
Submitted to Computational Linguistics Dec 15, 1995

Learning Bias and
Phonological Rule Induction

Daniel Gildea
Daniel Jurafsky
International Computer Science Institute
1947 Center Street, Berkeley, CA 94704
& University of California at Berkeley

A fundamental debate in the machine learning of language has been the role of prior knowledge
in the learning process. Purely nativist approaches, such as the Principles and Parameters model,
build parameterized linguistic generalizations directly into the learning system. Purely empirical
approaches use a general, domain-independent learning rule (Error Back-Propagation, Instance-
Based Generalization, Minimum Description Length) to learn linguistic generalizations directly
from the data.

In this paper we suggest that an alternative to the purely nativist or purely empiricist
learning paradigms is to represent the prior knowledge of language as a set of abstract learning
biases, which guide an empirical inductive learning algorithm. We test our idea by examining the
machine learning of simple Sound Pattern of English (SPE)-style phonological rules. We represent
phonological rules as finite state transducers which accept underlying forms as input and generate
surface forms as output. We show that OSTIA, a general-purpose transducer induction algorithm,
was incapable of learning simple phonological rules like flapping. We then augmented OSTIA with
three kinds of learning biases which are specific to natural language phonology, and are assumed
explicitly or implicitly by every theory of phonology: Faithfulness (underlying segments tend
to be realized similarly on the surface), Community (Similar segments behave similarly), and
Context (Phonological rules need access to variables in their context). These biases are so
fundamental to generative phonology that they are left implicit in many theories. But explicitly
modifying the OSTIA algorithm with these biases allowed it to learn more compact, accurate, and
general transducers, and our implementation successfully learns a number of rules from English
and German. Furthermore, we show that some of the remaining errors in our augmented model
are due to implicit biases in the traditional SPE-style rewrite system which are not similarly
represented in the transducer formalism, suggesting that while transducers may be formally
equivalent to SPE-style rules, they may not have identical evaluation procedures.

Our algorithm is not intended as a cognitive model of human learning; but it is intended
to suggest the kind of biases which may be added to empiricist induction models to build a
cognitively and computationally plausible learning model for phonological rules.

1. Introduction

A fundamental debate in the machine learning of language has been the role of prior
knowledge in the learning process. Nativist models suggest that learning in a complex
domain like natural language requires that the learning mechanism either have some pre-
vious knowledge about language, or some learning bias that helps direct the formation
of correct generalizations. In linguistics, theories of such prior knowledge are referred

1

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

to as Universal Grammar (UG); nativist linguistic models of learning assume, implicitly
or explicitly, that some kind of prior knowledge which contributes to language learning
is innate, a product of evolution. Despite sharing this assumption, nativist researchers
disagree strongly about the exact constitution of this Universal Grammar. Many models,
for example, assume that much of the prior knowledge which children bring to bear in
learning language is not linguistic at all, but derives from constraints imposed by our
general cognitive architecture. Others, such the influential Principles and Parameters
model (Chomsky, 1981), asserts that what is innate is linguistic knowledge itself, and
that the learning process consists mainly of searching for the values of a relatively small
number of parameters. Such nativist models of phonological learning include, for ex-
ample, Dresher and Kaye’s (1990) model of the acquisition of stress-assignment rules,
and Tesar and Smolensky’s (1993) model of learning in Optimality Theory.

Other scholars have argued that a purely nativist, parameterized learning algorithm
is incapable of dealing with the noise, irregularity, and great variation of human lan-
guage data, and that a more empiricist learning paradigm is possible. Such data-driven
models include the stress acquisition models of Daelemans, Gillis, and Durieux (1994)
(an application of Instance-Based Learning (IBL, Aha, Kibler, and Albert 1991)) and
Gupta and Touretzky (1977) (an application of Error Back Propagation (BP)), as well
as Ellison’s (1992) Minimum-Description-Length (MDL)-based model of the acquisition
of the basic concepts of syllabicity and the sonority hierarchy. In each of these cases a
general, domain-independent learning rule (BP, IBL, MDL) is used to learn directly from
the data.

In this paper we suggest that an alternative to the purely nativist or purely empiricist
learning paradigms is to represent the prior knowledge of language as a set of abstract
learning biases, which guide an empirical inductive learning algorithm. Such biases are
implicit, for example, in the work of Riley (1991) and Withgott and Chen (1993), who
induced decision trees to predict the realization of a phone in its context. By initializing
the decision tree inducer with a set of phonological features, they essentially gave it a
priori knowledge about the kind of phonological generalizations that the system might
be expected to learn.

Our idea is that abstract biases from the domain of phonology, whether innate (i.e.
part of UG) or merely learned prior to the learning of rule cans be used to guide a
domain-independent empirical induction algorithm. We test this idea by examining the
machine learning of simple Sound Pattern of English (SPE)-style phonological rules
(Chomsky and Halle, 1968), beginning by representing phonological rules as finite state
transducers which accept underlying forms as input and generate surface forms as
output. Johnson (1972) first observed that traditional phonological rewrite rules can be
expressed as regular (finite-state) relations if one accepts the constraint that no rule may
reapply directly to its own output. This means that finite state transducers can be used
to represent phonological rules, greatly simplifying the problem of parsing the output of
phonological rules in order to obtain the underlying, lexical forms (Koskenniemi, 1983;
Karttunen, 1993; Pulman and Hepple, 1993; Bird, 1995; Bird and Ellison, 1994). The fact
that the weaker generative capacity of FSTs makes them easier to learn than arbitrary
context-sensitive rules has allowed the development of a number of learning algorithms
including those for deterministic finite-state automata(Freund et al., 1993), deterministic
transducers (Oncina, Garcı́a, and Vidal, 1993), as well as non-deterministic (stochastic)
FSAs (Stolcke and Omohundro, 1993; Stolcke and Omohundro, 1994; Ron, Singer, and
Tishby, 1994). Like the empiricist models we discussed above, these algorithms are
all general-purpose; none include any domain knowledge about phonology, or indeed
natural language; at most they include a simple bias toward simpler models (like the
MDL-inspired algorithms of Ellison (1992)).

2

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

Our experiments were based on the OSTIA (Oncina, Garcı́a, and Vidal, 1993) algo-
rithm, which learns general subsequential finite state transducers (formally defined in
x2). We presented pairs of underlying and surface forms to OSTIA, and examined the
resulting transducers. Although OSTIA is capable of learning arbitrary s.f.s.t.’s in the
limit, large dictionaries of actual English pronunciations did not give enough samples
to correctly induce phonological rules.

We then augmented OSTIA with three kinds of learning biases which are specific to
natural language phonology, and are assumed explicitly or implicitly by every theory
of phonology: Faithfulness (underlying segments tend to be realized similarly on the
surface), Community (similar segments behave similarly), and Context (phonological
rules need access to variables in their context). These biases are so fundamental to gen-
erative phonology that they are left implicit in many theories. But explicitly modifying
the OSTIA algorithm with these biases allowed it to learn more compact, accurate, and
general transducers, and our implementation successfully learns a number of rules from
English and German. The algorithm is also successful in learning the composition of
multiple rules applied in series. The more difficult problem of decomposing the learned
underlying/surface correspondences into simple, individual rules remains unsolved.

