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We present a system for identifying the semantic relationships, or semantic roles, filled by
constituents of a sentence within a semantic frame. Given an input sentence and a target word
and frame, the system labels constituents with either abstract semantic roles such as AGENT or
PATIENT, or more domain-specific semantic roles such as SPEAKER, MESSAGE, and TOPIC.

The system is based on statistical classifiers trained on roughly 50,000 sentences that were
hand-annotated with semantic roles by the FrameNet semantic labeling project. We then parsed
each training sentence into a syntactic tree and extracted various lexical and syntactic features,
including the phrase type of each constituent, its grammatical function, and position in the
sentence. These features were combined with knowledge of the predicate verb, noun, or adjective,
as well as information such as the prior probabilities of various combinations of semantic roles.
We used various lexical clustering algorithms to generalize across possible fillers of roles. Test
sentences were parsed, were annotated with these features, and were then passed through the
classifiers.

Our system achieves 82% accuracy in identifying the semantic role of pre-segmented con-
stituents. At the more difficult task of simultaneously segmenting constituents and identifying
their semantic role, the system achieved 65% precision and 61% recall.

Our study also allowed us to compare the usefulness of different features and feature-
combination methods in the semantic role labeling task. We also explore the integration of role
labeling with statistical syntactic parsing, and attempt to generalize to predicates unseen in the
training data.

1. Introduction

Recent years have been exhilarating ones for natural language understanding. The ex-
citement and rapid advances that had characterized other language processing tasks
such as speech recognition, part-of-speech tagging, and parsing have finally begun to
appear in tasks in which understanding and semantics play a greater role. For exam-
ple, there has been widespread commercial deployment of simple speech-based natural
language understanding systems that answer questions about flight arrival times, give
directions, report on bank balances, or perform simple financial transactions. More so-
phisticated research systems generate concise summaries of news articles, answer fact-
based questions, and recognize complex semantic and dialogue structure.

But the challenges that lie ahead are still similar to the challenge that the field
has faced since Winograd (1972): moving away from carefully hand-crafted, domain-
dependent systems toward robustness and domain-independence. This goal is not as
far away as it once was, thanks to the development of large semantic databases such
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as WordNet (Fellbaum, 1998), and progress in domain-independent machine learning
algorithms.

Current information extraction and dialogue understanding systems, however, are
still based on domain-specific frame-and-slot templates. Systems for booking airplane
information use domain-specific frames with slots like ORIG CITY, DEST CITY, or DE-
PART TIME (Stallard, 2000). Systems for studying mergers and acquisitions use slots
like PRODUCTS, RELATIONSHIP, JOINT VENTURE COMPANY, and AMOUNT (Hobbs et al.,
1997). In order for natural language understanding tasks to proceed beyond these spe-
cific domains, we need semantic frames and semantic understanding systems that do
not require a new set of slots for each new application domain.

In this paper we describe a shallow semantic interpreter based on semantic roles
that are less domain-specific than TO AIRPORT or JOINT VENTURE COMPANY. These
roles are defined at the level of semantic frames of the type introduced by Fillmore
(1976), which describe abstract actions or relationships, along with their participants.

For example, the JUDGEMENT frame contains roles like JUDGE, EVALUEE, and REA-
SON, while the STATEMENT frame contains roles like SPEAKER, ADDRESSEE, and MES-
SAGE, as the following examples show:

(1) [Judge She ] blames [Evaluee the Government ] [Reason for failing to do enough
to help ] .

(2) [Message “I’ll knock on your door at quarter to six” ] [Speaker Susan] said.

These shallow semantic roles could play an important role in information extrac-
tion. For example, a semantic role parse would allow a system to realize that the ruling
which is the direct object of change in (3) plays the same THEME role as the ruling which
is the subject of change in (4):

(3) The canvassing board changed their ruling on Wednesday.

(4) The ruling changed because of the protests.

The fact that semantic roles are defined at the frame level means, for example, that
the verbs send and receive would share the semantic roles roles (SENDER, RECIPIENT,
GOODS, etc.), defined with respect to a common TRANSFER frame. Such common frames
might allow a question-answering system to take a question like (5) and discover that
(6) is relevant in constructing an answer to the question.

(5) Which party sent absentee ballots to voters?

(6) Both Democratic and Republican voters received absentee ballots from their
party.

This shallow semantic level of interpretation has additional uses outside of gen-
eralizing information extraction, question answering, and semantic dialogue systems.
One such application is in word-sense disambiguation, where the roles associated with
a word can be cues to its sense. For example, Lapata and Brew (1999) and others have
shown that the different syntactic subcategorization frames of a verb such as serve can
be used to help disambiguate a particular instance of the word. Adding semantic role
subcategorization information to this syntactic information could extend this idea to
use richer semantic knowledge. Semantic roles could also act as an important interme-
diate representation in statistical machine translation or automatic text summarization,
and in the emerging field of Text Data Mining (TDM) (Hearst, 1999). Finally, incorpo-
rating semantic roles into probabilistic models of language may eventually yield more
accurate parsers and better language models for speech recognition.
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This paper describes an algorithm for identifying the semantic roles filled by con-
stituents in a sentence. We apply statistical techniques that have been successful for the
related problems of syntactic parsing, part of speech tagging, and word sense disam-
biguation, including probabilistic parsing and statistical classification. Our statistical al-
gorithms are trained on a hand-labeled dataset: the FrameNet database (Baker, Fillmore,
and Lowe, 1998; Johnson et al., 2001). The FrameNet database defines a tagset of seman-
tic roles called frame elements, and included, at the time of our experiments, roughly
50,000 sentences from the British National Corpus hand-labeled with these frame ele-
ments.

This article presents the system in stages, beginning in Section 2 with a more de-
tailed description of the data and the set of frame elements or semantic roles used.
We then introduce the statistical classification technique used, and examine in turn the
knowledge sources our system makes use of. Section 4 describes the basic syntactic
and lexical features used by our system, which are derived from a Penn Treebank-style
parse of individual sentences to be analyzed. We break our task into two subproblems:
finding the relevant sentence constituents (deferred until Section 5), and giving them
the correct semantic labels (Sections 4.2 and 4.3). Section 6 adds higher-level seman-
tic knowledge to the system, attempting to model the selectional restrictions on role
fillers not directly captured by lexical statistics. We compare hand-built and automat-
ically derived resources for providing this information. Section 7 examines techniques
for adding knowledge about systematic alternations in verb argument structure with
sentence-level features. We combine syntactic parsing and semantic role identification
into a single probability model in Section 8. Section 9 addresses the question of gener-
alizing statistics from one target predicate to another, beginning with a look at domain-
independent thematic roles in Section 9.1. Finally we draw conclusions and discuss fu-
ture directions.

2. Semantic Roles

Semantic roles are one of the oldest classes of constructs in linguistic theory, dating back
thousands of years to Panini’s kāraka theory (Misra, 1966; Rocher, 1964; Dahiya, 1995).
Longevity, in this case, begets variety, and the literature records scores of proposals for
sets of semantic roles. These sets of roles range from the very specific to the very general,
and many have been used in computational implementations of one type or another.

At the specific end of the spectrum are domain-specific roles such as the
FROM AIRPORT, TO AIRPORT, or DEPART TIME discussed above, or verb-specific roles
such as EATER and EATEN for the verb eat. The opposite end of the spectrum consists
of theories with only two “proto-roles” or “macroroles”: PROTO-AGENT and PROTO-
PATIENT (Van Valin, 1993; Dowty, 1991). In between lie many theories with approxi-
mately ten roles, such as Fillmore (1971)’s list of nine: AGENT, EXPERIENCER, INSTRU-
MENT, OBJECT, SOURCE, GOAL, LOCATION, TIME, and PATH.1

Many of these sets of roles have been proposed by linguists as part of theories of
linking, the part of grammatical theory that describes the relationship between semantic
roles and their syntactic realization. Other sets have been used by computer scientists
in implementing natural language understanding systems. As a rule, the more abstract
roles have been proposed by linguists, who are more concerned with explaining gen-
eralizations across verbs in the syntactic realization of their arguments, while the more
specific roles are more often proposed by computer scientists, who are more concerned

1There are scores of other theories with slightly different sets of roles, including Fillmore (1968), Jack-
endoff (1972), and Schank (1972); see Somers (1987) for an excellent summary.
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with the details of the realization of the arguments of specific verbs.
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Figure 1
Sample domains and frames from the FrameNet lexicon.

The FrameNet project (Baker, Fillmore, and Lowe, 1998) proposes roles that are nei-
ther as general as the ten abstract thematic roles, nor as specific as the thousands of po-
tential verb-specific roles. FrameNet roles are defined for each semantic frame. A frame
is a schematic representation of situations involving various participants, props, and
other conceptual roles (Fillmore, 1976). For example, the frame CONVERSATION, shown
in Figure 1, is invoked by the semantically related verbs argue, banter, debate, converse,
and gossip, as well as the nouns dispute, discussion, and tiff, and is defined as follows:

(7) Two (or more) people talk to one another. No person is construed as only a
speaker or only an addressee. Rather, it is understood that both (or all)
participants do some speaking and some listening—the process is understood
to be symmetrical or reciprocal.

The roles defined for this frame, and shared by all its lexical entries, include PRO-
TAGONIST1 and PROTAGONIST2 or simply PROTAGONISTS for the participants in the
conversation, as well as MEDIUM and TOPIC. Similarly, the JUDGMENT frame men-
tioned above has the roles JUDGE, EVALUEE, and REASON, and is invoked by verbs
such as blame, admire, and praise, and nouns such as fault and admiration. We refer to the
roles for a given frame as frame elements. A number of hand-annotated examples from
the JUDGMENT frame are included below to give a flavor of the FrameNet database:

(8) [Judge She ] blames [Evaluee the Government ] [Reason for failing to do enough
to help ] .

(9) Holman would characterise this as blaming [Evaluee the poor ] .

(10) The letter quotes Black as saying that [Judge white and Navajo ranchers ]
misrepresent their livestock losses and blame [Reason everything ] [Evaluee on
coyotes ] .

(11) The only dish she made that we could tolerate was [Evaluee syrup tart which2 ]
[Judge we ] praised extravagantly with the result that it became our unhealthy
staple diet.

(12) I ’m bound to say that I meet a lot of [Judge people who ] praise [Evaluee me ]
[Reason for speaking up ] but don’t speak up themselves.

2The FrameNet annotation includes both the relative pronoun in the target word’s clause and its an-
tecedent
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(13) Specimens of her verse translations of Tasso Jerusalem Delivered and Verri
Roman Nights circulated to [ Manner warm ] [Judge critical ] praise but
unforeseen circumstance prevented their publication.

(14) And if Sam Snort hails Doyler as monumental is he perhaps erring on the side
of being excessive in [ Judge his ] praise.

Defining semantic roles at this intermediate frame level helps avoid some of the
well-known difficulties of defining a unique small set of universal, abstract thematic
roles, while also allowing some generalization across the roles of different verbs, nouns,
and adjectives, each of which adds additional semantics to the general frame, or high-
lights a particular aspect of the frame. One way of thinking about traditional abstract
thematic roles, such as AGENT and PATIENT, in the context of FrameNet is that they are
frame elements defined by abstract frames such as action and motion, at the top of an
inheritance hierarchy of semantic frames (Fillmore and Baker, 2000).

The examples above illustrate another difference between frame elements and the-
matic roles as commonly described in the literature. Whereas thematic roles tend to be
arguments mainly of verbs, frame elements can be arguments of any predicate, and the
FrameNet database thus includes nouns and adjectives as well as verbs.

The examples above also illustrate a few of the phenomena that make it hard to
automatically identify frame elements. Many of these are caused by the fact that there is
not always a direct correspondence between syntax and semantics. While the subject of
blame is often the JUDGE, the direct object of blame can be an EVALUEE (e.g., the poor in
blaming the poor) or a REASON (e.g., everything in blame everything on coyotes). The identity
of the JUDGE can also be expressed in a genitive pronoun, (e.g. his in his praise) or even
an adjective (e.g. critical in critical praise).

