
CSC 446 Notes: Lecture 7

Support Vector Machine

Support Vector Machine (SVM) is one of the most widely used classification methods. SVM is different from
other classifiers that we have covered so far. SVM cares only about the data points near the class boundary
and finds a hyperplane that maximizes the margin between the classes.

Training Linear SVM

Let the input be a set ofN training vectors {xn}Nn=1 and corresponding class labels {yn}Nn=1, where xn ∈ RD
and yn ∈ {−1, 1}. Initially we assume that the two classes are linearly separable. The hyperplane separating
the two classes can be represented as:

wTxn + b = 0,

such that:

wTxn + b ≥ 1 for yn = +1,

wTxn + b ≤ −1 for yn = −1.

LetH1 andH2 be the two hyperplanes (Figure 1) separating the classes such that there is no other data point
between them. Our goal is to maximize the margin M between the two classes. The objective function:

max
w

M

s.t. yn(wTxn + b) ≥M,

wTw = 1.

The margin M is equal to 2
‖w‖ . We can rewrite the objective function as:

min
w

1
2
wTw

s.t. yn(wTxn + b) ≥ 1

Now, let’s consider the case when the two classes are not linearly separable. We introduce slack variables
{ξn}Nn=1 and allow few points to be on the wrong side of the hyperplane at some cost. The modified
objective function:

min
w

1
2
wTw + C

N∑
n=1

ξn

s.t. yn(wTxn + b) + ξn ≥ 1,
ξn ≥ 0, ∀n.

The parameter C can be tuned using development set. This is the primal optimization problem for SVM.
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Figure 1: The figure shows a linear SVM classifier for two linearly separable classes. The hyperplane wTx+b
is the solid line between H1 and H2, and the the margin is M .

The Lagrangian for the primal problem:

L (w, b, ξ, α, µ) =
1
2
wTw + C

N∑
n=1

ξn −
∑
n

αn
[
yn(wTxn + b)

]
−
∑
n

αnξn +
∑
n

αn −
∑
n

µnξn,

where αn and µn, 1 ≤ n ≤ N are Lagrange multipliers.

Differentiating the Lagrangian with respect to the variables:

∂

∂w
L (w, b, ξ, α, µ) = w −

∑
n

αnynxn = 0

∂

∂b
L (w, b, ξ, α, µ) = −

∑
n

αnyn = 0

∂

∂ξn
L (w, b, ξ, α, µ) = C − αn − µn = 0

Solving these equations, we get:
w =

∑
n

αnynxn (1)

∑
n

αnyn = 0

αn = C − µn (2)

We now plug-in these values to get the dual function and cancelling out some terms:

g(α, µ) =
1
2

∑
n

∑
m

αnαmynymxn
Txm −

∑
n

∑
n

αnαmynymxn
Txm +

∑
n

αn

=
∑
n

αn −
1
2

∑
n

∑
m

αnαmynymxn
Txm (3)
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Using the equation (2) and (3) and the KKT conditions, we obtain the dual optimization problem:

max
α

∑
n

αn −
1
2

∑
n

∑
m

αnαmynymxn
Txm

s.t. 0 ≤ αn ≤ C.

The dual optimization problem is concave and easy to solve. The dual variables (αn) lie within a box with
side C. We usually vary two values αi and αj at a time and numerically optimize the dual function. Finally,
we plug in the values of the α∗n’s to the equations (1) to obtain the primal solution w∗.

Convex Optimization Review

Let we are given an optimization problem:

min
x

f0(x)

s.t. fi(x) ≤ 0, for i ∈ 1, 2, . . . ,K,

where f0 and fi (i ∈ {1, 2, . . . ,K}) are convex functions. We call this optimization problem the ‘primal’
problem.

The Lagrangian is:

L(x, λ) = f0(x) +
K∑
i=1

λifi(x)

The Lagrange dual function:
g(λ) = min

x
L(x, λ)

The dual function g(λ) is concave and hence easy to solve. We can obtain the minima of a convex primal
optimization problem by maximizing the dual function g(λ). The dual optimization problem:

max
λ

g(λ)

s.t. λi ≥ 0, for i ∈ 1, 2, . . . ,K.

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) conditions are the conditions for optimality in primal and dual functions.
If f0 and fi’s are convex, differentiable, and the feasible set has some interior points (satisfies Slater condi-
tion), the x∗ and λ∗i ’s are the optimal solutions of the primal and dual problems if and only if they satisfy
the following conditions:

fi(x∗) ≤ 0
λ∗i ≥ 0, ∀i ∈ 1, . . . ,K

∂

∂x
L(x∗, λ∗1, . . . , λ

∗
K) = 0

λ∗i fi(x
∗) = 0
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