Our transducer induction algorithm is not intended as a cognitive model of human
phonological learning. First, for reasons of simplicity, we base our model on simple
segmental SPE-style rules; it is not clear what the formal correspondence is of these
rules to the more recent theoretical machinery of phonology (e.g. optimality constraints).
Second, we assume that a cognitive model of automaton induction would be more
stochastic and hence more robust than the OSTIA algorithm which underlies our work.1

Rather, our model is intended to suggest the kind of biases which may be added
to empiricist induction models to build a cognitively and computationally plausible
learning model for phonological rules. Ellison (1994), for example, has shown how
to map optimality constraints (Prince and Smolensky, 1993) to finite-state automata;
given this result, models of automaton induction enriched in the way we suggest may
contribute to the current debate on optimality learning. Our model is not, however,
necessarily nativist; these biases may be innate, but they may also be the product of
some other earlier learning algorithm, as the results of Ellison (1992) and Brown et
al. (1992) suggest (see x5.2). So our results suggest that assuming in the system some
very general and fundamental properties of phonological knowledge (whether innate
or previously learned) and learning others empirically may obviate the need to build
in every phonological constraint, as for example nativist models of OT learning suggest
(Prince and Smolensky, 1993; Tesar and Smolensky, 1993; Tesar, 1995). We hope in this
way to begin to help assess the role of computational phonology in answering the general
question of the necessity and nature of linguistic innateness in learning.

2. Transducer representation

Since Johnson’s (1972) work, researchers have proposed a number of different ways
to represent phonological rules by transducers. The most popular method is the two-

1 Although our assumption of the simultaneous presentation of surface and underlying forms to the
learner may seem at first glance to be unnatural as well, it is quite compatible with certain theories of
word-based morphology. For example, in the word-based morphology of Aronoff (1976), word-formation
rules apply only to already existing words. Thus the underlying form for any morphological rule must be
a word of the language; even if this word-based morphology assumption holds only for a subset of the
language (see e.g. Orgun (1995)) it is not unreasonable to assume that a part of the learning process will
involve previously-identified underlying-surface pairs.

3

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

level formalism of Koskenniemi (1983), based on Johnson (1972) and the (belatedly
published) work of Kaplan and Kay (1994), and various implementationsand extensions
(summarized and contrasted in Karttunen (1993); we will henceforth assume a basic
understanding of the principles of two-level phonology; interested readers should refer
to Karttunen’s paper for details). An example of a two-level transducer is shown in
Figure 1. Each arc has an input symbol and an output symbol (either of which can be
null). Transductions correspond to paths through the transducer, where the input string
is formed by concatenating the input symbols of the arcs taken, and the output string
by concatenating the output symbols of the arcs. The transducer’s input string is the
phonologically underlying form, while the transducer’s output is the surface form. A
transduction is valid if there is a corresponding path beginning in state 0 and ending in
an accepting state (indicated by double circles in the figure). Table 1 shows our phone set
– an ASCII symbol set based on the ARPA-sponsored ARPAbet alphabet – with the IPA
equivalents.

V

V
t : dx

t : t
C : C
V : V
r : r

1

23

0

V
r

C
t
V
r

C V

t : t

Ex: batter

b ae1 t er
Underlying:

b ae1 dx er
Surface:

Figure 1
Nondeterministic Transducer for English Flapping: Labels on arcs are of the form (input
symbol):(output symbol). Labels with no colon indicate identical input and output symbols. ‘V’
indicates any unstressed vowel, ’V́’ any stressed vowel, ‘dx’ a flap, and ‘C’ any consonant other
than ‘t’, ‘r’ or ‘dx’.

More recently, Bird and Ellison (1994) show that a one-level finite-state automa-
ton can model richer phonological structure, such as the multi-tier representations of
autosegmental phonology. In their model, each tier is modeled by a finite-state au-
tomaton, and autosegmental association by the synchronization of two automata. This
synchronized-automata-based rather than transducer-based model generalizes over the
two-level models of Koskenniemi (1983) and Karttunen (1993) but also the three-level
models of Lakoff (1993), Goldsmith (1993), and Touretzky and Wheeler (1990). In order
to take advantage of recent work in transducer induction, however, we have chosen to
use the transducer rather than synchronized-automata approach, representing rules as
subsequential finite state transducers. Subsequential transducers were first introduced by
Berstel (1979), a brief definition follows. As discussed above, the focus of our research
is on adding prior knowledge to help guide an induction algorithm, rather than the
particular automaton approach chosen. Thus we believe that our results on adding prior
knowledge to a transducer induction algorithm should inform future work on the in-
duction of other automata such as these synchronized-automata, despite the fact that
our experiments were carried out with simple two-level automata and SPE-style rules

4

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

IPA ARPAbet IPA ARPAbet
b b p p
d d t t
g g k k
� aa s s
æ ae z z
� ah M sh
= ao ` zh
� eh f f
� er v v
) ih S th
i iy � dh
o ow tM ch
? uh dz jh
u uw h hh
�w aw
�y ay y y
e ey r r
=y oy w w
lj el l l

mj em m m
nj en n n
� ax 8 ng
+ ix D dx
� axr

Table 1
A slighly expanded ARPAbet phoneset (including alveolar flap, syllabic nasals and liquids, and
reduced vowels), and the corresponding IPA symbols. Vowels may be annotated with the
numbers 1 and 2 to indicate primary and secondary stress, respectively.

(Chomsky and Halle, 1968).
Subsequential finite state transducers are a subtype of finite state transducers with

the following properties:

1. The transducer is deterministic, that is, there is only one arc leaving a
given state for each input symbol.

2. Each time a transition is made, exactly one symbol of the input string is
consumed.

3. A unique end of string symbol is introduced. At the end of each input
string, the transducer makes an additional transition on the end of string
symbol.

4. All states are accepting.

The length of the output string associated with a transition of a subsequential transducer
is unconstrained.

A subsequential relation is any relation between strings that can represented by the
input to output relation of a subsequential finite state transducer. While subsequential

5

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

relations are formally a subset of regular relations, any relation over a finite input
language is subsequential if each input has only one possible output.

A sample phonological rule, the flapping rule for English, is shown in (1). (2) shows
a positive application of the rule; (3) shows a case where the conditions for the rule are
not met. The rule realizes an underlying t as a flap after a stressed vowel and zero or
more r’s, and before an unstressed vowel. The subsequential transducer for (1) is shown
in Figure 2.

(1) t! dx / V́ r� V

(2) latter: l ae1 t er! l ae1 dx er

(3) laughter: l ae1 f t er! l ae1 f t er

V : V

2

0 1
V C

r

C
t

V

V
r

V V: t

: t #
: t rr
dx

Flapping about
to occur

Seen stressed
vowel

Start state
V

t : 0C : t C

Ex: batter

b ae1 t er

b ae1 dx er0

Underlying:

Surface:

Figure 2
Subsequential Transducer for English Flapping: ‘#’ is the end of string symbol.

The most significant difference between our subsequential transducers and two-
level models is that the two-level transducers described by Karttunen (1993) are non-
deterministic. In addition, Karttunen’s transducers may have only zero or one symbol
as either the input or output of an arc, and they have no special end of string symbol.
Finally, his transducers explicitly include both accepting and non-accepting states. All
states of a subsequential transducer are valid final states. It is possible for a transduction
to fail by finding no next transition to make, but this occurs only on bad input, for which
no output string is possible.

These representational differences between the two formalisms lead to different
ways of handling certain classes of phonological rules, particularly those that depend
on the context to the right of the affected symbol. The subsequential transducer does
not emit any output until enough of the right hand context has been seen to determine
how the input symbol is to be realized. Figure 2 shows the subsequential equivalent of
Figure 1. This transducer emits no output upon seeing a t when the machine is at state
1. Rather, the machine goes to state 2 and waits to see if the next input symbol is the
requisite unstressed vowel; depending on this next input symbol, the machine will emit
the t or a dx along with the next input symbol when it makes the transition from state
2 to state 0.

In contrast, the non-deterministic two-level-style transducer shown in Figure 1 has
two possible arcs leaving state 1 upon seeing a t, one with t as output and one with
dx. If the machine takes the wrong transition, the subsequent transitions will leave the

6

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

transducer in a non-accepting state, or a state will be reached with no transition on the
current input symbol. Either way, the transduction will fail.