The corpus used in this project is perhaps best described in terms of the methodol-
ogy used by the FrameNet team. We outline the process here; for more detail see John-
son et al. (2001). As the first step, semantic frames were defined for the general domains
chosen; the frame elements, or semantic roles for participants in a frame, were defined;
and a list of target words, or lexical predicates whose meaning includes aspects of the
frame, was compiled for each frame. Example sentences were chosen by searching the
British National Corpus for instances of each target word. Separate searches were per-
formed for various patterns over lexical items and part-of-speech sequences in the target
words’ context, producing a set of subcorpora for each target word, designed to capture
different argument structures and ensure that some examples of each possible syntac-
tic usage of the target word would be included in the final database. Thus, the focus
of the project was on completeness of examples for lexicographic needs, rather than on
statistically representative data. Sentences from each subcorpus were then annotated
by hand, marking boundaries of each frame element expressed in the sentence and as-
signing tags for the annotated constituent’s frame-semantic role, syntactic category (e.g.
noun phrase, NP; or prepositional phrase, PP), and grammatical function in relation to
the target word (e.g. object or complement of a verb). In the final phase of the process,
the annotated sentences for each target word were checked for consistency. In addition
to the tags just mentioned, the annotations include certain other information, which we
do not make use of in this work, such as word sense tags for some target words and tags
indicating metaphoric usages.

Tests of inter-annotator agreement were performed for data from a small number of
predicates before the final consistency check. Inter-annotator agreement at the sentence
level, including all frame element judgments and boundaries for one predicate, varied
from .66 to .82 depending on the predicate. The kappa statistic (Siegel and Castellan, Jr.,
1988) varied from .67 to .82. Because of the large number of possible categories when
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Table 1
Semantic domains with sample frames and predicates from the FrameNet lexicon.

Domain Sample Frames Sample Predicates
Body Action flutter, wink
Cognition Awareness attention, obvious

Judgment blame, judge
Invention coin, contrive

Communication Conversation bicker, confer
Manner lisp, rant

Emotion Directed angry, pleased
Experiencer-Obj bewitch, rile

General Imitation bogus, forge
Health Response allergic, susceptible
Motion Arriving enter, visit

Filling annoint, pack
Perception Active glance, savour

Noise snort, whine
Society Leadership emperor, sultan
Space Adornment cloak, line
Time Duration chronic, short

Iteration daily, sporadic
Transaction Basic buy, spend

Wealthiness broke, well-off

boundary judgments are considered, kappa is nearly identical to the inter-annotator
agreement. The system described in this paper (which gets .64/.61 precision/recall on
individual frame elements; see Table 15) correctly identifies all frame elements in 38% of
test sentences. While this 38% is not directly comparable to the .66–.82 inter-annotator
agreements, it’s clear that the performance of our system is still significantly short of
human performance on the task.

The British National corpus was chosen as the basis of the FrameNet project despite
differences between British and American usage, because, at 100 million words, it pro-
vides the largest corpus of English with a balanced mixture of text genres. The British
National Corpus includes automatically assigned syntactic part-of-speech tags for each
word, but does not include full syntactic parses. The FrameNet annotators did not make
use of, or produce, a complete syntactic parse of the annotated sentences, although some
syntactic information is provided by the grammatical function and phrase type tags of
the annotated frame elements.

The preliminary version of the FrameNet corpus used for our experiments con-
tained 67 frame types from 12 general semantic domains chosen for annotation. A com-
plete list of the semantic domains represented in our data is shown in Table 1, along
with representative frames and predicates. Within these frames, examples of a total of
1,462 distinct lexical predicates, or target words, were annotated: 927 verbs, 339 nouns,
and 175 adjectives. There are a total of 49,013 annotated sentences and 99,232 annotated
frame elements (which do not include the target words themselves).

How important is the particular set of semantic roles that underlies our system? For
example, could the optimal choice of semantic roles be very dependent on the appli-
cation which needs to exploit their information? While there may well be application-
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specific constraints on semantic roles, our semantic-role classifiers seem in practice to be
relatively independent of the exact set of semantic roles. Section 9.1 describes an exper-
iment in which we collapsed the FrameNet roles into a set of 18 abstract thematic roles.
We then retrained our classifier and achieved roughly comparable results; overall per-
formance was 82.1% for abstract thematic roles, compared to 80.4% for frame-specific
roles. While this doesn’t show that the detailed set of semantic roles is irrelevant, it does
suggest that our statistical classification algorithm, at least, is relatively robust to even
quite large changes in role identities.

3. Related Work

Assignment of semantic roles is an important part of language understanding, and has
been attacked by many computational systems. Traditional parsing and understand-
ing systems, including implementations of unification-based grammars such as HPSG
(Pollard and Sag, 1994), rely on hand-developed grammars which must anticipate each
way in which semantic roles may be realized syntactically. Writing such grammars is
time-consuming, and typically such systems have limited coverage.

Data-driven techniques have recently been applied to template-based semantic in-
terpretation in limited domains by “shallow” systems that avoid complex feature struc-
tures, and often perform only shallow syntactic analysis. For example, in the context
of the Air Traveler Information System (ATIS) for spoken dialogue, Miller et al. (1996)
computed the probability that a constituent such as Atlanta filled a semantic slot such as
DESTINATION in a semantic frame for air travel. In a data-driven approach to informa-
tion extraction, Riloff (1993) builds a dictionary of patterns for filling slots in a specific
domain such as terrorist attacks, and Riloff and Schmelzenbach (1998) extend this tech-
nique to automatically derive entire “case frames” for words in the domain. These last
systems make use of a limited amount of hand labor to accept or reject automatically
generated hypotheses. They show promise for a more sophisticated approach to gen-
eralize beyond the relatively small number of frames considered in the tasks. More re-
cently, a domain independent system has been trained by Blaheta and Charniak (2000)
on the function tags such as MANNER and TEMPORAL included in the Penn Treebank
corpus. Some of these tags correspond to FrameNet semantic roles, but the Treebank
tags do not include all the arguments of most predicates. In this work, we aim to de-
velop a statistical system to automatically learn to identify all the semantic roles for a
wide variety of predicates in unrestricted text.

4. Probability Estimation for Roles

In this section we describe the first, basic version of our statistically trained system for
automatically identifying frame elements in text. The system will be extended in later
sections. We first describe in detail the sentence- and constituent-level features on which
our system is based, and then use these features to calculate probabilities for predicting
frame element labels in Section 4.2. In this section we give results for a system that
labels roles using the human-annotated boundaries for the frame elements within the
sentence; we return to the question of automatically identifying the boundaries in Sec-
tion 5.

4.1 Features Used in Assigning Semantic Roles
The system is a statistical one, based on training a classifier on a labeled training set
and testing on a held-out portion of the data. The system is trained by first using an
automatic syntactic parser to analyze the 36,995 training sentences, matching annotated
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frame elements to parse constituents, and extracting various features from the string of
words and the parse tree. During testing, the parser is run on the test sentences and
the same features are extracted. Probabilities for each possible semantic role r are then
computed from the features. The probability computation will be described in the next
section; here we discuss the features used.

The features used represent various aspects of the syntactic structure of the sentence
as well as lexical information. The relationship between such surface manifestations and
semantic roles is the subject of linking theory — see Levin and Rappaport Hovav (1996)
for a synthesis of work in this area. In general, linking theory argues that the syntactic
realization of arguments of a predicate is predictable from semantics — exactly how this
relationship works is the subject of much debate. Regardless of the underlying mech-
anisms used to generate syntax from semantics, the relationship between the two sug-
gests that it may be possible to learn to recognize semantic relationships from syntactic
cues, given examples with both types of information.

He

PRP

NP

heard

VBD

the sound of liquid slurping in a metal container

NP

as

IN

Farrell

NNP

NP

approached

VBD

him

PRP

NP

from

IN

behind

NN

NP

PP

VP

S

SBAR

VP

S

target SourceGoalTheme

Figure 2
A sample sentence with parser output (above) and FrameNet annotation (below). Parse
constituents corresponding to frame elements are highlighted.

4.1.1 Phrase Type Different roles tend to be realized by different syntactic categories.
For example, in communication frames, the SPEAKER is likely to appear as a noun
phrase, TOPIC as a prepositional phrase or noun phrase, and MEDIUM as a preposi-
tional phrase, as in: “[Speaker We ] talked [Topic about the proposal ] [Medium over the
phone ] .”

The phrase type feature we used indicates the syntactic category of the phrase ex-
pressing the semantic roles, using the set of syntactic categories of the Penn Treebank
project, as described in Marcus, Santorini, and Marcinkiewicz (1993). In our data, frame
elements are most commonly expressed as noun phrases (NP, 47% of frame elements in
the training set), and prepositional phrases (PP, 22%). The next most common categories
are adverbial phrases (ADVP, 4%), particles (e.g. “make something up” — PRT, 2%) and
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clauses (SBAR, 2%, and S, 2%).
We used the parser of Collins (1997), a statistical parser trained on examples from

the Penn Treebank, to generate parses of the same format for the sentences in our data.
Phrase types were derived automatically from parse trees generated by the parser, as
shown in Figure 2. Given the automatically generated parse tree, the constituent span-
ning the same set of words as each annotated frame element was found, and the con-
stituent’s nonterminal label was taken as the phrase type. In cases where more than one
constituent matches due to a unary production in the parse tree, the higher constituent
was chosen.

The matching was performed by calculating the starting and ending word positions
for each constituent in the parse tree, as well as for each annotated frame element, and
matching each frame element with the parse constituent with the same beginning and
ending points. Punctuation was ignored in this computation. Due to parsing errors, or,
less frequently, mismatches between the parse tree formalism and the FrameNet an-
notation standards, there was sometimes no parse constituent matching an annotated
frame element. This occurred for 13% of the frame elements in the training set. The one
case of systematic mismatch between the parse tree formalism and the FrameNet anno-
tation standards is the FrameNet convention of including both a relative pronoun and
its antecedent in frame elements, as in the first frame element in the following sentence:

(15) In its rough state he showed it to [Agt the Professor, who ] bent [BPrt his grey
beard ] [Path over the neat script ] and read for some time in silence.

Mismatch caused by the treatment of relative pronouns accounts for 1% of the frame
elements in the training set.

During testing, the largest constituent beginning at the frame element’s left bound-
ary and lying entirely within the element was used to calculate the features. We did not
use this technique on the training set, as we expected that it would add noise to the data,
but instead discarded examples with no matching parse constituent. Our technique for
finding a near match handles common parse errors such as a prepositional phrase be-
ing incorrectly attached to a noun phrase at the right-hand edge, and it guarantees that
some syntactic category will be returned: the part-of-speech tag of the frame element’s
first word in the limiting case.

4.1.2 Governing Category The correlation between semantic roles and syntactic real-
ization as subject or direct object is one of the primary facts that linking theory attempts
to explain. It was a motivation for the case hierarchy of Fillmore (1968), which allowed
such rules as “if there is an underlying AGENT, it becomes the syntactic subject.” Sim-
ilarly, in his theory of macroroles, Van Valin (1993) describes the ACTOR as being pre-
ferred in English for the subject. Functional grammarians consider syntactic subjects to
have been historically grammaticalized agent markers. As an example of how this fea-
ture is useful, in the sentence He drove the car over the cliff, the subject NP is more likely to
fill the AGENT role than the other two NPs. We will discuss various grammatical func-
tion features that attempt to indicate a constituent’s syntactic relation to the rest of the
sentence, for example as a subject or object of a verb.

The first such feature, which we call “governing category”, or gov, has only two val-
ues, S and VP, corresponding to subjects and objects of verbs, respectively. This feature
is restricted to apply only to NPs, as it was found to have little effect on other phrase
types. As with phrase type, the feature was read from parse trees returned by the parser.
We follow links from child to parent up the parse tree from the constituent correspond-
ing to a frame element until either an S or VP node is found, and assign the value of the
feature according to whether this node is an S or VP. NP nodes found under S nodes
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are generally grammatical subjects, and NP nodes under VP nodes are generally ob-
jects. In most cases the S or VP node determining the value of this feature immediately
dominates the NP node, but attachment errors by the parser or constructions such as
conjunction of two NPs can cause intermediate nodes to be introduced. Searching for
higher ancestor nodes makes the feature robust to such cases. Even given good parses,
this feature is not perfect in discriminating grammatical functions, and in particular it
confuses direct objects with adjunct NP such as temporal phrases. For example, town
in the sentence He left town and yesterday in the sentence He left yesterday will both be
assigned a governing category of VP. Direct and indirect objects both appear directly
under the VP node. For example, in the sentence He gave me a new hose, me and a new
hose are both assigned a governing category of VP. More sophisticated handling of such
cases could improve our system.

