CSC 446 Notes: Multivariable Calculus Review

1 Basic Vector Operations

The basic structure of multivariable calculus is the vector. By convention we assume in this class that vectors
are column vectors:
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The transpose of this vector, vT, is a row vector:
T
v = [’Ul Vo U3 ce ’Un]

The inner product, also known as the dot product, reduces two vectors of equal length to a scalar:

xy=x"y =Yy
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In contrast, the outer product takes two vectors and produces an n x n matrix:

T1iyr T1Y2 - T1Yn

T2Y1 T2Y2
xxyl=xy" =1 "

TnlY1 TnlYn

2 Multivariable Functions and Vector Calculus

A multivariable function takes a number of variables (or a vector) as parameters and returns a single value.
In domain terms, a multivariable function f(x) maps from an n-dimensional vector space down to a scalar
domain. The gradient is the basic vector derivative operation. Given a scalar function f(x),
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yields a vector representing the direction and the rate of change of the function f within R"-space.
Example 1: Let f(x) = 17x =}, z;. Then the gradient of f is
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Example 2: Let f(x) = xTx = Y, 7. Then the gradient of f is
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The product and chain rules hold when dealing with gradients and vector-valued functions, but looks
slightly different:

e Product Rule: V(f(x)g(x)) = f(x)Vg(x) + V f(x)g(x), where f and g are both vector-to-scalar func-
tions (f : R® — Rand g : R® — R).

e Chain Rule: % flg(t)=Vf (g(t))T%, where f(x) is a vector-to-scalar function and ¢(t) is a standard

one-parameter vector-valued function (f : R” — Rand g : R — R™). Note that in because g is a
. . . . 8g : - 99 _ [0 P 99,17
vector-valued function, the partial derivative £ is itself a vector: 52 = [941 S22 ... Ogn]

It is important to note the vector operations that make these rules work. In the case of the Product Rule,
the input functions f(x) and g(x) are both scalar, but their gradients V f and Vg are vectors. Thus, V(fg)

is the sum of two scalar-multiplied vectors, and is therefore a vector. Similarly, V f(g(¢)) and a%(tt) are both
vectors, and so their dot product is the scalar one would expect from a partial derivative of a scalar function.
Gradients are very useful when plotted on a map of the variable field, such as a contour map. The
gradient points in the direction of the steepest rate of change of f(x) as one moves up and down the
variable axes. On a contour map of a hill, for instance, this represents the direction of fastest ascent. As
with scalar derivatives, V f(x) = 0 when the function f is at a local extremum (maximum or minimum).

3 Matrices, Eigenvalues and Eigenvectors
Let A be an n x n matrix, b be an n-element vector, and ¢ be a scalar. The function
1
f(x)= ixTAx +bTx 4 ¢

is a scalar function. The term x7 Ax can be thought of as the curvature in direction x. If A is symmetric (i.e.,
a;; = aj;), then Vf = Ax + b. If A is not symmetric, then Vf = A’x + b, where A’ = %A + AT,

If Ax = Ax where ) is some scalar value, then the vector z is an eigenvector of A and ) is an eigenvalue
of A.
4 Jacobians and Hessians
So far, we have assumed that our function f has a scalar value. But what if we have a vector-valued function

f : R™ — R™? This function takes an m-element input vector and returns an n-element output vector. The
gradients of each vector element f(x); form the rows of a special m x n matrix called the Jacobian:
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Armed with the Jacobian, we can now express the chain rule for a vector-valued multivariable function:

ooty = 1%

Another useful matrix is the Hessian V2 f, which is a matrix of a scalar-valued function f(x)’s second-
order derivatives:

_orf .. 9%
(0x1)? Ox, 021
2, . . _ 32 f
Vif= : . = {axiaxj}ij
9% f d*f
O0x10x, (0z1,)?

Definition: A matrix A is positive semidefinite (p.s.d.) if Vx x” Ax > 0. This also means that all the
eigenvalues of A are positive. This definition is important because if f is at a maximum, then —V?2f is
positive semidefinite. Similarly, V?f is positive semidefinite when f is at a minimum.

Example: Let f(x) = 1x7Ax = 12} 4+ 12d, andlet A =1 = 1 1]. To find the extrema, we calculate

the gradient Vf = x. Setting Vf = x to 0, we find the local extremum at the origin. To determine the
orientation of this extremum, we compute the Hessian:

20 _ [P@itad)] _ |1
Vif= [ Dw:07, Lj_ { 1
Since —V?2f is p.s.d., we know that the extremum is a minimum.

2
calculate the gradient V f = x. Setting V f = x to 0, we find the local extremum at the origin. To determine
the orientation of this extremum, we compute the Hessian:

Example: Let f(x) = ixTAx = —322 — 123 andlet A = -1 = [_ _J. To find the extrema, we

2p 62(—12—12) o -1
vif = {aa}j{ _1]

Since —V?2f is p-s.d., we know that the extremum is a maximum.

5 Newton’s Method

We now have all the tools we need for Newton’s method of approximating a vector-valued function. This
is basically the second-order expansion of a Taylor series about some point xq:

F) = F(x0) + 97 (x0) (¢ — x0) + 5 (x — x0)T V2 F(x0) (x — o)

The gradient of this approximation is:



Vf(x) = V*f(x0)(x = x0) + Vf(xo)

Remember that this is an approximation about a point x¢, and becomes less accurate as one travels from
this point. We can use this gradient to find the maximum of f by setting V f to 0 and solving for xmax:

Xmax = X0 — (sz(XO))ilvf(xo)

Recall that the Hessian V? f is a matrix, so to remove it from one side of the equation you must multiply
both sides by the inverse matrix (V2 f)~1.
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