Generating a surface form from an underlying form is more efficient with a subse-
quential transducer than with a nondeterministic transducer, as no search is necessary
in a deterministic machine. Running the transducer backwards to parse a surface form
into possible underlying forms, however, remains non-deterministic in subsequential
transducers. In addition, a subsequential transducer may require many more states than
a non-deterministic transducer to represent the same rule. Our reason for choosing sub-
sequential transducers, then, is solely that efficient techniques exist for learning them,
as we will see in the next section. In particular, the algorithm used relies solely on pos-
itive evidence, rather than making use of transductions marked as invalid, or asking
questions of an informant.

3. The OSTIA Algorithm

Our phonological-rule induction algorithm is based on augmenting the Onward Subse-
quential Transducer Inference Algorithm (OSTIA) of Oncina, Garcı́a, and Vidal (1993).
This section outlines the OSTIA algorithm to provide background for the modifications
that follow. For further detail, see Oncina, Garcı́a, and Vidal (1993).

OSTIA takes as input a training set of valid input-output pairs for the transduction to
be learned. The algorithm begins by constructing a tree transducer which covers all the
training samples according to the following procedure: for each input pair, the algorithm
walks from the initial state taking one transition on each input symbol, as if doing a
transduction. When there is no move on the next input symbol from the present state, a
new branch is grown on the tree. The entire output string of each transduction is initially
stored as the output on the last arc of the transduction, that is, the arc corresponding to
the end of string symbol. An example of an initial tree transducer constructed by this
process is shown in Figure 3.

b

b

t er

er

b

b

ae n

n

d

d

b

b

ae

ae

t

t

bat: band:

Input pairs:
ae

batter:
ae

dx ae

b : 0 ae : 0

n : 0

t : 0

: b ae t

er : 0

d : 0

0 1 2

3

4

5 6

7 8 9
: b ae n d

: b ae dx er

Figure 3
Initial Tree Transducer for “bat”, “batter”, and “band” with Flapping Applied

As the next step, the output symbols are “pushed forward” as far as possible towards
the root of the tree. This process begins at the leaves of the tree and works its way to
the root. At each step, the longest common prefix of the outputs on all the arcs leaving
one state is removed from the output strings of all the arcs leaving the state and suffixed
to the (single) arc entering the state. This process continues until the longest common
prefix of the outputs of all arcs leaving each state is the null string – the definition of an
onward transducer. The result of making the transducer of Figure 3 onward is shown in
Figure 4.

7

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

ae : 0

d : 0

0 1 2

3

4

5 6

7 8 9

b : b ae

t : 0

: t

er : dx er
: 0

: 0
n : n d

Figure 4
Onward Tree Transducer for “bat”, “batter”, and “band” with Flapping Applied

At this point, the transducer covers all and only the strings of the training set. OSTIA
now attempts to generalize the transducer, by merging some of its states together. For
each pair of states (s; t) in the transducer, the algorithm will attempt to merge s with t,
building a new state with all of the incoming and outgoing transitions of s and t. The
result of the first merging operation on the transducer of Figure 4 is shown in Figure 5.

t : 0

d : 0

0 2

3

4

5 6

7 8 9

b : b ae

ae : 0

n : n d

: t

er : dx er
: 0

: 0
Figure 5
Result of Merging States 0 and 1 of Figure 4

m : p

n : d
ae : ae n

ae : ae m

0

1 2

3 4

n : n d

m : m p
ae : ae 1

4

0

2

Figure 6
Example Push Back Operation and State Merger: Input words “and” and “amp”

A conflict arises whenever two states are merged that have outgoing arcs with the
same input symbol. When this occurs, an attempt is made to merge the destination states
of the two conflicting arcs. First, all output symbols beyond the longest common prefix
of the outputs of the two arcs are “pushed back” to arcs further down the tree. This
operation is only allowed under certain conditions which guarantee that the transduc-
tions accepted by the machine are preserved. The push back operation allows the two
arcs to be combined into one and their destination states to be merged. An example of a
push back operation and subsequent merger on a transducer for the words “and” and
“amp” is shown in Figure 6. This method of resolving conflicts repeats until no conflicts
remain, or until resolution is impossible. In the latter case, the transducer is restored

8

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

to its configuration before the merger causing the original conflict, and the algorithm
proceeds by attempting to merge the next pair of states.

4. Problems Using OSTIA to Learn Phonological Rules

The OSTIA algorithm can be proven to learn any subsequential relation in the limit. That
is, given an infinite sequence of valid input/output pairs, it will at some point derive
the target transducer from the samples seen so far. When trying to learn phonological
rules from finite linguistic data, however, we found that the algorithm was unable to
learn a correct, minimal transducer.

We tested the algorithm using a synthetic corpus of 99,279 input/output pairs. Each
pair consisted of an underlying pronunciation of an individual word of English and
a machine generated “surface pronunciation”. The underlying string of each pair was
taken from the phoneme-based CMU pronunciation dictionary (CMU, 1993). The surface
string was generated from each underlying form by mechanically applying the one or
more rules we were attempting to induce in each experiment.

In our first experiment, we applied the flapping rule in (4) to training corpora of
between 6250 and 50,000 words. Figure 7 shows the transducer induced from 25,000
training samples, and Table 2 shows some performance results. For obvious reasons we
have left off the labels on the arcs in Figure 7. The only difference between underlying
and surface forms in both the training and test sets in this experiment is the substitution
of dx for a t in words where flapping applies. Therefore, inaccuracies in predicting
output strings represent real errors in the transducer, rather than manifestations of other
phonological phenomena.

(4) t! dx / V́ r� V

Table 2
Unmodified OSTIA Learning Flapping on 49,280 word test set: Error rates are the percentage of
incorrect transductions

Samples States % Error
6250 19 2.32

12500 257 16.40
25000 141 4.46
50000 192 3.14

Figure 7 and Table 2 show OSTIA’s failure to learn the simple flapping rule. Recall
that the optimal transducer, shown in Figure 2, has only 3 states, and would have
no error on the test set of synthetic data. OSTIA’s induced transducer not only is much
more complex (between 19 and 257 states)but has a high percentage of error. In addition,
giving the model more training data does not seem to help it induce a smaller or better
model; the best transducer was the one with the smallest number of training samples.

Since OSTIA can learn any subsequential relation in the limit, why these difficulties
with the phonological rule induction task? The key provision here, of course, is “the
limit”; we are clearly not giving OSTIA sufficient training data. There are two reasons
this data may not be present in any reasonable training set. First, the necessary number
of sample transductions may be several times the size of any natural language’s vocab-
ulary. Thus even the entire vocabulary of language may be insufficient in size to learn

9

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131

132 133 134 135 136 137 138 139 140

Figure 7
First Attempt of OSTIA to Learn Flapping: Transducer induced on 25,000 samples

an efficient or correct transducer. Second, even if the vocabulary were larger, the nec-
essary sample may require types of strings that are not found in the language because
of phonotactic or other reasons. Systematic phonological constraints such as syllable
structure may make it impossible to obtain the set of examples that would be necessary
for OSTIA to learn the target rule. For example, given one training set of examples of
English flapping, the algorithm induced a transducer that realizes an underlying t as
dx either in the environment �V r� V or after a sequence of six consonants. This is pos-
sible since such a transducer will accurately cover the training set, as no English words
contain six consonants followed by a t. The lack of natural language bias causes the
transducer to miss correct generalizations and learning incorrect transductions.

0 1
t : 0

er : dx er
: t

b : b ae
ae : 0
n : n d
d : 0
: 0

Inputs:
bat
batter
band

Figure 8
Final Result of Merging Process on Transducer from Figure 4

One example of an unnatural induction is shown in Figure 8, the final transducer

10

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

induced by OSTIA on the three word training set of Figure 4. OSTIA has a tendency
to produce overly “clumped” transducers, as illustrated by the arcs with output b ae
and n d in Figure 8, or even Figure 4. The transducer of Figure 8 will insert an ae
after any b, and delete any ae from the input. OSTIA’s default behavior is to emit the
remainder of the output string for a transduction as soon as enough input symbols
have been seen to uniquely identify the input string in the training set. This results in
machines which may, seemingly at random, insert or delete sequences of four or five
segments. This causes the machines to generalize in linguistically implausible ways, i.e.
producing output strings incorrectly bearing little relation to their input. In addition, the
incorrect distribution of output symbols prevents the optimal merging of states during
the learning process, resulting in large and inaccurate transducers. The higher number
of states reduces the number of training examples that pass through each state, making
incorrect state mergers possible and introducing errors on test data.