4.1.3 Parse Tree Path Like the governing category feature described above, this feature
is designed to capture the syntactic relation of a constituent to the rest of the sentence.
However, the path feature describes the syntactic relation between the target word (that
is, the predicate invoking the semantic frame) and the constituent in question, whereas
the previous feature is independent of where the target word appears in the sentence;
that is, it identifies all subjects whether they are the subject of the target word or not.

This feature is defined as the path from the target word through the parse tree to
the constituent in question, represented as a string of parse tree nonterminals linked by
symbols indicating upward or downward movement through the tree, as shown in Fig-
ure 3. Although the path is composed as a string of symbols, our systems will treat the
string as an atomic value. The path includes, as the first element of the string, the part of
speech of the target word, and, as the last element, the phrase type or syntactic category
of the sentence constituent marked as a frame element. After some experimentation, we
settled on a version of the path feature that collapses the various part-of-speech tags for
verbs, including past tense verb (VBD), third person singular present verb (VBZ), other
present tense verb (VBP), and past participle (VBN), into a single verb tag denoted “VB”.

S

NP VP

NP

He ate some pancakes

PRP

DT NN

VB

Figure 3
In this example, the path from the target word ate to the frame element He can be represented as
VB↑VP↑S↓NP, with ↑ indicating upward movement in the parse tree and ↓ downward
movement. The NP corresponding to He is found as described in Section 4.1.1.

Our path feature is dependent on the syntactic representation used, which in our
case is the Treebank-2 annotation style (Marcus et al., 1994), as our parser is trained
on this later version of the Treebank data. Figure 4 shows the annotation for the sen-
tence They expect him to cut costs throughout the organization, which exhibits the syntactic
phenomenon known as subject-to-object raising, in which the main verb’s object is in-
terpreted as the embedded verb’s subject. The Treebank-2 style tends to be generous in

10



Automatic Labeling of Semantic Roles Gildea and Jurafsky

its usage of S nodes to indicate clauses, a decision intended to make possible a relatively
straightforward mapping from S nodes to predications. In this example, the path from
cut to the frame element him would be VB↑VP↑VP↑S↓NP, which typically indicates a
verb’s subject, despite the the accusative case of the pronoun him. For the target word
of expect in the sentence of Figure 4, the path to him would be VB↑VP↓S↓NP, rather than
the typical direct object path of VB↑VP↓NP.

S

NP

PRP

They

VP

VBP

expect

S

NP

PRP

him

VP

TO

to

VP

VB

cut

NP

NNS

costs

PP

throughout the organization

Figure 4
Treebank annotation of raising constructions.

An example of Treebank-2 annotation of an “equi” construction, in which a noun
phrase serves as an argument of both the main and subordinate verbs, is shown in
Figure 5. Here, an empty category is used in the subject position of the subordinate
clause, and is co-indexed with the NP Congress in the direct object position of the main
clause. The empty category, however, is not used in the statistical model of the parser
or shown in its output, and is also not used by the FrameNet annotation, which would
mark the NP Congress as a frame element of raise in this example. Thus, the value of our
path feature from the target word raise to the frame element Congress would be would
be VB↑VP↑VP↑S↑VP↓NP, and from the target word of persuaded the path to Congress
would be the standard direct object path VB↑VP↓NP.

Other changes in annotation style from the original Treebank style were specifically
intended to make predicate argument structure easy to read from the parse trees, and
include new empty, or null, constituents, co-indexing relations between nodes, and sec-
ondary functional tags such as subject and temporal. However, our parser output does
not include this additional information, but rather simply gives trees of phrase type cat-
egories. The sentence of Figure 4 is one example of how the change in annotation style
of Treebank-2 can affect this level of representation; the earlier style assigned the word
him an NP node directly under the VP of expect.

The most common values of the path feature, along with interpretations, are shown
in Table 2.

For the purposes of choosing a frame element label for a constituent, the path fea-
ture is similar to the governing category feature defined above. Because the path cap-
tures more information, it may be more susceptible to parser errors and data sparseness.
As an indication of this, our path feature takes on a total of 2,978 possible values in the
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to $124,875

Figure 5
Treebank annotation of equi constructions. An empty category is indicated by *, and co-indexing
by superscript 1.

Table 2
Most frequent values of path feature in the training data.

Frequency Path Description
14.2% VB↑VP↓PP PP argument/adjunct
11.8 VB↑VP↑S↓NP subject
10.1 VB↑VP↓NP object
7.9 VB↑VP↑VP↑S↓NP subject (embedded VP)
4.1 VB↑VP↓ADVP adverbial adjunct
3.0 NN↑NP↑NP↓PP prepositional complement of noun
1.7 VB↑VP↓PRT adverbial particle
1.6 VB↑VP↑VP↑VP↑S↓NP subject (embedded VP)

14.2 no matching parse constituent
31.4 Other

training data when not counting frame elements with no matching parse constituent,
and 4,086 when finding paths to the best-matching constituent in these cases. The gov-
erning category feature, on the other hand, which is defined only for NPs, has only
two values (S, corresponding to subjects, and VP, corresponding to objects). In cases in
which the path feature includes an S or VP ancestor of an NP node as part of the path
to the target word, the governing category feature is a function of the path feature. This
is the case most of the time, including for our prototypical subject (VB↑VP↑S↓NP) and
object (VB↑VP↓NP) paths. Of the 35,138 frame elements identified as NPs by the parser,
only 4% have a path feature that does not include a VP or S ancestor. One such exam-
ple is shown in Figure 6, where the small clause the remainder renting... has no S node,
giving a path feature from renting to the remainder of VB↑VP↑NP↓NP. The value of the
governing category feature here is VP, as the algorithm finds the VP of the sentence’s
main clause as it follows parent links up the tree, spuriously in this case, as the main VP
is not headed by, or relevant to, the target word renting.
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Figure 6
Example of target word renting in a small clause.

Systems based on the two features are compared in Section 4.3. The differences be-
tween the two are relatively small for the purpose of identifying semantic roles when
frame element boundaries are known. The path feature will, however, be important in
identifying which constituents are frame elements for a given target word, as it gives us
a way of navigating through the parse tree to find the frame elements in the sentence.

4.1.4 Position In order to overcome errors due to incorrect parses, as well as to see how
much can be done without parse trees, we introduced position as a feature. This feature
simply indicates whether the constituent to be labeled occurs before or after the predi-
cate defining the semantic frame. We expected this feature to be highly correlated with
grammatical function, since subjects will generally appear before a verb, and objects
after.

Although we do not have hand-checked parses against which to measure the per-
formance of the automatic parser on our corpus, the result that 13% of frame elements
have no matching parse constituent gives a rough idea of the parser’s accuracy. Almost
all of these cases are due to parser error. Other parser errors include cases in which a
constituent is found, but with the incorrect label or internal structure. This measure also
considers only the individual constituent representing the frame element — the parse
for the rest of the sentence may be incorrect, resulting in an incorrect value for the gram-
matical function features described in the previous two sections. Collins (1997) reports
88% labeled precision and recall on individual parse constituents on data from the Penn
Treebank, roughly consistent with our finding of at least 13% error.

4.1.5 Voice The distinction between active and passive verbs plays an important role
in the connection between semantic role and grammatical function, since direct objects
of active verbs often correspond in semantic role to subjects of passive verbs. From the
parser output, verbs were classified as active or passive by building a set of 10 passive-
identifying patterns. Each of the patterns requires both a passive auxiliary (some form
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of to be or to get) and a past participle. Roughly 5% of the examples were identified as
passive uses.

4.1.6 Head Word As previously noted, we expected lexical dependencies to be extremely
important in labeling semantic roles, as indicated by their importance in related tasks
such as parsing. Head words of noun phrases can be used to express selectional re-
strictions on the semantic types of role fillers. For example, in a communication frame,
noun phrases headed by Bill, brother, or he are more likely to be the SPEAKER, while
those headed by proposal, story, or question are more likely to be the TOPIC. (We did not
attempt to resolve pronoun references.)

Since the parser we used assigns each constituent a head word as an integral part
of the parsing model, we were able to read the head words of the constituents from
the parser output, using the same set of rules for identifying the head child of each
constituent in the parse tree. The head word rules are listed in Collins (1999). Preposi-
tions are considered to be the head words of prepositional phrases. The head word rules
do not attempt to distinguish between cases in which the preposition expresses the se-
mantic content of a role filler, such as PATH frame elements expressed by prepositional
phrases headed by along, through, or in, and cases in which the preposition might be
considered to be purely a case marker, as in most uses of of, where the semantic content
of the role filler is expressed by the preposition’s object. Complementizers are consid-
ered to be heads, meaning that infinitive verb phrases are always headed by to, and
subordinate clauses such as in the sentence I’m sure that he came are headed by that.

4.2 Probability Estimation
For our experiments, we divided the FrameNet corpus as follows: one-tenth of the anno-
tated sentences for each target word were reserved as a test set, and another one-tenth
were set aside as a tuning set for developing our system. A few target words where
fewer than ten examples had been chosen for annotation were removed from the cor-
pus. (Section 9 will discuss generalization to unseen predicates.) In our corpus, the av-
erage number of sentences per target word is only 34, and the number of sentences per
frame is 732 — both relatively small amounts of data on which to train frame element
classifiers.

In order to automatically label the semantic role of a constituent, we wish to esti-
mate a probability distribution indicating how likely the constituent is to fill each pos-
sible role, given the features described above and the predicate, or target word, t:

P (r|h, pt, gov, position, voice, t)

It would be possible to calculate this distribution directly from the training data by
counting the number of times each role appears with a combination of features, and
dividing by the total number of times the combination of features appears:

P (r|h, pt, gov, position, voice, t) =
#(r, h, pt, gov, position, voice, t)
#(h, pt, gov, position, voice, t)

However, in many cases, we will never have seen a particular combination of fea-
tures in the training data, and in others we will have seen the combination only a small
number of times, providing a poor estimate of the probability. The small number of
training sentences for each target word and the large number of values that the head-
word feature in particular can take (any word in the language) contribute to the sparsity
of the data. Although we expect our features to interact in various ways, we cannot train
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Table 3
Distributions calculated for semantic role identification: r indicates semantic role, pt phrase

type, gov grammatical function, h head word, and t target word, or predicate.

Distribution Coverage Accuracy Performance
P (r|t) 100.0% 40.9% 40.9%
P (r|pt, t) 92.5 60.1 55.6
P (r|pt, gov, t) 92.0 66.6 61.3
P (r|pt, position, voice) 98.8 57.1 56.4
P (r|pt, position, voice, t) 90.8 70.1 63.7
P (r|h) 80.3 73.6 59.1
P (r|h, t) 56.0 86.6 48.5
P (r|h, pt, t) 50.1 87.4 43.8

directly on the full feature set. For this reason, we built our classifier by combining prob-
abilities from distributions conditioned on a variety of subsets of the features.

Table 3 shows the probability distributions used in the final version of the system.
Coverage indicates the percentage of the test data for which the conditioning event had
been seen in training data. Accuracy is the proportion of covered test data for which
the correct role is given the highest probability, and Performance, which is the product
of coverage and accuracy, is the overall percentage of test data for which the correct
role is predicted.3 Accuracy is somewhat similar to the familiar metric of precision in
that it is calculated over cases for which a decision is made, and performance is similar
to recall in that it is calculated over all true frame elements. However, unlike a tradi-
tional precision/recall trade-off, these results have no threshold to adjust, and the task
is a multi-way classification rather than a binary decision. The distributions calculated
were simply the empirical distributions from the training data. That is, occurrences of
each role and each set of conditioning events were counted in a table, and probabili-
ties calculated by dividing the counts for each role by the total number of observations
for each conditioning event. For example, the distribution P (r|pt, t) was calculated as
follows:

P (r|pt, t) =
#(r, pt, t)
#(pt, t)

Some sample probabilities calculated from the training are shown in Table 4.
As can be seen from Table 3, there is a trade-off between more specific distributions,

which have high accuracy but low coverage, and less specific distributions, which have
low accuracy but high coverage. The lexical head-word statistics, in particular, are valu-
able when data are available, but are particularly sparse due to the large number of
possible head words.

In order to combine the strengths of the various distributions, we merged them in
various ways to obtain an estimate of the full distribution P (r|h, pt, gov, position, voice, t).
The first combination method is linear interpolation, which simply averages the proba-
bilities given by each of the distributions:

P (r|constituent) = λ1P (r|t) + λ2P (r|pt, t) +
λ3P (r|pt, gov, t) + λ4P (r|pt, position, voice) +
λ5P (r|pt, position, voice, t) + λ6P (r|h) +

3Ties for the highest probabilty role are resolved at random.
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Table 4
Sample probabilities for P (r|pt, gov, t) calculated from training data for the verb abduct. The
variable gov is defined only for noun phrases. The roles defined for the removing frame in the
motion domain are: AGENT, THEME, COTHEME (“... had been abducted with him”), and
MANNER.

