CSC 446 Notes: Lecture 9

Typed by Hao Luo
February 27, 2012

1 Notations

We first formalize some notations. Conditional probability of X_{i} is denoted as:

$$
P\left(X_{i}=x_{i} \mid X_{1}, X_{2}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{N}\right)=\frac{1}{Z} \sum P\left(X_{1}, X_{2}, \ldots, X_{i-1}, X_{i}=x_{i}, X_{i+1}, \ldots, X_{N}\right)
$$

Conditional probability of X_{i} with respect to X_{j} and X_{k} is denoted as:

$$
\begin{equation*}
P\left(X_{i} \mid X_{j}, X_{k}\right)=\frac{1}{Z} \sum_{X_{t, t \neq i, j, k}} P\left(X_{i}, X_{j}, X_{k}\right) \tag{1}
\end{equation*}
$$

Conditional independence is denoted as:

$$
X_{i} \Perp X_{a} \mid X_{j}, X_{k} \Leftrightarrow P\left(X_{i} \mid X_{a}, X_{j}, X_{k}\right)=P\left(X_{i} \mid X_{j}, X_{k}\right)
$$

In (1), note there are 2^{N-3} terms in the summation. Because of conditional independence, the probability can be simplified as

$$
P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{N}\right)=P\left(X_{i} \mid \operatorname{Parent}\left(X_{i}\right)\right)
$$

Only 2^{M} terms are involved, where M is the max number of parents.

2 Example

To compute $P\left(X_{7} \mid X_{2}\right)$, we have

$$
P\left(x_{7} \mid x_{2}\right)=\frac{1}{Z} \sum_{X_{3}} \sum_{X_{4}} \sum_{X_{5}} \sum_{X_{6}} P\left(X_{3} \mid x_{2}\right) P\left(X_{4} \mid X_{3}\right) P\left(X_{5} \mid X_{4}\right) P\left(X_{6} \mid X_{5}\right) P\left(x_{7} \mid X_{6}\right)
$$

Suppose every variable X_{i} is binary, then the summation has $2^{4}=16$ terms. On the other hand, we can use the same trick in dynamic programming by recording every probabilities we have computed for reuse. For example, in above example, if we define

$$
\begin{array}{r}
f_{5}\left(x_{5}\right)=\sum_{X_{6}} P\left(X_{6} \mid X_{5}=x_{5}\right) P\left(x_{7} \mid X_{6}\right) \\
f_{4}\left(x_{4}\right)=\sum_{X_{5}} P\left(X_{5} \mid X_{4}=x_{4}\right) f_{5}\left(X_{5}\right) \\
f_{3}\left(x_{3}\right)=\sum_{X_{4}} P\left(X_{4} \mid X_{3}=x_{3}\right) f_{4}\left(X_{4}\right) \\
f_{2}\left(x_{2}\right)=\sum_{X_{3}} P\left(X_{3} \mid X_{2}=x_{2}\right) f_{3}\left(X_{3}\right) \tag{5}
\end{array}
$$

Then the probability above can be computed as

$$
\begin{align*}
P\left(X_{7}=x_{7} \mid X_{2}=x_{2}\right) & =\frac{1}{Z} \sum_{X_{3}} \sum_{X_{4}} \sum_{X_{5}} \sum_{X_{6}} P\left(X_{3} \mid X_{2}=x_{2}\right) P\left(X_{4} \mid X_{3}\right) P\left(X_{5} \mid X_{4}\right) P\left(X_{6} \mid X_{5}\right) P\left(X_{7}=x_{7} \mid X_{6}\right) \tag{6}\\
& =\frac{1}{Z} \sum_{X_{3}} \sum_{X_{4}} \sum_{X_{5}} P\left(X_{3} \mid x_{2}\right) P\left(X_{4} \mid X_{3}\right) P\left(X_{5} \mid X_{4}\right) f_{5}\left(X_{5}\right) \tag{7}\\
& =\frac{1}{Z} \sum_{X_{3}} \sum_{X_{4}} P\left(X_{3} \mid x_{2}\right) P\left(X_{4} \mid X_{3}\right) f_{4}\left(X_{4}\right) \tag{8}\\
& =\frac{1}{Z} \sum_{X_{3}} P\left(X_{3} \mid x_{2}\right) f_{3}\left(X_{3}\right) \tag{9}\\
& =\frac{1}{Z} f_{2}\left(x_{2}\right) \tag{10}
\end{align*}
$$

There are 4 sums and each sum needs to compute 2 x 2 probabilities, so a total of 16 steps.

3 Factor Graph

Factor graph is an undirected bipartite graph. There are two types of vertex in a factor graph, factor vertices and variable vertices. Factor vertices correspond to the function f_{m} in the above example, and each distinct variable vertex corresponds to a distinct variable. If factor function f_{m} is a function of X_{i}, its factor vertex is connected to X_{i}. So the factor graph for above example is,

For more examples,

Note that in the figures above, factor graphs illustrate that the shadowed variable nodes block the information flow from one variable node to another except the last one. In the last example, the two parent nodes are independent, although this cannot be seen from the graph structure. However, the blockage can be read from the table of the factor node in the center. Also note that the last two graphs have same undirected shape, but their factor graphs are different.

4 Message Passing (Belief Propagation)

We assume that the factor graph is a tree here. For each variable vertex n and its neighboring factor vertex f_{m}, the information propagated from n to f_{m} is,

$$
q_{n \rightarrow m}\left(X_{n}\right)=\prod_{m^{\prime} \in M(n) / m} r_{m^{\prime} \rightarrow n}\left(X_{n}\right)
$$

where $M(n)$ is the set of factors touching X_{n}. This table contains the information propagated from variable n to its neighboring factor vertex f_{m}. For each factor vertex f_{m} and its neighboring variable n, the information
propagated from f_{m} to n is,

$$
r_{m \rightarrow n}\left(X_{n}\right)=\sum_{\overrightarrow{X_{m} \backslash X_{n}}} f_{m}\left(\overrightarrow{X_{m}}\right) \prod_{n^{\prime} \in N(m) \backslash\{n\}} q_{n^{\prime} \rightarrow m}\left(X_{n^{\prime}}\right)
$$

where $N(m)$ is the set of variables touching $f_{m} \cdot \sum_{\overrightarrow{X_{m} \backslash X_{n}}}$ is the sum is over all variables connected to f_{m} except X_{n}. This table contains the information propagated from factor f_{m} to its neighbor variable n. Note that if variable vertex n is a leaf, $q_{n \rightarrow m}=1$, and if factor vertex m is a leaf, $r_{m \rightarrow n}=f_{m}\left(X_{n}\right)$.

The procedure of message passing or belief propagation is first to propagate the information from leaf vertices to the center (i.e., from leaves to internal nodes) by filling in the tables for each message. Once all the messages variable x_{n} have been computed, the marginal probability of x_{n} is computed by combining the incoming messages:

$$
P\left(X_{n}\right)=\frac{1}{Z} \prod_{m \in M(n)} r_{m \rightarrow n}\left(X_{n}\right)
$$

To compute marginal probabilities for all variables, the information is propagated from center back to leaves.

5 Running Time

Suppose in a factor graph, there are N variable vertices and M factor vertices. For every variable vertex n, $|M(n)|<k$ and for every factor vertex $f_{m},|N(m)|<l$, the running time is,

$$
\mathcal{O}\left((N+M)(k+l) 2^{l-1}\right)
$$