A second problem is OSTIA’s lack of generalization. The vocabulary of a language
is full of accidental phonological gaps. Without an ability to use knowledge about
phonological features to generalize across phones, OSTIA’s transducers have missing
transitions for certain phones from certain states. For example, the transducer of Figure 8
will fail completely upon seeing any symbol other than er or end-of-string after a t. Of
course this transducer is only trained on three samples, but the same problem occurs
with transducers trained on large corpora.

As a final example, if the OSTIA algorithm is trained on cases of flapping in which
the preceding environment is every stressed vowel but one, the algorithm has no way
of knowing that it can generalize the environment to all stressed vowels. Again, the
algorithm needs knowledge about classes of segments to fill in these accidental gaps in
training data coverage.

5. Augmenting the Learner with Phonological Knowledge

In order to give OSTIA the prior knowledge about phonology to deal with the problems
in x4, we augmented it with three biases, each of which is assumed explicitly or implicitly
by most if not all theories of phonology. These biases are intended to express universal
constraints about the domain of natural language phonology.

Faithfulness: Underlying segments tend to be realized similarly on the surface.

Community: Phonologically similar segments behave similarly.

Context: Phonological rules need access to variables in their context.

As discussed above, our algorithm is not intended as a direct model of human
learning of phonology. Rather, since only by adding these biases was a general-purpose
algorithm able to learn phonological rules, and since most theories of phonology assume
these biases as part of their model, we suggest that these biases may be part of the prior
knowledge or state of the learner.

5.1 Faithfulness
As we saw above, the unaugmented OSTIA algorithm often outputs long clumps of
segments when seeing a single input phone. Although each particular clump may be
correct for the exact input example which contained it, it is rarely the case in general
that a certain segment is invariably followed by a string of 6 other specific segments.
Thus the model will tend to produce errors when it sees this input phone in a similar left
context. This behavior is caused by a paucity of training data, but even with a reasonably

11

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

large training set, we found it was often the case that some particular strings of segments
happened to only occur once.

In order to resolve this problem, and the related cases of arbitrary phone-deletion
we saw above, we need to appeal to the fact that theories of generative phonology have
always assumed that, all things being equal, surface forms tend to resemble underlying
forms. This assumption was implicit, for example, in Chomsky and Halle’s (1968) MDL-
based evaluation procedure for phonological rule systems. They ranked the ‘value’ of
a grammar by the inverse of the number of symbols in the system. According to this
metric, clearly, a grammar which does not contain ‘trivial’ rules mapping an underlying
phonology unit to an identical unit on the surface is preferable to an otherwise identical
grammar which has such rules. Later work in Autosegmental Phonology and Feature
Geometry extended this assumption by restricting the domain of individual phonolog-
ical rules to changes in an individual node in a feature-geometric representation.

Recent two-level theories of Optimality Theory (McCarthy and Prince, 1995) makes
the assumption of faithfulness (one which is similar to Chomsky and Halle’s) more
explicit by proposing a constraint FAITHFULNESS which requires that the phonological
output string match its input. Such a constraint is ranked below all other constraints
in the optimality constraint ranking, (since otherwise no surface form could be distinct
from its underlying form) and is used to rule out the infinite set of candidates produced
by GEN which bear no relation to the underlying form. Computational models of mor-
phology have made use of a similar faithfulness bias. Ling (1994), for example, applied
a faithfulness heuristic (called ‘passthrough’) as a default in a ID3-based decision tree
induction system for learning the past tense of English verbs. Orgun (1996) extends the
two-level Optimality-theoretic concept of faithfulness to require a kind of monotonicity
from the underlying to the surface form: his MATCH constraint requires that every ele-
ment of an output string contain all the information in the corresponding element of an
input string.

Our model of faithfulness preserves the insight that, barring a specific phonological
constraint to the contrary, an underlying element will be identical to its surface cor-
respondent. But like Orgun’s version, our model extends this bias to suggest that, all
things being equal, a changed surface forms will also resemble its underlying form fea-
turally. In order to implement such a faithfulness bias in OSTIA, our algorithm guesses
the most probable segment to segment alignment between the input and output strings,
and uses this information to distribute the output symbols among the arcs of the initial
tree transducer. This is demonstrated for the word “importance” in Figures 9 and 10.

ih m p oa1 r t ah n s

ih m p oa1 dx ah n t s

Figure 9
Alignment of “importance” with flapping, r-deletion and t-insertion

oa1 : oa1
40 1 2

ih : ih m : m p : p
3

r : 0
7 8

t : dx ah : ah n : n s : t s
95 6

Figure 10
Resulting initial transducer for “importance”

This new distribution of output symbols along the arcs of the initial tree transducer
no longer guarantees the onwardness of the transducer. While onwardness happens to

12

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

be an invariant of the unmodified OSTIA algorithm, however, it is not essential to the
correctness of the algorithm. Nevertheless, the final transducers induced by our new
method do tend to be onward.

Our modification proceeds in two stages. First, a dynamic programming method
is used to compute a correspondence between input and output segments. The align-
ment uses the algorithm of Wagner and Fischer (1974), which calculates the insertions,
deletions, and substitutions which make up the minimum edit distance between the
underlying and surface strings. The costs of edit operations are based on phonological
features; we used the 26 binary articulatory features in Table 3.

vocalic consonant sonorant rhotic
advanced front high low
back rounded tense voiced
w-offglide y-offglide coronal anterior
distributed nasal lateral continuant
strident syllabic silent flap
stress primary-stress

Table 3
Phonological features used in alignment

This feature set was chosen merely because it was commonly used in other speech
recognition experiments in our laboratory; none of our experiments or results depended
in any way on this particular choice of features, or on their binary rather than privative or
multivalued nature. For example, the decision tree pruning algorithm discussed in x5.2.2,
which successfully generalized about the important of stressed vowels to the flapping
rule, would have functioned identically with any feature set capable of distinguishing
stressed from unstressed vowels.

The cost function for substitutions was equal to the number of features changed
between the two segments. The cost of insertions and deletions was arbitrarily set at
6 (roughly one quarter the maximum possible substitution cost). From the sequence of
edit operations, an alignment between input and output segments is calculated. Due
to the shallow nature of the rules in question, the exact parameters used to calculate
alignment are not very significant.

Second, when adding a new arc to the tree, all the unused output segments up to
and including those which map to the arc’s input segment become the new arc’s output,
and are now marked as having been used. When walking down branches of the tree to
add a new input/output sample, the longest common prefix, n, of the sample’s unused
output and the output of each arc is calculated. The next n symbols of the transduction’s
output are now marked as having been used. If the length, l, of the arc’s output string
is greater than n, it is necessary to push back the last l – n symbols onto arcs further
down the tree. A tree transducer constructed by this process is shown in Figure 11, for
comparison with the unaligned version in Figure 4.

The final transducer produced with the alignment algorithm is shown in Figure 12.
Purely to make the diagram easier to read we have used C and V to represent the set
of consonants and of vowels on the arcs’ labels. It is important to note that the learning
algorithm did not have any knowledge of the concepts of vowel and consonant, other
than through the features used to calculate alignment.