P (r|pt, gov, t) Count in training data
P (r =AGT|pt =NP, gov =S, t =abduct) = .46 6
P (r =THM|pt =NP, gov =S, t =abduct) = .54 7
P (r =THM|pt =NP, gov =VP, t =abduct) = 1 9
P (r =AGT|pt =PP, t =abduct) = .33 1
P (r =THM|pt =PP, t =abduct) = .33 1
P (r =COTHM|pt =PP, t =abduct) = .33 1
P (r =MANR|pt =ADVP, t =abduct) = 1 1

λ7P (r|h, t) + λ8P (r|h, pt, t)

where
∑

i λi = 1. The geometric mean, when expressed in the log domain, is similar:

P (r|constituent) = 1
Z exp{ λ1logP (r|t) + λ2logP (r|pt, t) +

λ3logP (r|pt, gov, t) + λ4logP (r|pt, position, voice) +
λ5logP (r|pt, position, voice, t) + λ6logP (r|h) +
λ7logP (r|h, t) + λ8logP (r|h, pt, t) }

where Z is a normalizing constant ensuring that
∑

r P (r|constituent) = 1.
Results for systems based on linear interpolation are shown in the first row of Table

5. These results were obtained using equal values of λ for each distribution defined for
the relevant conditioning event (but excluding distributions for which the conditioning
event was not seen in the training data). As a more sophisticated method of choosing
interpolation weights, the Expectation Maximization (EM) algorithm was used to esti-
mate the likelihood of the observed role being produced by each of the distributions in
the general techniques of Jelinek and Mercer (1980). Because a number of the distribu-
tions used may have no training data for a given set of variables, the data were divided
according to the set of distributions available, and a separate set of interpolation weights
was trained for each set of distributions. This technique (line 2 of Table 5) did not out-
perform equal weights even on the data used to determine the weights. Although the
EM algorithm is guaranteed to increase the likelihood of the training data, that likeli-
hood does not always correspond to our scoring, which is based only on whether the
correct outcome is assigned the highest probability. Results of the EM interpolation on
held-out test data are shown in Table 6.

Experimentation has showed that the weights used have relatively little impact in
our interpolation scheme, no doubt because the evaluation metric depends only on the
ranking of the probabilities and not on their exact values. Changing the interpolation
weights rarely changes the probabilities of the roles enough to change their ranking.
What matters most is whether a combination of variables has been seen in the training
data or not.

Results for the geometric mean are shown in row 3 of Table 5. As with linear inter-
polation, the exact weights were found to have little effect, and the results shown reflect
equal weights. An area we have not explored is the use of the maximum entropy tech-
niques of e.g. Pietra, Pietra, and Lafferty (1997) to set weights for the log-linear model,
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either at the level of combining our probability distributions or at the level of calculating
weights for individual values of the features.

P(r | h, t) P(r | pt, t) P(r | pt, position, voice)

P(r | pt, position, voice, t)P(r | pt, gf, t)

P(r | t)P(r | h)

P(r | h, pt, t)

Figure 7
Lattice organization of the distributions from Table 3, with more specific distributions towards
the top.

In the “backoff” combination method, a lattice was constructed over the distribu-
tions in Table 3 from more specific conditioning events to less specific, as shown in Fig-
ure 7. The lattice is used to select a subset of the available distributions to combine. The
less specific distributions were used only when no data were present for any more spe-
cific distribution. Thus, the distributions selected are arranged in a cut across the lattice
representing the most specific distributions for which data are available. The selected
probabilities were combined with both linear interpolation and a geometric mean, with
results shown in Table 5. The final row of the table represents the baseline of always
selecting the most common role of the target word for all its constituents; that is, using
only P (r|t).

Although this lattice is reminiscent of techniques of backing off to less specific dis-
tributions commonly used in n-gram language modeling, it differs in that we only use
the lattice to select distributions for which the conditioning event has been seen in the
training data. Discounting and deleted interpolation methods in language modeling
typically are used to assign small, non-zero probability to a predicted variable unseen
in the training data even when a specific conditioning event has been seen. In our case,
we are perfectly willing to assign zero probability to a specific role (the predicted vari-
able). We are interested only in finding the role with the highest probability, and a role
given a small, non-zero probability by smoothing techniques will still not be chosen as
the classifier’s output.

The lattice presented in Figure 7 represents just one way of choosing subsets of
features for our system. The design of a feature lattice can be thought of as choosing
a set of feature subsets — once the probability distributions of the lattice have been
chosen, the graph structure of the lattice is determined by the subsumption relations
among the sets of conditioning variables. Given a set of N conditioning variables, there
are 2N possible subsets, and 22N

possible sets of subsets, giving us a doubly exponential
number of possible lattices. The particular lattice of Figure 7 was chosen to represent
some expected interaction between features. For example, we expect position and voice
to interact, and they are always used together. We expect the head word h and the phrase
type to be relatively independent predictors of the semantic role, and therefore include
them separately as roots of the backoff structure. Although we will not explore all the
possibilities for our lattice, some of the feature interactions are examined more closely
in Section 4.3.

The final system performed at 80.4% accuracy, which can be compared to the 40.9%
achieved by always choosing the most probable role for each target word, essentially
chance performance on this task. Results for this system on test data, held out during
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Table 5
Results on development set, 8167 observations.

Combining Method Correct
Equal linear interpolation 79.5%
EM linear interpolation 79.3
Geometric mean 79.6
Backoff, linear interpolation 80.4
Backoff, geometric mean 79.6
Baseline: Most common role 40.9

Table 6
Results on test set. The test set consists of 7,900 observations.

Combining Method Correct
EM linear interpolation 78.5%
Backoff, linear interpolation 76.9
Baseline: Most common role 40.6

development of the system, are shown in Table 6. Surprisingly, the EM-based interpo-
lation performed better than the lattice-based system on the held-out test set, but not
on the data used to set the weights in the EM-based system. We return to an analysis of
which roles are hardest to classify in Section 9.1.

4.3 Interaction of Features
Three of our features, position, gov, and path, attempt to capture the syntactic relation
between the target word and the constituent to be labeled, and in particular to differen-
tiate the subjects from objects of verbs. In order to compare these three features directly,
experiments were performed using each feature alone in an otherwise identical sys-
tem. Results are shown in Table 7. For the first set of experiments, corresponding to the
left-hand column of Table 7, no voice information was used, with the result that the re-
maining distributions formed the lattice of Figure 8a. “GF” (grammatical function) in
the figure represents one of the features position, gov, and path. Adding voice informa-
tion back to the system independently from the grammatical function feature results in
the lattice of Figure 8b, corresponding to the middle column of Table 7. Choosing distri-
butions such that the grammatical function and voice features are always used together
results in Figure 8c, corresponding to the right-hand column of Table 7. In each case,
as in previous results, the grammatical function feature was used only when the candi-
date constituent was an NP. The last row of Table 7 shows results using no grammatical
function feature — the distributions making use of “GF” are removed from the lattices
of Figure 8.

As a guideline for interpreting these results, with 8,167 observations, the threshold
for statistical significance with p < .05 is a 1.0% absolute difference in performance. It
is interesting to note that looking at a constituent’s position relative to the target word
performed as well as either of our features that read grammatical function off the parse
tree, both with and without passive information. The gov and path features seem roughly
equivalent in performance.

Using head word, phrase type, and target word without either position or grammat-
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Table 7
Different estimators of grammatical function. The columns of the table correspond to Figures 8a,
b, c.

Feature w/o voice independent in conjunction
voice feature with voice

path 79.4% 79.2% 80.4%
gov 79.1 79.2 80.7
position 79.9 79.7 80.5
- 76.3 76.0 76.0

ical function yielded only 76.3%, indicating that although the two features accomplish
a similar goal, it is important to include some measure of the constituent’s relationship
to the target word, whether relative position or either of the syntactic features.

Use of the active/passive voice feature seems to benefit only when the feature is tied
to grammatical function: the middle column of results consistently shows no improve-
ment over the first, while the right-hand column, where grammatical function and voice
are tied, shows gains (although only trends) of at least .5% in all cases. As before, our
three indicators of grammatical function seem roughly equivalent, with the best result
in this case being the gov feature. The lattice of Figure 8c performs as well as our system
of Figure 7, indicating that including both position and either of the syntactic relations
is redundant.

As an experiment to see how much can be accomplished with as simple a system
as possible, we constructed the minimal lattice of Figure 9, which includes just two dis-
tributions, along with a prior for the target word to be used as last resort when no data
are available. This structure assumes that head word and grammatical function are in-
dependent. It further makes no use of the passive feature. We chose the path feature as
the representation of grammatical function in this case. This system classified 76.3% of
frame elements correctly, indicating that one can obtain roughly nine-tenths the perfor-
mance of the full system with a simple approach. (We will return to a similar system for
the purposes of cross-domain experiments in Section 9.)

5. Identification of Frame Element Boundaries

In this section we examine performance on the task of locating the frame elements in the
sentence. Although our probability model considers the question of finding the bound-
aries of frame elements separately from the question of finding the correct label for a
frame element, similar features are used to calculate both probabilities. In the experi-
ments below, the system is no longer given frame element boundaries, but is still given
the human-annotated target word and the frame to which it belongs as inputs. We do
not address the task of identifying which frames come into play in a sentence, but envi-
sion that existing word sense disambiguation techniques could be applied to the task.

As before, features are extracted from the sentence and its parse and are used to
calculate probability tables, with the predicted variable in this case being fe, a binary
indicator of whether a given constituent in the parse tree is or is not a frame element.

The features used were the path feature of Section 4.1.3, the identity of the target
word, and the identity of the constituent’s head word. The probability distributions
calculated from the training data were P (fe|path), P (fe|path, t), and P (fe|h, t), where
fe indicates an event where the parse constituent in question is a frame element, path
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Figure 8
Lattice structures for comparing grammatical function features.

the path through the parse tree from the target word to the parse constituent, t the
identity of the target word, and h the head word of the parse constituent. Some sample
values from these distributions are shown in Table 8. For example, the path VB↑VP↓NP,
which corresponds to the direct object of a verbal target word, had a high probability of
being a frame element. The table also illustrates cases of sparse data for various feature
combinations.

By varying the probability threshold at which a decision is made, one can plot a
precision/recall curve as shown in Figure 10. P (fe|path, t) performs relatively poorly
due to fragmentation of the training data (recall that only about 30 sentences are avail-
able for each target word). Although the lexical statistic P (fe|h, t) alone is not useful as
a classifier, using it in linear interpolation with the path statistics improves results. The
curve labeled “interpolation” in Figure 10 reflects a linear interpolation of the form:

P (fe|p, h, t) = λ1P (fe|p) + λ2P (fe|p, t) + λ3P (fe|h, t) (16)

Note that this method can identify only those frame elements that have a corre-
sponding constituent in the automatically generated parse tree. For this reason, it is
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P(r | h, t)

P(r | t)

P(r | pt, path, t)

Figure 9
Minimal lattice.

Table 8
Sample probabilities for a constituent being a frame element.

Distribution Sample Prob. Count in training data
P (fe|path) P (fe|path =VB↑VP↓ADJP↓ADVP) = 1 1

P (fe|path =VB↑VP↓NP) = .73 3963
P (fe|path =VB↑VP↓NP↓PP↓S) = 0 22

P (fe|path, t) P (fe|path =JJ↑ADJP↓PP, t =apparent) = 1 10
P (fe|path =NN↑NP↑PP↑VP↓PP, t =departure) = .4 5

P (fe|h, t) P (fe|h =sudden, t =apparent) = 0 2
P (fe|h =to, t =apparent) = .11 93
P (fe|h =that, t =apparent) = .21 81

interesting to calculate how many true frame elements overlap with the results of the
system, relaxing the criterion that the boundaries must match exactly. Results for par-
tial matching are shown in Table 9. Three types of overlap are possible: the identified
constituent entirely within true frame element, the true frame element entirely within
identified constituent, and both sequences partially contained by the other. An example
of the first case is shown in Figure 11, where the true MESSAGE frame element is Man-
darin by a head, but due to an error in the parser output, no constituent exactly matches
the frame element’s boundaries. In this case, the system identifies two frame elements,
indicated by shading, which together span the true frame element.

