CSC 446 Notes: Lecture 18

Typed by Hao Luo

1 The Problem

To train maximum entropy (logistic regression) models, we maximized the probability of the training data over possible feature weights λ :

$$\max_{\lambda} \prod_{n} P(Y_{n}|X_{n})$$
$$L = \log \prod_{n} \frac{1}{Z_{X_{n}}} e^{\sum_{i} \lambda_{i} f_{i}}$$

It is to maximize

Of course we can solve it by using gradient ascend, but we today will talk about using an approximation of Newton's method.

2 Preliminary

For quadratic objective function

$$f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$$

Newton's iteration is given by

$$x_{k+1} = x_k + (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

However, the exact version of Newton's method involves a few problems as follows:

- We need to compute Hessian $\nabla^2 f$, which is expensive.
- We also need to invert Hessian, which is also a costly operation.
- Furthermore, we need to store Hessian, which is expensive in terms of space.

So in order to compute Newton's iteration in a fast but relatively accurate way, an approximation should be developed. L-BFGS is one of them.

3 The L-BFGS Algorithm

Let B_k denote our approximation of the Hessian $\nabla^2 f(x_k)$ and then we can write Newton's iteration as

$$x_{k+1} = x_k - \alpha B_k^{-1} \nabla f(x_k)$$

Because the Hessian can be seen as the second order derivative of f, we wish to choose B_k such that:

$$B_k(x_{k+1} - x_k) = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Let

$$s_k = x_{k+1} - x_k$$

$$y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

then we have

$$B_k s_k = y_k$$

This is to say that, our approximation is a solution of above equation. Consider

$$B_k = \frac{y_k y_k^{\top}}{s_k^{\top} y_k}$$

Because

$$B_k s_k = \frac{y_k y_k^{\top} s_k}{s_k^{\top} y_k} = \frac{y_k (y_k^{\top} s_k)}{s_k^{\top} y_k} = y_k$$

Further, let H_k be our approximation of $(\nabla^2 f(x_k))^{-1}$, the inverse of Hessian. We will have:

$$s_k = H_k y_k$$

 H_k is a solution of above equation. One such H_k is given by

$$H_k = \frac{s_k s_k^\top}{s_k^\top y_k}$$

So, we want a direct formula of computing a symmetric H_{k+1} from H_k . That is, we want to fill in the ? term in following equation

$$H_{k+1} = H_k + \frac{s_k s_k^\top}{s_k^\top y_k} + ?$$

such that $s_k = H_{k+1} y_k$

With careful proofs and calculation, we get

$$H_{k+1} = (I - \rho_k s_k y_k^{\top}) H_k (I - \rho_k y_k s_k^{\top}) + \rho_k s_k s_k^{\top}$$

$$\tag{1}$$

where $\rho_k = \frac{1}{s_k^\top y_k}$.

4 Proof of the method

The problem can be formalized as minimizing $||H_{k+1} - H_k||$ such that $H_{k+1}y_k = s_k$ and $H_{k+1}^{\top} = H_{k+1}$. Here $|| \cdot ||$ is defined as follows:

$$|A||^2 = ||W^{\frac{1}{2}}AW^{\frac{1}{2}}||_f^2$$

where $||A||_f$ is defined as the square sum of all entries, $\sum_{i,j} a_{ij}^2$ and W is any matrix such that $Ws_k = y_k$. It is easy to verify that $H_{k+1}y_k = s_k$ and H_{k+1} is symmetric, as follows:

$$H_{k+1}y_k = (I - \rho_k s_k y_k^{\top})H_k(I - \rho_k y_k s_k^{\top})y_k + \rho_k s_k s_k^{\top} y_k$$
$$= \dots H_k(y_k - \rho_k s_k^{\top} y_k) + \rho_k s_k s_k^{\top} y_k$$
$$= \dots H_k(y_k - y_k) + s_k$$
$$= s_k$$

5 L-BFGS Algorithm

L-BFGS algorithm tries to approximate $H_{k+1}\nabla f(x_{k+1})$ together. From 1, we can unroll the last $m H_k$'s. Then we will compute H_{k+1} directly from H_{k-m} .

$$H_{k+1} = V_k^\top .. V_{k-m}^\top H_{k-m} V_{k-m} .. V_k$$

+ $\rho_{k-m} V_k^\top .. V_{k-m}^\top s_{k-m} s_{k-m}^\top V_{k-m} .. V_k$
+ $..$
+ $\rho_k s_k s_k^\top$

In the equation above, $V_k = I - \rho_k s_k y_k^{\top}$. The algorithm is

Algorithm 1 L-BFGS
Require: H_{k-m}, s_i, y_i
$q \leftarrow \nabla f_k$
for $i = k - 1k - m$ do
$\alpha_i \leftarrow ho_i s_i^\top q$
$q \leftarrow q - \alpha_i y_i$
end for
$r \leftarrow H_{k-m}q$
for $i = k - m.k - 1$ do
$eta \leftarrow ho_i y_i^ op r$
$r \leftarrow r + s_i(\alpha_i - \beta)$
end for
return r

In the algorithm, $V_k = I - \rho_k y_k s_k^{\top}$. This algorithm needs to keep track of s_k and y_k in the last *m* steps and each step requires 2n space(*n* for s_k and *n* for y_k). So a total of O(2mn) space is needed.

There are many user libraries that have already implemented this algorithm, so we can just use them for our computing.