The size and accuracy of the transducers produced by the alignment algorithm are
summarized in Table 4. Note that the use of alignment information in creating the initial
tree transducer dramatically decreases the number of states in the learned transducer as
well as the error performance on test data. The improved algorithm induced a flapping

13

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

0 1 2

3

4

5 6

7 8 9

t : 0

: t

er : dx er
: 0

: 0
n : n

d : d

ae : aeb : b

Figure 11
Initial Tree Transducer Constructed with Alignment Information: Note that output symbols have been
pushed back across state 3 during the construction

V : V

2

0 1

r

V V: t

: t #
: t rr
dx

t : 0C : t C

V − { oy2, aw2, uh2 }

C, V − { uh2, uh1, ay1,
 er1, er2, oy1 }

r
C
t

V + { oy2, aw2, uh2 }

Figure 12
Flapping Transducer Induced With Alignment: trained on 25,000 samples

transducer with the minimum number of states (3) with as few as 6250 samples.

Table 4
Results Using Alignment Information on English Flapping

OSTIA w/o Alignment OSTIA w/ Alignment
Samples States % Error States % Error

6250 19 2.32 3 0.34
12500 257 16.40 3 0.14
25000 141 4.46 3 0.06
50000 192 3.14 3 0.01

The use of alignment information also reduced the learning time; the additional cost
of calculating alignments is more than compensated for by quicker merging of states.
There was still a small amount of error in the final transducer, and in the next section
we show how this remaining error was reduced still further.

The algorithm also successfully induced transducers with the minimum number of
states for the t-insertion and t-deletion rules in (6) and (7), given only 6250 samples. For
the r-deletion rule in (5), the algorithm induced a machine which was not the theoretical
minimal machine (3 states), as Table 5 shows. We discuss these results below.

14

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

(5) r ! ;= [+vocalic] [+consonantal]

(6) ; ! t=n s

(7) t! ;=n

�
+vocalic
�stress

�

Table 5
Results on R-deletion using Alignment Information

R-deletion
Samples States % Error

6250 4 0.48
12500 3 0.21
25000 6 0.18
50000 35 0.30

In our second experiment, we applied our learning algorithm to a more difficult
problem: inducing multiple rules at once. One of the important properties of finite-state
phonology is that automata for two rules can be automatically combined to produce
an automaton for the two rules run in series. In our deterministic automata, automata
are joined via composition. Any ordering relationships are preserved in this composed
automaton – the order of the rules corresponds to the order in which the transducers
were composed. 2

Our goal was to learn such a composed transducer directly from the original under-
lying and ultimate surface forms. The simple rules we used in our experiment contain
no feeding (the output of one rule creating the necessary environment for another rule)
or bleeding (a rule deleting the necessary environment, causing another rule not to ap-
ply) relationships among rules. Thus the order of their application is not significant.
However the learning problem remains unchanged if the rules are necessarily instead
of arbitrarily ordered.

Setting r-deletion aside for present, a data set was constructed by applying the t-
insertion rule in (6), the t-deletion rule in (7) and the flapping rule already seen in (4) one
after another. The minimum number of states for a subsequential transducer performing
the composition of the three rules is five. As is seen in Table 6, our algorithm successfully
induces a transducer of minimum size was given 12,500 or more sample transductions.

5.2 Community
5.2.1 Decision Tree Induction. A second class of problems with our baseline OSTIA
resulted from a lack of generalization across segments. Any training set of words from
a language is likely to be full of accidental phonological gaps. Without an ability to use
knowledge about phonological features to generalize across phones, OSTIA’s transduc-
ers have missing transitions for certain phones from certain states. This causes errors
when transducing previously unseen words after training is complete. Consider the
transducer in Figure 12, reproduced below as Figure 13.

2 When using nondeterministic transducers, for example those of Karttunen described in x2, multiple rules
are represented by intersecting, rather than composing, transducers. In such a system, for two rules to
apply correctly, the output must lie in the intersection of the outputs accepted by the transducers for each
rule on the input in question. We have not attempted to create an OSTIA-like induction algorithm for
nondeterministic transducers.

15

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

Table 6
Results on Three Rules Composed

OSTIA w/Alignment
Samples States % Error

6250 6 0.93
12500 5 0.20
25000 5 0.09
50000 5 0.04

V : V

2

0 1

r

V V: t

: t #
: t rr
dx

t : 0C : t C

V − { oy2, aw2, uh2 }

C, V − { uh2, uh1, ay1,
 er1, er2, oy1 }

r
C
t

V + { oy2, aw2, uh2 }

Figure 13
Flapping Transducer Induced With Alignment: For simplicity, some of the phones missing from the
transitions from state 2 to 0 and from 1 to 0 have been omitted. For clarity of explication,
set-subtraction notation is used to show which vowels do not cause transitions between states 0
and 1

One class of errors in this transducer is caused by the input “falling off” the model.
That is, a transduction may fail because the model has no transition specified from a
given state for some phone. This is the case with (8), where there is no transition from
state 1 on phone uh2.

(8) showroom: sh ow1 r uh2 m! sh ow1 r

A second class of errors is caused by an incorrect transition; with (9), for example,
the transducer incorrectly fails to flap after oy2 because, upon seeing oy2 in state 0, the
machine stays in state 0, rather than making the transition to state 1.

(9) exploiting: eh1 k s p l oy2 t ih ng ! eh1 k s p l oy2 t ih
ng

Both of these problems are caused by insufficiently general labels on the transition
arcs in Figure 13. Compare Figure 13 with the correct transducer in Figure 2. We have
used set subtraction notation in Figure 13 to highlight the differences. Notice that in the
correct transducer, the arc from state 1 to state 0 is labeled with C and V, while in the
incorrect transducer the transition is missing 6 of the vowels. These vowels were simply
never seen at this position in the input.

16

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

The intuition that OSTIA is missing, then, is the idea that phonological constraints
are sensitive to phonological features which pick out certain equivalence classes of
segments. Since the beginning of generative grammar, and based on Jakobson’s early
insistence on the importance of binary oppositions (Jakobson, 1968; Jakobson, Fant, and
Halle, 1952), phonological features, and not the segment, have generally formed the
vocabulary over which linguistic rules are formed. Giving such knowledge to OSTIA
would allow it to hypothesize that if every vowel it has seen has acted a certain way,
that the rest of them might act similarly.

It is by no means necessary to assume that this knowledge is innate. Ellison (1992)
showed that a purely empiricist induction algorithm, based on the information-theoretic
metric of choosing a minimum-length representation, was able to induce the concepts ’V’
and ’C’ in a number of different languages. There is a significant body of psychological
result, however, indicating that infants 1-4 months of age are already sensitive to the
phonological oppositions which characterize phonemic contrasts; Eimas et al. (1971),
for example, showed that infants were able to distinguish the syllables /ba/ and /pa/,
but were unable to distinguish acoustic differences which were of a similar magnitude
but which do not form phonemic contrast in any language. Similar studies have shown
that this sensitivity appears to be crosslinguistic. Only future research will determine
whether these constraints are innate, or merely learned extremely early, and whether
empiricist algorithms like Ellison’s will be able to induce a full phonological ontology
without them. Promising results from syntactic part-of-speech induction suggest that
an empiricist approach may be feasible: Brown et al. (1992) used a purely data-driven
greedy, incremental clustering algorithm to derive word-classes for n-gram grammars;
their algorithm successfully induced classes like ‘days of the week’, ‘male personal
name’, ‘body-part noun’, and ‘auxiliary’.

Whether phonological features may be innately guided or derived from earlier
induction, then, the community bias suggests adding knowledge of them to OSTIA. We
did this by augmenting OSTIA to use phonological feature knowledge to generalize the
arcs of the transducer, producing transducers that are slightly more general than the
ones OSTIA produced in our previous experiments. Our intuition was that these more
general transducers would correctly classify stressed vowels together as environments
for flapping, and similarly solve other problems caused by gaps in training data.