When the automatically identified constituents were fed through the role labeling
system described above, 79.6% of the constituents that had been correctly identified in
the first stage were assigned the correct role in the second, roughly equivalent to the
performance when assigning roles to constituents identified by hand. A more sophis-

Table 9
Results on identifying frame elements (FEs), including partial matches. Results obtained using
P (fe|path) with threshold at .5. A total of 7,681 constituents were identified as FEs, and 8167 FEs
were present in hand annotations, of which matching parse constituents were present for 7,053
(86%).

Type of Overlap Identified Constituents Number
Exactly matching boundaries 66% 5421
Identified constituent entirely within true frame element 8 663
True frame element entirely within identified constituent 7 599
Both partially within the other 0 26
No overlap with any true frame element 13 972
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Figure 10
Precision/recall plot for various methods of identifying frame elements. Recall is calculated over
only frame elements with matching parse constituents.

ticated integrated system for identifying and labeling frame elements is described in
Section 7.1.

6. Generalizing Lexical Statistics

As can be seen from Table 3, information about the head word of a constituent is valu-
able in predicting the constituent’s role. Of all the distributions presented, P (r|h, pt, t)
predicts the correct role most often (87.4% of the time) when training data for a partic-
ular head word has been seen. However, due to the large vocabulary of possible head
words, it also has the smallest coverage, meaning that it is likely that, for a given case in
the test data, no frame element with the same head word will have been seen in the set
of training sentences for the target word in question. To capitalize on the information
provided by the head word, we wish to find a way to generalize from head words seen
in the training data to other head words. In this section we compare three different ap-
proaches to the task of generalizing over head words: automatic clustering of a large
vocabulary of head words to identify words with similar semantics; use of a hand-built
ontological resource, WordNet, to organize head words in a semantic hierarchy; and
bootstrapping to make use of unlabeled data in training the system. We will focus on
frame elements filled by noun phrases, which comprise roughly half the total.

6.1 Automatic Clustering
In order to find groups of head words that are likely to be found filling the same seman-
tic roles, an automatic clustering of nouns was performed using word co-occurrence
data from a large corpus. This technique is based on the expectation that words with
similar semantics will tend to co-occur with the same other sets of words. For exam-
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As the horses were led back... ,

SBAR

the

DT

result

NN

NP

was

VBD

announced :

VBN

Mandarin

NN

NP

by

IN

a

DT

head

NN

NP

PP

VP

VP

S

target Message

Figure 11
An example of overlap between identified frame elements and the true boundaries, caused by
parser error. In this case two frame elements identified by the classifier (shaded subtrees) are
entirely within the human annotation (indicated below the sentence), contributing two instances
to row 2 of Table 9.

ple, nouns describing foods will tend to occur as direct objects of verbs such as eat as
well as devour, savor, etc. The clustering algorithm attempts to find such patterns of co-
occurrence from the counts of grammatical relations between pairs of specific words in
the corpus, without the use of any external knowledge or semantic representation.

We extracted verb-direct object relations from an automatically parsed version of
the British National Corpus, using the parser of Carroll and Rooth (1998).4 Cluster-
ing was performed using the probabilistic model of co-occurrence described in detail
by Hofmann and Puzicha (1998). For other NLP applications of the probabilistic clus-
tering algorithm, see e.g. Rooth (1995), Rooth et al. (1999); for application to language
modeling, see Gildea and Hofmann (1999). According to this model, the two observed
variables, in this case the verb and the head noun of its object, can be considered inde-
pendent given the value of a hidden cluster variable, c:

P (n, v) =
∑

c

P (c)P (n|c)P (v|c)

One begins by setting a priori the number of values that c can take, and using the Ex-
pectation Maximization algorithm to estimate the distributions P (c), P (n|c) and P (v|c).
Deterministic annealing was used in order to prevent overfitting of the training data.

We are interested only in the clusters of nouns given by the distribution P (n|c) —
the verbs and the distribution P (v|c) are thrown away once training is complete. Other
grammatical relations besides direct object could be used, as could a set of relations.
We used the direct object (following other clustering work such as Pereira, Tishby, and
Lee (1993)) because it is particularly likely to exhibit semantically significant selectional
restrictions.

4We are indebted to Mats Rooth and Sabine Schulte im Walde for providing us with the parsed corpus.
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A total of 2,610,946 verb-object pairs were used as training data for the clustering,
with a further 290,105 pairs used as a cross-validation set to control the parameters of
the clustering algorithm. Direct objects were identified as noun phrases directly under a
verb phrase node — not a perfect technique, since it also finds nominal adjuncts such as
“I start today”. Forms of the verb to be were excluded from the data, as its co-occurrence
patterns are not semantically informative. The number of values possible for the latent
cluster variable was set to 256. (Comparable results were found with 64 clusters; the
use of deterministic annealing prevents a large numbers of clusters from resulting in
overfitting.)

The soft clustering of nouns thus generated is used as follows: for each example in
the frame-element-annotated training data, probabilities for values of the hidden cluster
variable were calculated using Bayes’ rule:

P (c|h) =
P (h|c)P (c)∑
c′ P (h|c′)P (c′)

The clustering was applied only to noun phrase constituents; the distribution P (n|c)
from the clustering is used as a distribution P (h|c) over noun head words.

Using the cluster probabilities, a new estimate of P (r|c, pt, t) is calculated for cases
where pt, the phrase type or syntactic category of the constituent, is NP:

P (r|c, pt, t) =

∑
j:ptj=pt,tj=t,rj=r P (cj |hj)∑

j:ptj=pt,tj=t P (cj |hj)

where j is an index ranging over the frame elements in the training set and their associ-
ated features pt, t, h and their semantic roles r.

During testing, a smoothed estimate of the head-word-based role probability is cal-
culated by marginalizing over cluster values:

P (r|h, pt, t) =
∑

c

P (r|c, pt, t)P (c|h)

again using P (c|h) = P (h|c)P (c)∑
c′ P (h|c′)P (c′)

.

As with the other methods of generalization described in this section, automatic
clustering was applied only to noun phrases, which represent 50% of the constituents in
the test data. We would not expect head word to be as valuable for other phrase types.
The second most common category is prepositional phrases. The head of a prepositional
phrase is considered to be the preposition according to the rules we use, and because
the set of prepositions is small, coverage is not as great a problem. Furthermore, the
preposition is often a direct indicator of the semantic role. (A more complete model
might distinguish between cases in which the preposition serves as a case or role marker,
and others in which it is semantically informative, with clustering performed on the
preposition’s object in the former case. We did not attempt to make this distinction.)
Phrase types other than NP and PP make up only a small proportion of the data.

Table 10 shows results for the use of automatic clustering on constituents identi-
fied by the parser as noun phrases. As can be seen, the vocabulary used for clustering
includes almost all (97.9%) of the test data, and the decrease in accuracy from direct lex-
ical statistics to clustered statistics is relatively small (from 87.0% to 79.7%). When com-
bined with the full system described above, clustered statistics increase performance on
NP constituents from 83.4% to 85.0% (statistically significant at p < .05). Over the entire
test set, this translates into an improvement from 80.4% to 81.2%.
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Table 10
Clustering results on NP constituents only: 4,086 instances.

Distribution Coverage Accuracy Performance
P (r|h, pt, t) 41.6 87.0 36.1∑

c P (r|c, pt, t)P (c|h) 97.9 79.7 78.0
Interpolation of unclustered distributions 100.0 83.4 83.4
Unclustered distributions + clustering 100.0 85.0 85.0

Table 11
WordNet results on NP constituents only: 4,086 instances.

Distribution Coverage Accuracy Performance
P (r|h, pt, t) 41.6 87.0 36.1
WordNet : P (r|s, pt, t) 80.8 79.5 64.1
Interpolation of unclustered distributions 100.0 83.4 83.4
Unclustered distributions + WordNet 100.0 84.3 84.3

6.2 Using a Semantic Hierarchy: WordNet
The automatic clustering described above can be seen as an imperfect method of deriv-
ing semantic classes from the vocabulary, and we might expect a hand-developed set of
classes to do better. We tested this hypothesis using WordNet (Fellbaum, 1998), a freely
available semantic hierarchy. The basic technique, when presented with a head word
for which no training examples had been seen, was to ascend the type hierarchy until
reaching a level for which training data are available. To do this, counts of training data
were percolated up the semantic hierarchy in a technique similar to that of, for example,
McCarthy (2000). For each training example, the count #(r, s, pt, t) was incremented in
a table indexed by the semantic role r, WordNet sense s, phrase type pt, and target word
t, for each WordNet sense s above the head word h in the hypernym hierarchy. In fact,
the WordNet hierarchy is not a tree, but rather includes multiple inheritance. For exam-
ple, person has as hypernyms both life form and causal agent. In such cases, we simply
took the first hypernym listed, effectively converting the structure into a tree. A further
complication is that several WordNet senses are possible for a given head word. We
simply used the first sense listed for each word; a word sense disambiguation module
capable of distinguishing WordNet senses might improve our results.

As with the clustering experiments reported above, the WordNet hierarchy was
used only for noun phrases. The WordNet hierarchy does not include pronouns — in
order to increase coverage, the personal pronouns I, me, you, he, she, him, her, we, and
us were added as hyponyms of person. Pronouns that refer to inanimate, or both ani-
mate and inanimate, objects, were not included. In addition, the CELEX English lexical
database (Baayen, Piepenbrock, and Gulikers, 1995) was used to convert plural nouns
to their singular forms.

As shown in Table 11, accuracy for the WordNet technique is roughly the same
as the automatic clustering results in Table 10 — 84.3% on NPs, as opposed to 85.0%
with automatic clustering. This indicates that the error introduced by the unsupervised
clustering is roughly equivalent to the error caused by our arbitrary choice of the first
WordNet sense for each word and the first hypernym for each WordNet sense. How-
ever, coverage for the WordNet technique is lower, largely due to the absence of proper
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Table 12
Bootstrapping results on NP constituents only: 4,086 instances.

Distribution Coverage Accuracy Performance
Ptrain(r|h, pt, t) 41.6 87.0 36.1
Pauto(r|h, pt, t) 48.2 81.0 39.0
Ptrain+auto(r|h, pt, t) 54.7 81.4 44.5
Ptrain, backoff to Pauto 54.7 81.7 44.7
Interpolation of unclustered distributions 100 83.4 83.4
Unclustered distributions + Pauto 100 83.2 83.2

nouns from WordNet, as well as the absence of non-animate pronouns (both personal
pronouns such as it and they and indefinite pronouns such as something and anyone).
A dictionary of proper nouns would be likely to help improve coverage, and a mod-
ule for anaphora resolution might help cases with pronouns, with or without the use
of WordNet. The conversion of plural forms to singular base forms was an important
part of the success of the WordNet system, increasing coverage from 71.0% to 80.8%.
Of the remaining 19.2% of all noun phrases not covered by the combination of lexical
and WordNet sense statistics, 22% consisted of head words defined in WordNet, but for
which no training data were available for any hypernym, and 78% consisted of head
words not defined in WordNet.

6.3 Bootstrapping from Unannotated Data
A third way of attempting to improve coverage of the lexical statistics is to “bootstrap”,
or label unannotated data with the automatic system described in Sections 4 and 5 and
use the (imperfect) result as further training data. This can be considered a variant of the
EM algorithm, although we use the single most likely hypothesis for the unannotated
data, rather than calculating the expectation over all hypotheses. Only one iteration of
training on the unannotated data was performed.

The unannotated data used consisted of 156,590 sentences containing the target
words of our corpus, increasing the total amount of data available to roughly six times
the 36,995 annotated training sentences.

