only 2 parameters) always stays within the

straight line shown below. It should never go out of the line.
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P (Z = k) = θk =
eλk∑
k′ e

λ
k′

In this case, the gradient ascent is used to find the new value of λ

λnew = λold + η
∂L

∂λ

2 Newton’s Method

θnew = θold + (∇2
θL)−1(∇θL)

In Newton’ Method, we approximate the curve with a quadratic function, and we jump to the maximum
of the approximation in each step.

Differences between Newton’s Method and EM :

a) Newton’s Method takes a lot of time, because we need to calculate the Hessian Matrix, which is the 2nd
derivative.

b) Since there is no KL divergence in Newton’s Method, there is always a chance that we take a big jump,
and arrive at a point far away from the global optimum and in fact worse than where we started.

3 Variational Method

In this method, at first we trace the Likelihood function by a new parameter, then fix and optimize that pa-
rameter, and then once again start the iteration, until we get the optimum value of the Likelihood function.

4 Mixture of Gaussians

P (X) =
∑
k

P (Z = k)N(X|µk,Σk)

=
∑
k

λkN(X|µk,Σk),

where µ and Σ are the mean vector and co-variance matrix respectively.

N(X|µ,Σ) =
e−0.5(X−µ)T Σ−1(X−µ)

(2π)D/2|Σ|0.5
(1)
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Here X and µ are vectors, Σ is a 2-D matrix, and D is the dimensionality of data X. The left side side of
equation (1) refers to :

N




X1

X2

...
XN


∣∣∣∣∣∣∣∣∣µ,Σ


For 1-D data,

N(X|µ, σ) =
e−0.5(X−µ)2/σ2

(2π)0.5σ

Equation (1) is similar to writing as f(X) = XTAX ; wherein we are stretching the vector space.

For continuous variables the equation :

rm→n =
∑

~Xm\Xn

f( ~Xm)
∏

n∈N(m)\n

qn→m

changes to

rm→n =
∫
f( ~Xm)

∏
n∈N(m)\n

qn→m d( ~Xm\Xn)

The MLE estimates of the parameters of a Gaussian are as follows:

µ∗ =
∑
nXn

N

σ∗ =

√∑
n(Xn − µ∗)2

N

Σ =
∑
n(Xn − µ∗)(Xn − µ∗)T

N
, where Σ is the covariance matrix

Σij =
∑
n(Xi

n − µi)(Xj
n − µj)

N
= covariance(Xi,Xj)
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Θ ( parameters of the model ) = λ, µk,Σ , where λ and µk are vectors
E-step

for n = 1, 2, . . . , N

P (Z|Xn) =
P (Z)P (Xn|Z)

P (Xn)

=
(λk/zk) exp[− 1

2 (Xn − µk)TΣ−1(Xn − µk)]∑
k′(1/zk′) exp[− 1

2 (Xn − µk′)TΣ−1(Xn − µk′)]

M-step
for k = 1, 2, . . . ,K (total number of hidden variables)

λk =
∑N
n=1 P (Z = k|Xn)

N

µk =
∑
n P (Z = k|Xn)Xn∑
n P (Z = k|Xn)

Σk =
∑
n P (Z = k|Xn)(Xn − µk)(Xn − µk)T∑

n P (Z = k|Xn)

Titas De 3/12; DG 3/13
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