As an example, our implementation of this generalization mechanism takes as input
the arcs in Figure 13 and produces as output the arcs in Figure 17. The difference is
that the arcs in Figure 13 have more general labels. The mechanism works by applying
the standard data-driven decision tree induction algorithm (based on Quinlan’s (1986)
ID3 algorithm) to learn a decision tree over the arcs of the transducer. We add prior
knowledge to the induction by using phonological features as the language the induction
algorithm uses to make decisions. The resulting decision trees describe the behavior of
the machine at a given state in terms of the next input symbol by generalizing from
the arcs leaving the state. Since we are generalizing over arcs at a state of an induced
transducer, rather than directly from the original training set of transductions, the input
to the ID3 algorithm is limited to the number of phonemes, and is not proportional to
the size of the original training set.

We begin by briefly summarizing the decision tree induction algorithm. A decision
tree takes a set of properties which describe an object and outputs a decision about that
object. It represents a decision as a rooted tree, in which each internal node represents a
test of the value of a given property, and each leaf node represents a decision. A decision
about an object is reached by descending the tree, at each node taking the branch branch
indicated by the object’s value for the property at that node. The decision is then read off
from the leaf node reached. We will use decision trees to decide what actions and outputs

17

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

a transducer should produce given certain phonological inputs. Thus the internal nodes
of the tree will correspond to tests of the values of phonological features, while the leaf
nodes will correspond to state transitions and outputs from the transducer.

The ID3 algorithm is given a set of objects, each labeled with feature values and a de-
cision, and builds a decision tree for a problem given. It does this by iteratively choosing
the single feature that best splits the data, i.e. that is the information-theoretically best
single predictor of the decision for the samples. A node is built for that feature, examples
are divided into subsets based on their values for this feature which are attached to the
new node’s children, and the algorithm is run again on the children’s subsets, until each
leaf node has a set of samples that are all of the same category. Thus for each state in
a transducer, we gave the algorithm the set of arcs leaving the state (the samples), the
phonological feature of the next input symbol (the features), and the output/transition
behaviors of the automaton (the decisions). Because we used binary phonological fea-
tures, we obtained binary decision trees (although we could just as easily have used
multivalued features). The alignment information previously calculated between input
and output strings is used again in determining which arcs have the same behavior.
Two arcs are considered to have the same behavior if the same phonological features
have changed between the input segment and the output segment that corresponds to
it, and if the other output symbols of the two arcs are identical. The same 26 binary
phonological features used in calculating edit distance were used to classify segments
in the decision trees.

Figure 14 shows a resulting decision tree which generalized the transducer in Fig-
ure 13 to avoid the problem of certain inputs ‘falling off’ the transducer. We automatically
induced this decision tree from the arcs leaving state 1 in the machine of Figure 13. The
outcomes at the leaves of the decision tree specify the output of the next transition to
be taken in terms of the input segment, as well as as the transition’s destination state.
We use square brackets to indicate which phonological features of the input segment
are changed in the output; the empty brackets in Figure 14 simply indicate that the
output segment is identical to the input segment. Note that if the underlying phone
is a t ([-rhotic,-voice,-continuant,-high,+coronal]), the machine jumps to state 2. If the
underlying phone is an r, the machine outputs r and goes to state 1. Otherwise, the
machine outputs its input and moves to state 0.

Because the decision tree specifies a state transition and an output string for every
possible combination of phonological features, one can no longer “fall off” the machine,
no matter what the next input segment is. Thus in a transducer built using the newly
induced decision tree for state 1, such as the machine in Figure 17, the arc from state 1
to state 0 is taken on seeing any vowel, including the six vowels missing from the arc of
the machine in Figure 13.

Our decision trees superficially resemble the organization of phonological features
into functionally related classes proposed in the Feature Geometry paradigm (see Mc-
Carthy (1988) for a review). Feature-geometric theories traditionally proposed a unique,
language-universal grouping of distinctive features to explain the fact that phonological
processes often operate on coherent subclasses of the phonological features. For exam-
ple, facts such as the common crosslinguistic occurrence of rules of nasal assimilation,
which assimilate the place of articulations of nasals to the place of the following conso-
nant, suggests a natural class place which groups together (at least) the labial and coronal
features. The main difference between decision trees and feature geometry trees is the
scope of the proposed generalizations; where a decision trees is derived empirically from
the environment of a single state of a transducer, feature geometry is often assumed to
be unique and universal (although recent work has questioned this assumption; see e.g.
Padgett (1995a) and (1995b). Information-theoretic distance metrics similar to those in

18

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

1 2

+

−

−

+

rhotic

voiced

high

coronal

−

−

−

consonant

continuant

+

+

+

+−

11

1

1

3

Outcomes:
1: Output: [], Destination State: 0
2: Output: nil, Destination State: 2
3: Output: [], Destination State: 1
 On end of string: Output: nil, Destination State: 0

Figure 14
Example Decision Tree: This tree describes the behavior of State 1 of the transducer in Figure 2. []
in the output string indicates the arc’s input symbol (with no features changed).

the ID3 algorithm were used by McCarthy (1988:101), who used a cluster analysis on a
dictionary of Arabic to argue for a particular feature geometric grouping; the relation-
ship between feature geometries and empirical classification algorithms like decision
trees clearly bears further investigation.

5.2.2 Further Generalization: Decision Tree Pruning. Although inducing decision trees
on the arcs of the transducer improved the generalization behavior of our transducers,
we found that some transducers needed to be generalized even further. Consider again
the English flapping rule, which applies in the context of a preceding stressed vowel. Our
algorithm first learned an incorrect transducer whose decision tree for state 0 is shown
in Figure 15. In this transducer all arcs leaving state 0 correctly lead to the flapping state
on stressed vowels, except for those stressed vowels which happen not to have occurred
in the training set. For these unseen vowels (which consisted of the vowel uh and the
diphthongs oy and ow all with secondary stress), the transducer incorrectly returns to
state 0. In this case, we wish the algorithm to make the generalization that the rule
applies after all stressed vowels.

Again, this correct generalization (all stressed vowels) is expressible as a (single
node) decision tree over the phonological features of the input phones. But the key
insight is that the current transducer is incorrect because the absence of particular
training patterns (the 3 particular stressed vowels) caused the decision tree to make a
number of complex unnecessary decisions. This problem can be solved by pruning the
decision trees at each state of the machine. Pruning is done by stepping through each
state of the machine and pruning as many branches as possible from the fringe of the
current state’sdecision tree. Each time a branch is pruned, one of the children’s outcomes
is picked arbitrarily for the new leaf, and the entire training set of transductions is tested
to see if the new transducer still produces the right output. As discussed in section x6,

19

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

stress

1

tense

rounded

2

y−offglide

2

prim−stress

high2

1

1

2

− +

−

−

−

−

−

−

+

+

+

+

+

+

Outcomes:
1: Output: [], Destination State: 0
2: Output: [], Destination State: 1
On end of string: Output: nil, Destination State: 0

1

w−offglide

Figure 15
Decision Tree Before Pruning: The initial state of the flapping transducer

stress

1 2

− +

Figure 16
The Same Decision Tree After Pruning

this is quite expensive. If any errors are found, the outcome of the pruned node’s other
child is tested. If errors are still found, the pruning operation is undone. This process
continues at the fringe of the decision tree until no more pruning is possible. Figure 16
shows the correct decision tree for flapping, obtained by pruning the tree in Figure 15.

The process of pruning the decision trees is complicated by the fact that the pruning
operations allowed at one state depend on the status of the trees at each other state. Thus
it is necessary to make several passes through the states, attempting additional pruning
at each pass, until no more improvement is possible. Testing each pruning operation
against the entire training set is expensive, but in the case of synthetic data it gives the
best results. For other applications it may be desirable to keep a cross validation set for
this purpose.

The transducer obtained for the flapping rule after pruning decision trees is shown
in Figure 17. In contrast to Figure 13, the arcs now correspond to the natural classes of

20

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

consonants, stressed vowels and unstressed vowels. The only difference between our
result and the hand-drawn transducer in Figure 2 is the transition from state 1 upon
seeing a stressed vowel – this will be discussed in x7.