Table 12 shows results on noun phrases for the bootstrapping method. The accuracy
of a system trained only on data from the automatic labeling (Pauto) is 81.0%, reasonably
close to the 87.0% for the system trained only on annotated data (Ptrain). Combining the
annotated and automatically labeled data increases coverage from 41.6% to 54.7%, and
performance to 44.5%. Because the automatically labeled data are not as accurate as
the annotated data, we can do slightly better by using the automatic data only in cases
where no training data is available, backing off to the distribution Pauto from Ptrain.
The last row of Table 12 shows results with Pauto incorporated into the backoff lattice of
all the features of Figure 7, which actually resulted in a slight decrease in performance
from the system without the bootstrapped data, shown in the second-to-last row. This
is presumably because, although the system trained on automatically labeled data per-
formed with reasonable accuracy, many of the cases it classifies correctly overlap with
the training data. In fact our backing-off estimate of P (r|h, pt, t) classifies correctly only
66% of the additional cases that it covers over Ptrain(r|h, pt, t).
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6.4 Discussion
The three methods of generalizing lexical statistics each had roughly equivalent accu-
racy on cases for which they were able to derive an estimate of the role probabilities
for unseen head words. The differences between the three were primarily due to how
much they could improve the coverage of the estimator, that is, how many new noun
heads they were able to handle. The automatic clustering method performed by far the
best on this metric; only 2.1% of test cases were unseen in the data used for the auto-
matic clustering. This indicates how much can be achieved with unsupervised methods
given very large training corpora. The bootstrapping technique described here, while
having a similar unsupervised flavor, made use of much less data than the corpus used
for noun clustering. Unlike the probabilistic clustering, the bootstrapping technique can
make use of only those sentences containing the target words in question. The WordNet
experiment, on the other hand, indicates both the usefulness of hand-built resources
when they apply and the difficulty of attaining broad coverage with such resources.
Combining the three systems described would indicate whether their gains are comple-
mentary or overlapping.

7. Verb Argument Structure

One of the primary difficulties in labeling semantic roles is that one predicate may be
used with different argument structures: for example, in the sentences He opened the door
and The door opened, the verb open assigns different semantic roles to its syntactic sub-
ject. In this section we compare two strategies for handling this type of alternation in
our system: a sentence-level feature for frame element groups, and a subcategorization
feature for the syntactic uses of verbs. Then a simple system using the predicate’s ar-
gument structure, or syntactic signature, as the primary feature will be contrasted with
previous systems based on local, independent features.

7.1 Priors on Frame Element Groups
The system described in previous sections for classifying frame elements makes an im-
portant simplifying assumption: it classifies each frame element independently of the
decisions made for the other frame elements in the sentence. In this section we remove
this assumption, and present a system that can make use of the information that, for
example, a given target word requires that one role always be present, or that having
two instances of the same role is extremely unlikely.

In order to capture this information, we introduce the notion of a frame element
group, which is the set of frame element roles present in a particular sentence (techni-
cally a multiset, as duplicates are possible, though quite rare). Frame element groups,
or FEGs, are unordered — examples are shown in Table 13. Sample probabilities from the
training data for the frame element groups of the target word blame are shown in Table
14.

The FrameNet corpus recognizes three types of “null instantiated” frame elements
(Fillmore, 1986), which are implied but do not appear in the sentence. An example of
null instantiation is the sentence Have you eaten?, where food is understood. We did not
attempt to identify such null elements, and any null instantiated roles are not included
in the sentence’s frame element group. This increases the variability of observed FEGs,
as a predicate may require a certain role but allow it to be null instantiated.

Our system for choosing the most likely overall assignment of roles for all the frame
elements of a sentence uses an approximation that we derive beginning with the true
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Table 13
Sample frame element groups for the verb blame.

Frame Element Group Example Sentences
{ EVALUEE } Holman would characterise this

as blaming [Evaluee the poor ] .
{ JUDGE, EVALUEE, REASON } The letter quotes Black as

saying that [Judge white and Navajo ranchers ]
misrepresent their livestock losses and
blame [Reason everything ] [Evaluee on coyotes ] .

[Judge She ] blames [Evaluee the Government ]
[Reason for failing to do enough to help ] .

{ JUDGE, EVALUEE } The only dish she made that we could tolerate was
[Evaluee syrup tart which ] [Judge we ]
praised extravagantly with the result that it became
our unhealthy staple diet.

Table 14
Frame element groups for the verb blame in the JUDGMENT frame.

Frame Element Group Prob.
{ EVAL, JUDGE, REAS } 0.549
{ EVAL, JUDGE } 0.160
{ EVAL, REAS } 0.167
{ EVAL } 0.097
{ EVAL, JUDGE, ROLE } 0.014
{ JUDGE } 0.007
{ JUDGE, REAS } 0.007

probability of the optimal role assignment r∗:

r∗ = argmaxr1..n
P (r1..n|t, f1..n)

where P (r1..n|t, f1..n) represents the probability of an overall assignment of roles ri to
each of the n constituents of a sentence, given the target word t and the various features
fi of each of the constituents. In the first step we apply Bayes’ rule to this quantity:

r∗ = argmaxr1..n
P (r1..n|t)P (f1..n|r1..n, t)

P (f1..n|t)
and in the second we make the assumption that the features of the various constituents
of a sentence are independent given the target word and each constituent’s role, and
discard the term P (f1..n|t), which is constant with respect to r:

r∗ = argmaxr1..n
P (r1..n|t)

∏
i

P (fi|ri, t)

We estimate the prior over frame element assignments as the probability of the frame
element groups, represented with the set operator {}:

r∗ = argmaxr1..n
P ({r1..n}|t)

∏
i

P (fi|ri, t)
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We then apply Bayes’ rule again:

r∗ = argmaxr1..n
P ({r1..n}|t)

∏
i

P (ri|fi, t)P (fi|t)
P (ri|t)

and finally discard the feature prior P (fi|t) as being constant over the argmax expres-
sion:

r∗ = argmaxr1..n
P ({r1..n}|t)

∏
i

P (ri|fi, t)
P (ri|t)

This leaves us with an expression in terms of the prior for frame element groups of
a particular target word P ({r1..n}|t), the local probability of a frame element given a
constituent’s features P (ri|fi, t) on which our previous system was based, and the indi-
vidual priors for the frame elements chosen P (ri|t). This formulation can be used either
to assign roles when the frame element boundaries are known, or when they are not, as
we will discuss later in this section.

Calculating empirical FEG priors from the training data is relatively straightfor-
ward, but the sparseness of the data presents a problem. In fact, 15% of the test sen-
tences had a FEG not seen in the training data for the target word in question. Using
the empirical value for the FEG prior, these sentences could never be correctly classi-
fied. For this reason, we introduce a smoothed estimate of the FEG prior, consisting of a
linear interpolation of the empirical FEG prior and the product, for each possible frame
element, of the probability of being present or not present in a sentence given the target
word:

λP ({r1..n}|t) + (1− λ)


 ∏

r∈r1..n

P (r ∈ FEG|t)
∏

r 6∈r1..n

P (r 6∈ FEG|t)



The value of λ was empirically set to maximize performance on the development set; a
value of 0.6 yielded performance of 81.6%, a significant improvement over the 80.4% of
the baseline system. Results were relatively insensitive to the exact value of λ.

Up to this point, we have considered separately the problems of labeling roles given
that we know where the boundaries of the frame elements lie (Section 4, as well as
Section 6) and finding the constituents to label in the sentence (Section 5). We now turn
to combining the two systems described above into a complete role labeling system. We
use equation 16, repeated below, to estimate the probability that a constituent is a frame
element:

P (fe|p, h, t) = λ1P (fe|p) + λ2P (fe|p, t)) + λ3P (fe|h, t)

where p is the path through the parse tree from the target word to the constituent, t is
the target word, and h is the constituent’s head word.

The first two rows of Table 15 show the results when constituents are determined
to be frame elements by setting the threshold on the probability P (fe|p, h, t) to 0.5, and
then running the labeling system of Section 4 on the resulting set of constituents. The
first two columns of results show precision and recall for the task of identifying frame
element boundaries correctly. The second pair of columns gives precision and recall for
the combined task of boundary identification and role labeling; to be counted as correct,
the frame element must both have the correct boundary and be labeled with the correct
role.

Contrary to our results using human annotated boundaries, incorporating FEG pri-
ors into the system based on automatically identified boundaries had a negative effect
on labeled precision and recall. No doubt this is due to introducing a dependency on
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Table 15
Combined results on boundary identification and role labeling.

Unlabeled Labeled
Method Prec. Recall Prec. Recall
Boundary id. + baseline role labeler 72.6 63.1 67.0 46.8
Boundary id. + labeler w/ FEG priors 72.6 63.1 65.9 46.2
Integrated boundary id. and labeling 74.0 70.1 64.6 61.2

other frame element decisions that may be incorrect — the use of FEG priors causes
errors in boundary identification to be compounded.

One way around this problem is to integrate boundary identification with role label-
ing, allowing the FEG priors and the role labeling decisions to affect which constituents
are frame elements. This was accomplished by extending the formulation

argmaxr1..n
P ({r1..n}|t)

∏
i

P (ri|fi, t)
P (ri|t)

to include FE identification decisions:

argmaxr1..n
P ({r1..n}|t)

∏
i

P (ri|fi, fei, t)P (fei|fi)
P (ri|t)

where fei is a binary variable indicating that a constituent is a frame element and P (fei|fi)
is calculated as above. When fei is true, role probabilities are calculated as before; when
fei is false, ri assumes an empty role with probability one, and is not included in the
Frame Element Group represented by {r1..n}.

One caveat in using this integrated approach is its exponential complexity: each
combination of role assignments to constituents is considered, and the number of com-
binations is exponential in the number of constituents. Although this did not pose a
problem when only the annotated frame elements were under consideration, now we
must include every parse constituent with a non-zero probability for P (fei|fi). In or-
der to make the computation tractable, we implement a pruning scheme: hypotheses
are extended by choosing assignments for one constituent at a time, and only the top
m hypotheses are retained for extension by assignments to the next constituent. Here
we set m = 10 after experimentation showed that increasing m yielded no significant
improvement.

Results for the integrated approach are shown in the last row of Table 15. Allowing
role assignments to influence boundary identification improves results both on the unla-
beled boundary identification task and on the combined identification and labeling task.
The integrated approach puts us in a different portion of the precision/recall curve from
the results in the first two rows, as it returns a higher number of frame elements (7,736
vs. 5,719). A more direct comparison can be made by lowering the probability threshold
for frame element identification from .5 to .35, in order to force the non-integrated sys-
tem to return the same number of frame elements as the integrated system. This yields
a frame element identification precision of 71.3% and recall of 67.6%, and a labeled pre-
cision of 60.8% and recall of 57.6%, which is dominated by the result for the integrated
system. The integrated system does not have a probability threshold to set; nonetheless
it comes closer to identifying the correct number of frame elements (8,167) than does the
independent boundary identifier when the theoretically optimal threshold of .5 is used
with the latter.
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7.2 Subcategorization
Recall that use of the FEG prior was motivated by the tendency of verbs to assign dif-
fering roles to the same syntactic position. For example, the verb open assigns different
roles to the syntactic subject in He opened the door and The door opened. In this section we
consider a different feature motivated by these problems: the syntactic subcategoriza-
tion of the verb. For example, the verb open seems to be more likely to assign the role
PATIENT to its subject in an intransitive context, and AGENT to its subject in a transitive
context. Our use of a subcategorization feature was intended to differentiate between
transitive and intransitive uses of a verb.

The feature used was the identity of the phrase structure rule expanding the target
word’s parent node in the parse tree, as shown in Figure 12. For example, for He closed
the door, with close as the target word, the subcategorization feature would be “VP → VB
NP”. The subcategorization feature was used only when the target word was a verb. The
various part-of-speech tags for verb forms (VBD for past tense verb forms, VBZ for third
person singular present tense, VBP for other present tense, VBG for present participles,
and VBN for past participles) were collapsed into a single tag VB. It is important to note
that we are not able to distinguish complements from adjuncts, and our subcategoriza-
tion feature could be sabotaged by cases such as The door closed yesterday. In the Penn
Treebank style, yesterday is considered an NP with tree structure equivalent to that of a
direct object. Our subcategorization feature is fairly specific: for example, the addition
of an ADVP to a verb phrase will result in a different value. We tested variations of the
feature that counted the number of NPs in a VP or the total number of children of the
VP, with no significant change in results.

The
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NN

NP

opened

VB

VP

S

He

PRP

NP

opened
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door
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S

Figure 12
Two subcategorizations for the target word open. The relevant production in the parse tree is
highlighted. On the left, the value of the feature is “VP → VB NP”; on the right it is “VP → VB”.

The subcategorization feature was used in conjunction with the path feature, which
represents the sequence of nonterminals along the path through the parse tree from the
target word to the constituent representing a frame element. Making use of the new
subcategorization feature by adding the distribution P (r|subcat, path, t) to the lattice of
distributions in the baseline system resulted in a slight improvement to 80.8% perfor-
mance from 80.4%. As with the gov feature in the baseline system, it was found beneficial
to use the subcat feature only for NP constituents.
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7.3 Discussion
Combining the Frame Element Group priors and subcategorization feature into a single
system resulted in performance of 81.6%, no improvement over using FEG priors with-
out subcategorization. We suspect that the two seemingly different approaches in fact
provide similar information. For example, in our hypothetical example of the sentences
He opened the door vs. The door opened, the verb open would have high priors for the FEGs
{ AGENT, THEME } and { THEME }, but a low prior for { AGENT }. In sentences with
only one candidate frame element (the subject in The door closed), the use of the FEG prior
will cause it to be labeled THEME even when the feature probabilities prefer labeling a
subject as AGENT. Thus the FEG prior, by representing the set of arguments the predi-
cate is likely to take, essentially already performs the function of the subcategorization
feature.

