
CSC 446 Notes: Lecture 5

1 Bayesian Networks

A Bayesian network is a convenient graphical model for illustrating conditional probabilities and indepen-
dence between variables. Take the following network: We see the number of parameters for each node is

A
0 .6
1 .4

A B
0 0 .1
0 1 .5
1 0 .2
1 1 .2

A B C
0 0 0 .1
0 1 0 .2
1 0 0 .1
1 1 0 .1
0 0 1 .1
0 1 1 .2
1 0 1 .1
1 1 1 .1

equal to 2k+1, where k is the number of parents for that node. We can compare this to the application of
joint probability as the product of conditionals,

P (X1, ...XN) =
N∏
n=1

P (Xn|Par(Xn))

where the number of parameters is 2N , with N is the number of variables. We can represent the Naive
Bayes assumption, namely,

P (Y |X1, ...XN) ≈ P (Y)
N∏
n=1

P (Xn|Y)

with the following network:

1

Likewise, we can represent the Dirichlet distribution,

P (θ) = Dir(α) =
1
Z

∏
k

θαk−1

with the following network (alternate notation on right):

A mixture of Gaussians, with each Gaussian having the distribution

N (x;µ,Σ) =
1
Z

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
and the mixture distribution

P (x) =
K∑
i=1

λiN (x;µi,Σi)

where λ is the weight of the Gaussian, can be represented using the following diagram:

Here, P (X|Y) is the probability of a variable having already chosen the Gaussian y. When determin-
ing conditional independence, one can think of knowing a variable in a Bayesian network as “blocking”
dependence. In the following diagram, A is not independent of C (A 6⊥⊥ C), yet, given B, A and C are
independent (A ⊥⊥ C|B).

2

However, if a variable is conditioned on two independent parents, then knowledge of that variable
makes those parents no longer independent. This is called “explaining away” evidence. In the following
network, A ⊥⊥ C, but A 6⊥⊥ C|B.

Knowing the value of a variable anywhere along a hierarchy path breaks the dependence between the
variable and its ancestor. In the following network, A ⊥⊥ C|B2:

3

However, if there exists an alternate path, then the two variables are still dependent.For the network

A 6⊥⊥ C|B2, since there is still an unobstructed path from A to C.
Knowledge of a variable can also travel up the arrows to cause a dependence on parent variables that

were rendered independent by evidence somewhere along the same path. In the following network, A ⊥⊥
B2|B1, but A 6⊥⊥ B2|B1, C.

4

Returning to our Dirichlet distribution, we see that none of the variables are independent of each other,
unless θ is known - in which case, all of the variables are independent of each other.

P (XN+1, X
N) = P (XN)P (XN+1)

X1 ⊥⊥ X2|θ

P (XN+1) = θXN+1

2 Perceptrons

A Perceptron is a linear classifier that determines a decision boundary through successive changes to the
slope of a line according to a binary feature. The classifier finds values for the weight vector wT to solve
the equation

0 = wTx + b

We define our classification function sign as

sign(x) =

 −1 : x < 0
0 : x = 0
1 : x > 0

We can remove b from the equation by adding it as an element of w and adding a 1 to x in the same spot.

w′ =


w1

...
wN
b

 x′ =


x1

...
xN
1


w′Tx′ = wTx + b

The next question is, how do we pick w? We have x as the vector of data points, with xn as the nth data
point. We have tn as the classifier output (1 or -1) for the nth data point.

tn = sign(wTx)

yn is the true label for the nth data point.
Our goal is to solve the following equation:

argmax
w

∑
n

I(yn = tn)

5

Or, reformulated as minimizing error,

argmin
w

∑
n

I(yn 6= tn)

To solve this equation, we want to add up all of the positive points to get a vector in that direction. This
gives us the Perceptron algorithm:

repeat
for n = 1...N do

if tn 6= yn then
w← w + ynxn

end if
end for

until ∀n tn = yn or maxiters
While this algorithm will completely separate linearly separable data, it may not be the best separation

(it may not accurately represent the separating axis of the data).

We can solve this problem by replacing our original error function,

E =
∑
n

I(yn 6= tn)

with the following error function:

E =
∑
n

1
2

(tn − yn)2 =
∑
n

En

Now, the function E w.r.t. w is not convex, so we have to use an iterative method. We use Gradient Descent
to solve for w, which is the successive application of

w = w − ∂E

∂w

∂E

∂w
=
∑
n

∂En

∂w
=
∑
n

∂En

∂t

∂t

∂w

6

However, our sign function is not differentiable at 0, so we replace it an activation function g. A good
candidate for g is tanh:

tn = g(a) = tanh(a) =
ea − e−a

ea + e−a

where
a = wTx

Plugging in, we get

∂E

∂w
=
∑
n

(tn − yn)
∂t

∂a

∂a

∂w
(1)

=
∑
n

(tn − yn)g′(wTx)x (2)

An alternative solution, which begins making small adjustments immediately, is Stochastic Gradient De-
scent. Having defined a learning rate η, the algorithm is only slightly different:

repeat
for n = 1 . . . N do

w← w − η ∂E
n

∂w
end for

until maxiters
Ian Perera 2/12; DG 2/13

7