2

0 1
V C

r C

tV

V

t : 0

V

r

V V: t
C : t C

: t #

: t rr
V : V dx

Figure 17
Flapping Transducer Induced from 50,000 Samples

The effects of adding decision trees at each state of the machine for the composition
of t-insertion, t-deletion and flapping are shown in Table 7.

Table 7
Results on Three Rules Composed: 12,500 Training Size, 49,280 Test Size

Method States % Error
OSTIA 329 22.09

Alignment 5 0.20
Add D-trees 5 0.04

Prune D-trees 5 0.01

Figure 18 shows the final transducer induced from this corpus of 12,500 words with
pruned decision trees. We will discuss the remaining 0.01% error in x7 below.

We conclude our discussion of the Community bias by seeing how a more on-
line implementation of the bias might have helped our algorithm induce a transducer
for r-deletion. Recall that the failure of the algorithm was not due to the difficulty of
deletion per se, since our algorithm successfully learns the t-deletion rule. Rather, we
believe that the difficulty with r-deletion is the broad context in which the rule applies:
after any vowel and before any consonant. Since our segment set distinguishes three
degrees of stress for each vowel, the alphabet size is 72; we believe this was simply too
large for the algorithm without some prior concept of “vowel” and “consonant”. While
our decision tree augmentation adds these concepts to the algorithm, it only does so
only after the initial transducer has been induced, and so cannot help in building the
initial transducer. We need some method of interleaving the generalization of segments
into classes, performed by the decision trees, and the induction of the structure of the
transducer by merging states. Making generalizations about input segments would in
effect reduce the alphabet size on the fly, making the learning of structure easier.

5.3 The Context Principle
Our final problem with the unaugmented OSTIA algorithm concerns phonological rules
which are both very general and also contain rightward context effects. In these rules,
the transducer must wait to see the right hand context of a rule before emitting the rule’s
output, and the rule applies to a general enough set of phones that additional states
are necessary to store information about the pending output. In such cases, a separate

21

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

2

3

4

n

n

V

V : t []

V: dx []

s : t []

0 1
C

V

V

r

r

t,n

C, V, V

t : 0

n,V

C : t []

t : 0

C : t []
r : t [] r : t []

V,C,r,n

n : t []

Seen n:
T−insetion about
to occurT−deletion about

to occur

Initial
state

Seen stressed
vowel

Flapping about
to occur

Figure 18
Three Rule Transducer Induced from 12,500 Samples: [] indicates that the input symbol is emitted
with no features changed

state is necessary for each phone to which the rule applies. Thus because subsequential
transducers are an inefficient model of these sorts of rules, representing them leads to
an explosion in the number of states of the machine, and an inability to represent certain
generalizations. One example of such state explosion is the German rule to devoice
word-final stops:

(10)

�
�sonorant
�continuant

�
!

�
�voiced

�
= #

In this case, a separate state must be created for each stop subject to devoicing, as
in Figure 19. Upon seeing a voiced stop, the transducer jumps to the appropriate state,
without emitting any output. If the end-of-word symbol follows, the corresponding
unvoiced stop will be emitted. If any other symbol follows, however, the original voiced
stop will be emitted, along with the current input symbol. In essence, the algorithm has
learned three distinct rules:

(11) b! p / #

(12) d! t / #

(13) g! k / #

22

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

0

1

3

2

b : 0

g : 0

[] : g []

[] : d []

[] : b []

b : b
: p

d : d
: t

[] : []

g : b

d : b

d ; g

d : 0

g : d

b : d

g : g
: k

b : g

Figure 19
Transducer for Word-final Stop Devoicing: [] indicates that the input symbol is emitted with no
features changed

Because of the inability to refer to previous input symbols, it is impossible to make
a subsequential transducer that captures the generalization of the rule in (10). While
the larger transducer of Figure 19 is accurate, the smaller transducer is desirable for a
number of reasons. First, rules applying to larger classes of phones will lead to an even
greater explosion in the number of states. Second, depending on the particular training
data, this lack of generalization can cause the transducer to make mistakes on learning
such rules. As mentioned in x4, smaller transducers significantly improve the general
accuracy of the learning algorithm.

We turn to the Context principle for an intuition for a solution to this problem.
The context principle suggests that phonological rules refer to variables in their context.
We found that subsequential transducers tend to handle leftward context much better
than rightward context. This is because a separate state is only necessary for each
distinct context in which segments behave differently. The behavior of different phones
within each context is represented by the different arcs, without making separate states
necessary. Thus our transducers only needed to be modified to deal with rightward
context.3 Our solution is to add a simple kind of memory to the model of transduction.
The transducer keeps track of the input symbols seen so far. Just as the generalized
arcs can now specify one of their output symbols as being the current input symbol
with certain phonological features changed, they are now able to reference previous
input symbols. The transducer for word-final stop devoicing using variables is shown
in Figure Figure 20.

It is important to note that while we are changing the model of transduction, we are
not increasing its formal power. As long as the alphabet is of finite size, any machine
using variables can be translated into a potentially much larger machine with separate
states for each possible value the variables can take.

3 The rules previously discussed in this paper avoid this problem because they apply to only one segment.

23

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

When constructing the algorithm’s original tree transducer, variables can be in-
cluded in the output strings of the transducer’s arcs. When performing a transduction,
variables are interpreted as referring to a certain symbol in the input string with specific
phonological features changed. The variables contain two pieces of information: an in-
dex of the input segment referenced by the variable relative to the current position in
the index string, and a (possibly empty) list of phonological feature values to change in
the input segment.

After calculating alignment information for each input/output pair, all output sym-
bols determined to have arisen from substitutions(that is, all output segments other than
those arising from insertions) are rewritten in variable notation. The variable’s index is
the relative index of the corresponding input segment as calculated by the alignment,
the features specified by the variable are only those that have changed from the input
segment. Thus rewriting each output symbol in variable notation is done in constant
time and adds nothing to the algorithm’s computational complexity.

0 1
[] : −1[] 0[]

b : 0
d : 0
g : 0

b : −1[]
d : −1[]
g : −1[]
: −1[−voiced +tense][] : 0[]

Figure 20
Word-Final Stop Devoicing with Variables: Variables are denoted by a number indicating the
position of the input segment being referred to and a set of phonological features to change.
Thus 0[] simply denotes the current input segment, while -1[-voiced +tense] means the unvoiced,
tense version of the previous input segment. -1[] -0[] indicates that the machine outputs a string
consisting of the previous input segment followed by the current segment.

When performing the state mergers of the OSTIA algorithm, two variables are
considered to be the same symbol if they agree in both components: the index and list
of phonological features. This allows arcs that previously had different output strings
to merge, as for example in the arc from state 1 to state 0 of Figure 20, which is a
generalization over the arcs into state 0 in Figure 19.

We applied the modified algorithm with variables in the output strings to the prob-
lem of the German rule that devoices word-final stops. Our dataset was constructed
from the the CELEX lexical database (Celex, 1993), which contains pronunciations for
359,611 word forms – including various inflected forms of the same lexeme. For our
experiments we used the CELEX pronunciations as the surface forms, and generated
underlying forms by revoicing the (devoiced) final stop for the appropriate forms (those
for which the word’s orthography ends in a voiced stop). Although the segment set used
was slightly different from that of the English data, the same set of 26 binary articulatory
features was used. Results are shown in Table 8.

Using the model of transduction augmented with variables, a machine with the
minimum two states and perfect performance on test data was induced with 20,000
samples and greater. This machine is shown in Figure 21. The only difference between
this transducer and the hand-drawn transducer of Figure 20 is that the arcs leaving state
1 go to state 0 rather than looping back to state 1. Thus the transducer will fail to perform

24

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

No variables Using variables
Samples States % Error States % Error

700 8 0.218 8 7.996
10000 11 0.240 11 0.568
20000 24 0.392 2 0.000
50000 19 0.098 2 0.000

Table 8
Results on German Word-Final Stop Devoicing: 50000 word test set

devoicing when two voiced stops occur at the end of a word. As the corpus contains no
such cases, no errors were produced. As we will discuss in x7, this is similar to what
occurred in the machine induced for flapping.