The FEG prior allows us to introduce a dependency between the classifications of
the sentence’s various constituents with a single parameter. Thus, it can handle the al-
ternation of our example without, for example, introducing the role chosen for one con-
stituent as an additional feature in the probability distribution for the next constituent’s
role. It appears that because introducing additional features can further fragment our
already sparse data, it is preferable to have a single parameter for the FEG prior.

An interesting result reinforcing this conclusion is that some of the argument-structure
features that aided the system when individual frame elements were considered inde-
pendently are unnecessary when using FEG priors. Removing the features passive and
position from the system and using a smaller lattice of only the distributions not using
these features yields an improved performance of 82.8% on the role labeling task using
hand-annotated boundaries. We believe that, because these features pertain to syntactic
alternations in how arguments are realized, they overlap with the function of the FEG
prior. Adding unnecessary features to the system can reduce performance by fragment-
ing the training data.

8. Integrating Syntactic and Semantic Parsing

In the experiments reported in previous sections, we have used the parse tree returned
by a statistical parser as input to the role labeling system. In this section, we explore the
interaction between semantic roles and syntactic parsing by integrating the parser with
the semantic role probability model. This allows the semantic role assignment to affect
the syntactic attachment decisions made by the parser, with the hope of improving the
accuracy of the complete system.

While most statistical parsing work measures performance in terms of syntactic
trees without semantic information, an assignment of role fillers has been incorporated
into a statistical parsing model by Miller et al. (2000) for the domain-specific templates
of the MUC (Defense Advanced Research Projects Agency, 1998) task. A key finding of
this project was that a system developed by annotating role fillers in text and training a
statistical system performed at the same level as one based on writing a large system of
rules, which requires much more highly skilled labor to design.

8.1 Incorporating Roles into the Parsing Model
We use as the baseline of all our parsing experiments the model described in Collins
(1999). The algorithm is a form of chart parsing, which uses dynamic programming to
search through the exponential number of possible parses by considering subtrees for
each subsequence of the sentence independently. To apply chart parsing to a probabilis-
tic grammar, independence relations must be assumed to hold between the probabilities
of a parse tree and the internal structure of its subtrees.
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Table 16
Results on rescoring parser output.

Method FE Prec. FE Recall Labeled Prec. Labeled Recall
Single best parse 74.0 70.1 64.6 61.2
Rescoring parses 73.8 70.7 64.6 61.9

In the case of stochastic context-free grammar, the probability of a tree is indepen-
dent of the internal structure of its subtrees given the topmost nonterminal of the sub-
tree. The chart parsing algorithm can simply find the highest probability parse for each
nonterminal for each substring of the input sentence. All lower probability subtrees will
never be used in a complete parse, and can be thrown away. Recent lexicalized stochas-
tic parsers such as Collins (1999), Charniak (1997), and others add additional features to
each constituent, the most important being the head word of the parse constituent.

The statistical system for assigning semantic roles described in the previous sections
does not fit easily into the chart parsing framework, as it relies on long-distance depen-
dencies between the target word and its frame elements. In particular, the path feature,
which is used to “navigate” through the sentence from the target word to its likely frame
elements, may be an arbitrarily long sequence of syntactic constituents. A path feature
looking for frame elements for a target word in another part of the sentence may ex-
amine the internal structure of a constituent, violating the independence assumptions
of the chart parser. The use of priors over Frame Element Groups further complicates
matters by introducing sentence-level features, dependent on the entire parse.

For these reasons, we use the syntactic parsing model without frame element prob-
abilities to generate a number of candidate parses, compute the best frame element as-
signment for each, and then choose the analysis with the highest overall probability. The
frame element assignments are computed as in Section 7.1, with frame element proba-
bilities being applied to every constituent in the parse.

In order to return a large number of candidate parses, the parser was modified to
include constituents in the chart even when they were equivalent, according to the pars-
ing model, to a higher probability constituent. Rather than choosing a fixed n and keep-
ing the n best constituents for each entry in the chart, we chose a probability threshold
and kept all constituents within a margin of the highest probability constituent. Thus
the mechanism is similar to the beam search used to prune non-equivalent edges, but a
lower threshold was used for equivalent edges (1

e vs. 1
100 ).

Using these pruning parameters, an average of 14.9 parses per sentence were ob-
tained. After rescoring with frame element probabilities, 18% of the sentences were as-
signed a parse different from the original best parse. Nevertheless, the impact on iden-
tification of frame elements was small; results are shown in Table 16.

The results show a slight, but not statistically significant, increase in recall of frame
elements. One possible reason that the improvement is not greater is the relatively small
number of parses per sentence available for rescoring. Unfortunately, the parsing al-
gorithm used to generate n-best parses is inefficient, and generating large numbers of
parses seems to be computationally intractable. In theory, the complexity of n-best varia-
tions of the Viterbi chart parsing algorithm is quadratic in n. One can simply expand the
dynamic programming chart to have n slots for the best solutions to each subproblem,
rather than one. As our grammar forms new constituents from pairs of smaller con-
stituents (that is, it internally uses a binarized grammar), for each pair of constituents
considered in a one-best parser, up to n2 pairs would be present in the n-best variant.

33



Computational Linguistics Volume 28, Number 3

However, the beam search used by modern parsers makes the analysis more complex.
Lexicalization of parse constituents dramatically increases the number of categories that
must be stored in the chart, and efficient parsing requires that constituents below a prob-
ability threshold be dropped from further consideration. In practice, returning a larger
number of parses with our algorithm seems to require increasing the pruning beam size
to a degree that makes run times prohibitive.

In addition to the robustness of even relatively simple parsing models, one expla-
nation for the modest improvement may be the fact that even our integrated system
includes semantic information for only one word in the sentence. As the coverage of
our frame descriptions increases, it may be possible to do better, and to model the inter-
actions between the frames invoked by a text.

9. Generalizing to Unseen Predicates

Most of the statistics used in the system as described above are conditioned on the target
word, or predicate, for which semantic roles are being identified. This limits the appli-
cability of the system to words for which training data are available. In Section 6, we
attempted to generalize across fillers for the roles of a single predicate. In this section,
we turn to the related but somewhat more difficult question of generalizing from seen
to unseen predicates.

Many ways of attempting this generalization are possible, but the simplest is pro-
vided by the frame-semantic information of the FrameNet database. We can use data
from target words in the same frame to predict behavior for an unseen word, or, if no
data are available for the frame in question, we can use data from the same broad se-
mantic domain into which the frames are grouped.

9.1 Thematic Roles
In order to investigate the degree to which our system is dependent on the set of seman-
tic roles used, we performed experiments using abstract, general semantic roles such as
AGENT, PATIENT, and GOAL. Such roles were proposed in theories of linking such as
Fillmore (1968) and Jackendoff (1972) to explain the syntactic realization of semantic
arguments. This level of roles, often called thematic roles, was seen as useful for ex-
pressing generalizations such as “If a sentence has an AGENT, the AGENT will occupy
the subject position.” Such correlations might enable a statistical system to generalize
from one semantic domain to another.

Recent work on linguistic theories of linking has attempted to explain syntactic re-
alization in terms of the fundamentals of verbs’ meaning — see Levin and Rappaport
Hovav (1996) for a survey of a number of theories. While such an explanation is desir-
able, our goal is more modest: an automatic procedure for identifying semantic roles in
text. We aim to use abstract roles as a means of generalizing from limited training data
in various semantic domains. We see this effort as consistent with various theoretical
accounts of the underlying mechanisms of argument linking, since the various theories
all postulate some sort of generalization between the roles of specific predicates.

To this end, we developed a correspondence from frame-specific roles to a set of
abstract thematic roles. For each frame, an abstract thematic role was assigned to each
frame element in the frame’s definition. Since there is no canonical set of abstract se-
mantic roles, we decided upon the list shown in Table 17. We are interested in adjuncts
as well as arguments, leading to roles such as DEGREE not found in many theories of
verb-argument linking. The difficulty of fitting many relations into standard categories
such as AGENT and PATIENT led us to include other roles such as TOPIC. In all, we used
18 roles, a somewhat richer set than is often used, but still much more restricted than
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the frame-specific roles. Even with this enriched set, not all frame-specific roles fit neatly
into one category.

Table 17
Abstract semantic roles, with representative examples from the FrameNet corpus.

Role Example
AGENT Henry pushed the door open and went in.
CAUSE Jeez, that amazes me as well as riles me.
DEGREE I rather deplore the recent manifestation of Pop; it doesn’t seem to me to have the

intellectual force of the art of the Sixties.
EXPERIENCER It may even have been that John anticipating his imminent doom ratified some such

arrangement perhaps in the ceremony at the Jordan.
FORCE If this is the case can it be substantiated by evidence from the history of developed

societies?
GOAL Distant across the river the towers of the castle rose against the sky straddling the

only land approach into Shrewsbury.
INSTRUMENT In the children with colonic contractions fasting motility did not differentiate chil-

dren with and without constipation.
LOCATION These fleshy appendages are used to detect and taste food amongst the weed and

debris on the bottom of a river.
MANNER His brow arched delicately.
NULL Yet while she had no intention of surrendering her home, it would be foolish to let

the atmosphere between them become too acrimonious.
PATH The dung-collector ambled slowly over, one eye on Sir John.
PATIENT As soon as a character lays a hand on this item, the skeletal Cleric grips it more

tightly.
PERCEPT What is apparent is that this manual is aimed at the non-specialist technician,

possibly an embalmer who has good knowledge of some medical procedures.
PROPOSITION It says that rotation of partners does not demonstrate independence.
RESULT All the arrangements for stay-behind agents in north-west Europe collapsed, but

Dansey was able to charm most of the governments in exile in London into recruit-
ing spies.

SOURCE He heard the sound of liquid slurping in a metal container as Farrell approached
him from behind.

STATE Rex spied out Sam Maggott hollering at all and sundry and making good use of
his over-sized red gingham handkerchief.

TOPIC He said, “We would urge people to be aware and be alert with fireworks because
your fun might be someone else’s tragedy.”

An experiment was performed replacing each role tag in the training and test data
with the corresponding thematic role, and training the system as described above on
the new dataset. Results were roughly comparable for the two types of semantic roles:
overall performance was 82.1% for thematic roles, compared to 80.4% for frame-specific
roles. This reflects the fact that most frames had a one-to-one mapping from frame-
specific to abstract roles, so the tasks were largely equivalent. We expect abstract roles
to be most useful when generalizing to predicates and frames not found in the training
data, the topic of the following sections.

One interesting consequence of using abstract roles is that they allow us to more eas-
ily compare the system’s performance on different roles because of the smaller number
of categories. This breakdown is shown in Table 18. Results are given for two systems:
the first assumes that the frame element boundaries are known and and the second finds
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them automatically. The second system, which is described in Section 7.1, corresponds
to the right-hand two columns in Table 18. The labeled recall column shows how often
the frame element is correctly identified, while the unlabeled recall column shows how
often a constituent with the given role is correctly identified as being a frame element,
even if it is labeled with the wrong role.

EXPERIENCER and AGENT are the roles that are correctly identified the most often
— two similar roles generally found as the subject for complementary sets of verbs.
The unlabeled recall column shows that these roles are easy to find in the sentence,
as a predicate’s subject is almost always a frame element, and the known-boundaries
column shows that they are also not often confused with other roles when it is known
that they are frame elements. The two most difficult roles in terms of unlabeled recall,
MANNER and DEGREE, are typically realized by adverbs or prepositional phrases and
considered adjuncts. It is interesting to note that these are considered in FrameNet to be
general frame elements that can be used in any frame.

