CSC 446 Notes: Lecture 17

1 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov Chain (a series of states with probabilities of transitioning
from one state to another) where the states are hidden (latent) and each state has an emission as a random
variable. The model is described as follows:

o () : the set of states, with y; € Q2 denoting a particular state
e X : the set of possible emissions with z; € ¥ denoting a particular emission

e Pc R%Xﬁz : the matrix with each element giving the probability of a transition

e Q¢c R%Xl]z : the matrix with each element giving the probability of an emission

e II: the matrix with each element giving the probability of starting in each state
The probability distribution of an HMM can be decomposed as follows:
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An example HMM is given:
Q={1,2}

¥ ={a,b,c}
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One possible sequence of observations would be:
122112112
VLELLELLL

abcaaaaabd
We can consider multiple problems relating to HMMs.
1. DecodingI: Given z1, . . ., z,, P, @, II, determine the sequence y; . . . y,, that maximizes P(Y7,...Y,|X1,... X,,).

2. Decoding II: Given zy, ..., z, and ¢, determine the distribution of yg, that is, for all values a of y;,
Py = a|X1,..., X,).

3. Evaluation: Given z, . .. x,, determine P(X},... X,,).

4. Learning: Given a sequence of observations, argl), . 33511), . xgk), . x%k), learn P, Q, I that maximize
the likelihood of the observed data.



We define two functions, « and 8.
al(a) == P(Xy = 21,...,X; = 2,Y; = a)
5t(a) = P(Xt+1 = .’)Ai't+1, . 7Xn = .’i’n | th = (l)

which are also recursively defined as follows:

a'*l(a) = ) a'(e)P(c,a)Q(a, #rr1)

ceN
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We return to the Decoding II problem. Given 1, ..., z, and t, determine the distribution of Y, that is, for
all values a of Y3, P(Y; = a| X1, ..., X,,). To do this, we rewrite the equation as follows:
P(Xla"';Xnv)/t = a)
Py, =alXy,...,X,) =
(e = al Xy, Xo) P(X1,...,Xn)
However, we need to calculate P(X}, ..., X,). We can do this using either « or .
P(X1,...,X,) =) a"(a)
a€e
= B a)T(a)Q(a, &1)
ac)
The Decoding I problem can be solved with Dynamic Programming. (Given z1, ..., z,, P, Q,II, determine

the sequence y; ...y, that maximizes P(Y7,...Y,|X1,...X,).) We can fill in a table with the following
values:
Tlt,a] = max P(yy,...y|X1,...X¢t)

Y1.--Yt,Yyt=a

which means that each value is the probability of the most likely sequence at time ¢ with the last emission
being a. This can be computed using earlier values with the following formula:

Tit+1,a] = meaécT[t, c|P(c,a)Q(a, T141)

To compute the most likely sequence, we simply solve

max T'[n, a
ac)

The learning problem can be solved using EM. Given the number of internal states, and z, . .. z,, we want
to figure out P, (), and II. In the E step, we want to compute an expectation over hidden variables:

P(X,Y10)

L(0,q) = q(ylz)log S

Y

For HMM’s, the number of possible hidden state sequences is exponential, so we use dynamic program-
ming to compute expected counts of individual transitions and emissions:
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The new P is defined as:
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