CSC 446 Notes: Lecture 18

Typed by Hao Luo

1 The Problem

To train maximum entropy (logistic regression) models, we maximized the probability of the training data over possible feature weights λ :

$$
\max _{\lambda} \prod_{n} P\left(Y_{n} \mid X_{n}\right)
$$

It is to maximize

$$
L=\log \prod_{n} \frac{1}{Z_{X_{n}}} e^{\sum_{i} \lambda_{i} f_{i}}
$$

Of course we can solve it by using gradient ascend, but we today will talk about using an approximation of Newton's method.

2 Preliminary

For quadratic objective function

$$
f(x)=\frac{1}{2} x^{\top} A x+b^{\top} x+c
$$

Newton's iteration is given by

$$
x_{k+1}=x_{k}+\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
$$

However, the exact version of Newton's method involves a few problems as follows:

- We need to compute Hessian $\nabla^{2} f$, which is expensive.
- We also need to invert Hessian, which is also a costly operation.
- Furthermore, we need to store Hessian, which is expensive in terms of space.

So in order to compute Newton's iteration in a fast but relatively accurate way, an approximation should be developed. L-BFGS is one of them.

3 The L-BFGS Algorithm

Let B_{k} denote our approximation of the Hessian $\nabla^{2} f\left(x_{k}\right)$ and then we can write Newton's iteration as

$$
x_{k+1}=x_{k}-\alpha B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

Because the Hessian can be seen as the second order derivative of f, we wish to choosse B_{k} such that:

$$
B_{k}\left(x_{k+1}-x_{k}\right)=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

Let

$$
s_{k}=x_{k+1}-x_{k}
$$

$$
y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

then we have

$$
B_{k} s_{k}=y_{k}
$$

This is to say that, our approximation is a solution of above equation. Consider

$$
B_{k}=\frac{y_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

Because

$$
B_{k} s_{k}=\frac{y_{k} y_{k}^{\top} s_{k}}{s_{k}^{\top} y_{k}}=\frac{y_{k}\left(y_{k}^{\top} s_{k}\right)}{s_{k}^{\top} y_{k}}=y_{k}
$$

Further, let H_{k} be our approximation of $\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}$, the inverse of Hessian. We will have:

$$
s_{k}=H_{k} y_{k}
$$

H_{k} is a solution of above equation. One such H_{k} is given by

$$
H_{k}=\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

So, we want a direct formula of computing a symmetric H_{k+1} from H_{k}. That is, we want to fill in the ? term in following equation

$$
\begin{aligned}
& H_{k+1}=H_{k}+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}+? \\
& \text { such that } s_{k}=H_{k+1} y_{k}
\end{aligned}
$$

With careful proofs and calculation, we get

$$
\begin{equation*}
H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{\top}\right) H_{k}\left(I-\rho_{k} y_{k} s_{k}^{\top}\right)+\rho_{k} s_{k} s_{k}^{\top} \tag{1}
\end{equation*}
$$

where $\rho_{k}=\frac{1}{s_{k}^{\top} y_{k}}$.

4 Proof of the method

The problem can be formalized as minimizing $\left\|H_{k+1}-H_{k}\right\|$ such that $H_{k+1} y_{k}=s_{k}$ and $H_{k+1}^{\top}=H_{k+1}$. Here $\|\cdot\|$ is defined as follows:

$$
\|A\|^{2}=\left\|W^{\frac{1}{2}} A W^{\frac{1}{2}}\right\|_{f}^{2}
$$

where $\|A\|_{f}$ is defined as the square sum of all entries, $\sum_{i, j} a_{i j}^{2}$ and W is any matrix such that $W s_{k}=y_{k}$.
It is easy to verify that $H_{k+1} y_{k}=s_{k}$ and H_{k+1} is symmetric, as follows:

$$
\begin{aligned}
H_{k+1} y_{k} & =\left(I-\rho_{k} s_{k} y_{k}^{\top}\right) H_{k}\left(I-\rho_{k} y_{k} s_{k}^{\top}\right) y_{k}+\rho_{k} s_{k} s_{k}^{\top} y_{k} \\
& =\ldots H_{k}\left(y_{k}-\rho_{k} s_{k}^{\top} y_{k}\right)+\rho_{k} s_{k} s_{k}^{\top} y_{k} \\
& =\ldots H_{k}\left(y_{k}-y_{k}\right)+s_{k} \\
& =s_{k}
\end{aligned}
$$

5 L-BFGS Algorithm

L-BFGS algorithm tries to approximate $H_{k+1} \nabla f\left(x_{k+1}\right)$ together. From 1, we can unroll the last $m H_{k}$'s. Then we will compute H_{k+1} directly from H_{k-m}.

$$
\begin{aligned}
H_{k+1}= & V_{k}^{\top} . . V_{k-m}^{\top} H_{k-m} V_{k-m} . . V_{k} \\
& +\rho_{k-m} V_{k}^{\top} . . V_{k-m}^{\top} s_{k-m} s_{k-m}^{\top} V_{k-m} . . V_{k} \\
& +. . \\
& +\rho_{k} s_{k} s_{k}^{\top}
\end{aligned}
$$

In the equation above, $V_{k}=I-\rho_{k} s_{k} y_{k}^{\top}$. The algorithm is

```
Algorithm 1 L-BFGS
Require: \(H_{k-m}, s_{i}, y_{i}\)
    \(q \leftarrow \nabla f_{k}\)
    for \(i=k-1 . . k-m\) do
        \(\alpha_{i} \leftarrow \rho_{i} s_{i}^{\top} q\)
        \(q \leftarrow q-\alpha_{i} y_{i}\)
    end for
    \(r \leftarrow H_{k-m} q\)
    for \(i=k-m . . k-1\) do
        \(\beta \leftarrow \rho_{i} y_{i}^{\top} r\)
        \(r \leftarrow r+s_{i}\left(\alpha_{i}-\beta\right)\)
    end for
    return \(r\)
```

In the algorithm, $V_{k}=I-\rho_{k} y_{k} s_{k}^{\top}$. This algorithm needs to keep track of s_{k} and y_{k} in the last m steps and each step requires $2 n \operatorname{space}\left(n\right.$ for s_{k} and n for $\left.y_{k}\right)$. So a total of $O(2 m n)$ space is needed.

There are many user libraries that have already implemented this algorithm, so we can just use them for our computing.