Table 18
Performance broken down by abstract role. The third column represents accuracy when frame
element boundary are given to the system, while the fourth and fifth columns reflect finding the
boundaries automatically. Unlabeled recall includes cases that were identified as a frame
element but given the wrong role.

known boundaries unknown boundaries
Role Number % correct labeled recall unlabeled recall
Agent 2401 92.8 76.7 80.7
Experiencer 333 91.0 78.7 83.5
Source 503 87.3 67.4 74.2
Proposition 186 86.6 56.5 64.5
State 71 85.9 53.5 62.0
Patient 1161 83.3 63.1 69.1
Topic 244 82.4 64.3 72.1
Goal 694 82.1 60.2 69.6
Cause 424 76.2 61.6 73.8
Path 637 75.0 63.1 63.4
Manner 494 70.4 48.6 59.7
Percept 103 68.0 51.5 65.1
Degree 61 67.2 50.8 60.7
Null 55 65.5 70.9 85.5
Result 40 65.0 55.0 70.0
Location 275 63.3 47.6 63.6
Force 49 59.2 40.8 63.3
Instrument 30 43.3 30.0 73.3
(other) 406 57.9 40.9 63.1
Total 8167 82.1 63.6 72.1

This section has shown that our system can use roles defined at a more abstract level
than the corpus’s frame-level roles, and in fact that when looking at a single predicate
the choice has little effect. In the following sections, we attempt to use the abstract roles
to generalize the behavior of semantically related predicates.
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Table 19
Cross-frame performance of various distributions. f represents the FrameNet semantic frame.

Distribution Coverage Accuracy Performance
P (r|path) 95.3% 44.5% 42.4%
P (r|path, f) 87.4 68.7 60.1
P (r|h) 91.7 54.3 49.8
P (r|h, f) 74.1 81.3 60.3
P (r|pt, position, voice) 100.0 43.9 43.9
P (r|pt, position, voice, f) 98.7 68.3 67.4

9.2 Unseen Predicates
We will present results at different, successively broader, levels of generalization, mak-
ing use of the categorization of FrameNet predicates into frames and more general se-
mantic domains. We first turn to using data from the appropriate frame when no data
for the target word are available.

Table 19 shows results for various probability distributions using a division of train-
ing and test data constructed such that no target words are in common. Every tenth
target word was included in the test set. The amount of training data available for each
frame varied, from just one target word in some cases to 167 target words in the “per-
ception/noise” frame. The training set contained a total of 75,919 frame elements and
the test set 7,801 frame elements.

The results show a familiar trade-off between coverage and accuracy. Conditioning
both the head word and path features on the frame reduces coverage but improves
accuracy. A linear interpolation

λ1P (r|path, f) + λ2P (r|h, f) + λ3P (r|pt, position, voice, f)

achieved 79.4% performance on the test set, significantly better than any of the indi-
vidual distributions, and approaching the result of 82.1% for the original system, using
target-specific statistics and thematic roles. This result indicates that predicates in the
same frame behave similarly in terms of their argument structure, a finding generally
consistent with theories of linking that claim that the syntactic realization of verb argu-
ments can be predicted from their semantics. We would expect verbs in the the same
frame to be semantically similar and to have the same patterns of argument structure.
The relatively high performance of frame-level statistics indicates that the frames de-
fined by FrameNet are fine-grained enough to capture the relevant semantic similari-
ties.

This result is encouraging in that it indicates that a relatively small amount of data
can be annotated for a few words in a semantic frame and used to train a system that
can then bootstrap to a larger number of predicates.

9.3 Unseen Frames
More difficult than the question of unseen predicates in a known frame are frames for
which no training data are present. The 67 frames in the current data set cover only a
fraction of the English language, and the high cost of annotation makes it difficult to
expand the data set to cover all semantic domains. The FrameNet project is defining ad-
ditional frames and annotating data to expand the scope of the database. However, the
question of how many frames exist remains unanswered for the time being — a full ac-
count of frame semantics is expected to include multiple frames being invoked by many
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Table 20
Cross-frame performance of various distributions. d represents the FrameNet semantic domain.

Distribution Coverage Accuracy Performance
P (r|path) 96.2% 41.2% 39.7%
P (r|path, d) 85.7 42.7 36.6
P (r|h) 91.0 44.7 40.6
P (r|h, d) 75.2 54.3 40.9
P (r|d) 95.1 29.9 28.4
P (r) 100.0 28.7 28.7

words, as well as an inheritance hierarchy of frames and a more detailed representation
of each frame’s meaning.

In this section, we examine the FrameNet data by holding out an entire frame for
testing, and using other frames from the same general semantic domain for training.
Recall from Figure 1 that domains like “Communication” include frames like “Conver-
sation”, “Questioning”, and “Statement”. Because of the variation in difficulty between
different frames and the dependence of the results on which frames are held out for
testing, we used a jackknifing methodology. Each frame was used in turn as test data,
using all other frames as training data. The results in Table 20 show average results over
the entire data set.

Combining the distributions gives a system based on the (very restricted) backoff
lattice of Figure 13.

P(r | h, d) P(r | pt, path, d)

P(r | d)
Figure 13
Minimal lattice for cross-frame generalization.

This system achieves performance of 51.0%, compared to 82.1% for the original sys-
tem, and 79.4% for the within-frame generalization task. The results show that gener-
alizing across frames, even within a domain, is more difficult than generalizing across
target words within a frame. There are several factors that may account for this: the
FrameNet domains were intended primarily as a way of organizing the project, and
their semantics have not been formalized. Thus, it may not be surprising that they do
not correspond to significant generalizations about argument structure. The domains
are fairly broad, as indicated by the fact that always choosing the most common role
for a given domain (the baseline for cross-frame, within domain generalization given
as P (r|d) in Table 20, classifies 28.4% of frame elements correctly) does not do better
than the cross-domain baseline of always choosing the most common role from the en-
tire database regardless of domain (P (r) in Table 20, which yields 28.7% correct). This
contrasts with a 40.9% baseline for P (r|t), that is, always choosing the most common
role for a frame regardless of the individual constituent’s features. Domain information
does not seem to help a great deal, given no information about the frame.

Furthermore, the cross-frame experiments here are dependent on the mapping of
frame-level roles to abstract thematic roles. This mapping was done at the frame level
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— that is, FrameNet roles with the same label in two different frames may be translated
to two different thematic roles, but all target words in the same frame make use of
the same mapping. The mapping of roles within a frame is generally one-to-one, and
therefore the choice of mapping has little effect when using statistics conditioned on the
target word and on the frame as in the previous section. When attempting to generalize
between frames, the mapping determines which roles from the training frame are used
to calculate probabilities for the roles in the test frames, and the choice of mapping is
much more significant. The mapping used is necessarily somewhat arbitrary.

It is interesting to note that the path feature performs better when not conditioned
on the domain. The head word, however, seems to be more domain-specific — although
coverage declines when the context is restricted to the semantic domain, accuracy im-
proves. This seems to indicate that the identity of certain role fillers is domain-specific,
but that the syntax/semantics correspondence captured by the path feature is more gen-
eral, as predicted by theories of syntactic linking.

9.4 Unseen Domains
As general as they are, the semantic domains of the current FrameNet database cover
only a small portion of the language. The domains are defined at the level of, for exam-
ple, “Communication” and “Emotion”; a list of the 12 domains in our corpus is given in
Table 1. Whether generalization is possible across domains is an important question for
a general language-understanding system.

For these experiments, a jackknifing protocol similar to that of the previous section
was used, this time holding out one entire domain at a time and using all the others
as training material. Results for the path and head word feature are shown in Table 21.
The distributions P (r|path), P (r|h), and P (r) of Table 21 also appeared in Table 20; the
difference between the experiments is only in the division of training and test sets.

Table 21
Cross-domain performance of various distributions.

Distribution Coverage Accuracy Performance
P (r|path) 96.5% 35.3% 33.4%
P (r|h) 88.8 36.0 31.9
P (r) 100.0 28.7 28.7

A linear interpolation λ1P (r|path) + λ2P (r|h) classifies 39.8% of frame elements
correctly. This is no better than our result of 40.9% (Table 3) for always choosing a predi-
cate’s most frequent role; however, the cross-domain system does not have role frequen-
cies for the test predicates.

9.5 Discussion
As one might expect, as we make successively broader generalizations to semantically
more distant predicates, performance degrades. Our results indicate that frame seman-
tics give us a level at which generalizations relevant to argument linking can be made.
Our results for unseen predicates within the same frame are encouraging, indicating
that the predicates are semantically similar in ways that result in similar argument struc-
ture, as the semantically based theories of linking advocated by Levin (1993) and Levin
and Rappaport Hovav (1996) would predict. We hope that corpus-based systems such
as ours can provide a way of testing and elaborating such theories in the future. We
believe that some level of skeletal representation of the relevant aspects of a word’s
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meaning, along the lines of Kipper et al. (2000) and of the frame hierarchy being devel-
oped by the FrameNet project, could be used in the future to help a statistical system
generalize from similar words for which training data are available.

10. Conclusion

Our system is able to automatically label semantic roles with fairly high accuracy, indi-
cating promise for applications in various natural language tasks. Semantic roles do not
seem to be simple functions of a sentence’s syntactic tree structure, and lexical statistics
were found to be extremely valuable, as has been the case in other natural language pro-
cessing applications. Although lexical statistics are quite accurate on the data covered
by observations in the training set, the sparsity of their coverage led us to introduce
semantically motivated knowledge sources, which in turn allowed us to compare au-
tomatically derived and hand-built semantic resources. Various methods of extending
the coverage of lexical statistics indicated that the broader coverage of automatic clus-
tering outweighed its imprecision. Carefully choosing sentence-level features for repre-
senting alternations in verb argument structure allowed us to introduce dependencies
between frame element decisions within a sentence without adding too much complex-
ity to the system. Integrating semantic interpretation and syntactic parsing yielded only
the slightest gain, showing that although probabilistic models allow easy integration of
modules, the gain over an unintegrated system may not be large due to the robustness
of even simple probabilistic systems.

Many aspects of our system are still quite preliminary. For example, our system
currently assume knowledge of the correct frame type for the target word in order to
determine the semantic roles of its arguments. A more complete semantic analysis sys-
tem would thus require a module for frame-disambiguation. It is not clear how difficult
this problem is, and how much it overlaps with the general problem of word-sense dis-
ambiguation.

Much else remains to be done to apply the system described here to the interpreta-
tion of general text. One technique to deal with the sparseness of lexical statistics would
be the combination of FrameNet data with named entity systems for recognizing times,
dates, and locations — allowing the effort which has gone into recognizing these items,
typically adjuncts, with the FrameNet data, which is more focused on arguments. Gen-
eralization to predicates for which no annotated data are available may be possible us-
ing other lexical resources or automatic clustering of predicates. Automatically learning
generalizations about the semantics and syntactic behavior of predicates is an exciting
problem for the years to come.
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Appendix

Table 22
Penn Treebank part-of-speech tags (including punctuation).

Tag Description Example Tag Description Example
CC Coordin. Conjunction and, but, or SYM Symbol +,%, &
CD Cardinal number one, two, three TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conj of, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participle eaten
JJR Adj., comparative bigger VBP Verb, non-3sg pres eat
JJS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS Noun, plural llamas WRB Wh-adverb how, where
NNP Proper noun, singular IBM $ Dollar sign $
NNPS Proper noun, plural Carolinas # Pound sign #
PDT Predeterminer all, both “ Left quote (‘ or “)
POS Possessive ending ’s ” Right quote (’ or ”)
PRP Personal pronoun I, you, he ( Left parenthesis ( [, (, {, <)
PRP$ Possessive pronoun your, one’s ) Right parenthesis ( ], ), }, >)
RB Adverb quickly, never , Comma ,
RBR Adverb, comparative faster . Sentence-final punc (. ! ?)
RBS Adverb, superlative fastest : Mid-sentence punc (: ; ... – -)
RP Particle up, off

41



Computational Linguistics Volume 28, Number 3

Table 23
Penn Treebank constituent (or nonterminal) labels.

Label Description
ADJP Adjective Phrase
ADVP Adverb Phrase
CONJP Conjunction Phrase
FRAG Fragment
INTJ Interjection
NAC Not a constituent
NP Noun Phrase
NX Head subphrase of complex noun phrase
PP Prepositional Phrase
QP Quantifier Phrase
RRC Reduced Relative Clause
S Simple declarative clause (sentence)
SBAR Clause introduced by complementizer
SBARQ Question introduced by wh-word
SINV Inverted declarative sentence
SQ Inverted yes/no question
UCP Unlike Co-ordinated Phrase
VP Verb Phrase
WHADJP Wh-adjective Phrase
WHADVP Wh-adverb Phrase
WHNP Wh-noun Phrase
WHPP Wh-prepositional Phrase
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