
The Convex Dual

CS 246/446 Notes

1 Constrained Optimization

Consider a constrained optimization problem:

min
x

f(x)

s.t. g(x) = 0

At the solution, the gradient of the objective function f must be perpendicular
to the constraint surface (feasible set) defined by g(x) = 0, so there exists a
scalar Lagrange multiplier λ such that

∂f

∂x
+ λ

∂g

∂x
= 0

at the solution.

2 Inequalities

Consider an optimization problem with constraints specified as inequalities:

min
x

f(x) (1)

s.t. g(x) ≤ 0

If, at the solution, g(x) = 0, then as before there exists a λ such that

∂f

∂x
+ λ

∂g

∂x
= 0 (2)

and furthermore λ > 0, otherwise we would be able to decrease f(x) by mov-
ing in the direction −∂f

∂x without leaving the feasible set defined by g(x) ≤ 0.
If, on the other hand, at the solution g(x) < 0, then we must be at a maxi-

mum of f(x), so ∂f
∂x = 0 and eq. 2 holds with λ = 0. In either case, the following
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system of equations (known as the KKT conditions) holds:

λg(x) = 0

λ ≥ 0

g(x) ≤ 0

∂f

∂x
+ λ

∂g

∂x
= 0

3 Convex Optimization

Suppose now that f(x) is convex, g(x) is also convex, and both are continu-
ously differentiable. Define

L(x, λ) = f(x) + λg(x)

and Equation 2 is equivalent to

∂L

∂x
= 0

For any fixed λ ≥ 0, L is convex in x, and has a unique minimum. For any
fixed x, L is linear in λ.

Define the dual function

h(λ) = min
x
L(x, λ)

The minimum of a set of linear functions is concave, and has a maximum cor-
responding to the linear function with derivative of 0. Thus h(λ) also has a
unique maximum over λ ≥ 0. Either the maximum of h occurs at λ = 0, in
which case

h(0) = min
x
L(x, 0) = min

x
f(x)

and we are at the global minimum of f , or the maximum of h occurs at

∂L

∂λ
= g(x) = 0

and we are on the boundary of the feasible set. Because λ > 0, we cannot
decrease f by moving into the interior of the feasible set, and therefore this
is the solution to the original problem (1). In either case, the solution to dual
problem

max
λ

h(λ)

s.t. λ ≥ 0
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corresponds to the solution of the original primal problem. Generalizing to
primal problmes with more than one constraint, the dual problem has one
dual variable λi for each constraint in the primal problem, and has simple
non-negativity constraints on each dual variable. The dual problem is often
easier to solve numerically due to its simple constraints. Thus one approach
to solving convex optimization problems us to find the dual problem by using
calculus to solve ∂L

∂x = 0, and then solving the dual problem numerically.
Substituting the definition of the dual function into the dual problem yields

the primal-dual problem:

max
λ

min
x

L(x, λ)

s.t. λ ≥ 0

Another approach to solving convex optimization problems is to maintain both
primal and dual variables, and to solve the primal-dual problem numerically.

We have already seen that the KKT conditions must hold at the solution
to the primal-dual problem. If the objective function and constraint functions
are convex and differentiable, and if the feasible set has an interior (Slater’s
condition), than any solution to the KKT conditions is also a solution to the
primal-dual problem.

4 An Example

Minimize x2 subject to x ≥ 2.

L(x, λ) = f(x) + λg(x)

= x2 + λ(2− x)

The Lagrangian function L has a saddle shape:
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Projecting onto the λ dimension, we see the concave function h formed from
the minimum of linear functions L(c, λ)
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To find h, set

∂L

∂x
= 0

2x− λ = 0

and solve for x: x = λ/2. Substituting x = λ/2 into L gives h(λ) = − 1
4λ

2 − 2λ.
Setting ∂h

∂λ = 0 yields λ = 4, which we see is the maximum of the concave
shape in the figure. Substituting back into the original problem yields x = 2, a
solution on the boundary of the constraint surface.
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