0 1
[] : −1[] 0[]

b : 0
d : 0
g : 0

: −1[−voiced +tense]

[] : 0[]

Figure 21
Transducer Induced for Word-final Stop Devoicing: [] indicates that the input symbol is emitted with
no features changed

5.3.1 Search Over Sequences of State Mergers. The results quoted in the previous
section were achieved with a slightly different method than those for the English data.
The difference lies in in the order in which state mergers are attempted, and can have
significant effects in the results.

Lexicographic ordering of states Arbitrary ordering of states
Samples States % Error States % Error

700 8 7.996 6 0.004
10000 11 0.568 8 0.288
20000 2 0.000 12 0.296
50000 2 0.000 9 0.034

Table 9
Results on German Word-Final Stop Devoicing: 50000 word test set

We performed experiments using two versions of the algorithm, varying the order
in which the algorithm tries to merge pairs of states. The mergers are performed in a
nested loop over the states of the initial tree transducer. The ordering of states for this
loop in the original OSTIA algorithm as described in Oncina, Garcı́a, and Vidal (1993) is
the lexicographic ordering of the string of input symbols as one walks from the root of
the tree to the state in question. This is the method used in the first column of results in
Table 9 . In the second column of results, the ordering of the states was simply the order
of their creation as the sample transductions were read as input. This is also the method
used in the results previously described for the various English rules.

25

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

The correctness of the algorithm requires that the states must be ordered such
that state numbers always increase as one walks outward from the root of the tree.
However, this still leaves a large space of permissible orderings, and, as can be seen
from our results, the ordering chosen can have a significant effect on the algorithm’s
outcome. While neither method is consistently better in the German experiments, we
found that lexicographic orderings performed more poorly than the arbitrary ordering of
the input samples for the English experiments. The lexicographic ordering of the original
algorithm is not always optimal. Furthermore, results with lexicographic orderings vary
with the ordering of segments used. The segment ordering used for the results in Table
9 grouped similar segments together, and performed better than a randomized segment
ordering. Presumably this is because the ordering grouping similar segments together
causes states reached on similar input symbols to be merged, which is both linguistically
reasonable and necessary in order to generate the correct transducer.

The underlying principle of the algorithm is to generalize by reducing the number
of states in the transducer. Because the OSTIA algorithm tends to settle in local minima
when merging states, the problem becomes one of searching the space of permissible
orderings of state mergers. Some linguistically based heuristic for ordering states might
produce more consistent results on different types of phonological rules, perhaps by
reordering the remaining states as the initial states are merged.

6. Complexity

The OSTIA algorithm as described by Oncina, Garcı́a, and Vidal (1993) had a worst case
complexity of O(n3(m + k) + nmk), where n is the sum of all the input strings’ lengths,
m is the length of the longest output string, and k is the size of the input alphabet;
Oncina, Garcı́a, and Vidal’s (1993) experiments showed the average case time to grow
more slowly. We will discuss the complexity implication of each of our enhancements to
the algorithm.

The calculation of alignment information adds a preprocessing step to the algorithm
that requires O(nm) time for the dynamic programming string alignment algorithm. Af-
ter the initial tree is constructed using the alignment information, the above-mentioned
worst case bound still applies for the process of merging states; it does not require that
the initial tree be onward. Since this modification only alters the initial tree transducer,
the behavior of the main state merging loop of the OSTIA algorithm is essentially un-
changed. In practice, we found the use of alignment information significantly sped up the
algorithm by allowing states to collapse more quickly. In any case, theO(nm) complexity
of the preprocessing step is subsumed by the O(nmk) term of OSTIA’s complexity.

The induction of decision trees adds a new stage after the OSTIA algorithm com-
pletes. The number of nodes in each decision tree is bounded by O(k), since there are at
most k arcs out of a given state. Calculating information content of a given feature can
be done is O(k) time because k is an upper bound on the number of possible outcomes
of the decision tree. Therefore, choosing the feature with the maximum information
content can be done in O(fk) time, where f is the number of features, and the entire
decision tree can be learned in O(fk2) time. Since there are at most n states, this stage
of the algorithm is O(nfk2). However, because k is relatively small and because deci-
sion trees are induced only after merging states down to a small number, decision tree
induction in fact takes only a fraction the time of any other step of computation. The
process of pruning the trees, however, is very expensive, as the entire training set is
verified after each pruning operation. Since each verification of the input is O(nk), and
there are O(k) nodes at each of O(n) states to attempt to prune, one iteration through
the set of states attempting pruning at each state is therefore O(n2k2). There are at most

26

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

O(nk) iterations through the states, since at least one node of one state’s decision tree
must be pruned in each iteration. Therefore, the entire pruning process is O(n3k3). This
is a rather pessimistic bound since pruning occurs after state merger, and there are gen-
erally far less than nk states left. In fact, adding input pairs makes finding the smallest
possible automaton more likely, and reduces the number of states at which pruning is
necessary. Nevertheless the verification of pruning operations dominates all other steps
of computation.

Once alignment information for each input/output pair has ben computed, an out-
put symbol can be rewritten in variable notation in constant time. Using variables
can increase the size of the output alphabet, however none of the complexity cal-
culations depend on this size. Therefore using variables is essentially free and con-
tributes nothing to overall complexity. After adding all the steps together, we get
O(n3(m + k) + nmk + nfk2 + n3k3) time. Thus, even using the expensive method of
verifying the entire training set after each pruning operation, the entire algorithm is
still polynomial. Furthermore, our additions have not worsened the complexity of the
algorithm with respect to n, the total number input string symbols.

On a typical run on 10,000 German words with final stop devoicing applied using a
SPARC 10, calculating alignment information, rewriting each output string in variable
notation and building the initial tree transducer took 19 seconds, the state merging
took 5 seconds, inducing the decision trees took under one second, and the pruning
took 16 minutes and 1 second. When running on 50,000 words from the same data set,
alignment, variable notation, and building the initial tree took 1 minute 37 seconds, the
state merging took 4 minutes 44 seconds, inducing decision trees took 2 seconds and
pruning decision trees took 2 hours, 9 minutes and 9 seconds.

7. Another Implicit Bias

An examination of the final few errors (three samples) in the induced flapping and
three-rule transducers in x5.2.2 turned out to demonstrate a significant problem in the
assumption that an SPE-style rule is isomorphic to a regular relation.

While the learned transducer correctly makes the generalization that flapping occurs
after any stressed vowel, it does not flap after two stressed vowels in a row:

� sky-writing: s k ay1 r ay2 t ih ng ! s k ay1 r ay2 t ih ng

� sky-writers: s k ay1 r ay2 t er z ! s k ay1 r ay2 t er z

� gyrating: jh ay1 r ey2 t ih ng ! jh ay1 r ey2 t ih ng

This is possible because no samples containing two stressed vowels in a row (or separated
by anr as here) immediately followed by a flap were in the training data. This transducer
will flap a t after any odd number of stressed vowels, rather than simply after any
stressed vowel. Such a rule seems quite unnatural phonologically, and makes for an odd
SPE-style context-sensitive rewrite rule. The SPE framework assumed (Chomsky and
Halle 1968:330) that the well-known minimum description length (MDL) criterion be
applied as an evaluation metric for phonological systems. Any sort of MDL criterion
applied to a system of rewrite rules would prefer a rule such as

(14) t! dx / V́ V

to a rule such as

27

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

(15) t! dx / V́ (V́ V́)� V

which is the equivalent of the transducer learned from the training data. Similarly, the
transducer learned for word-final stop devoicing would fail to perform devoicing when
a word ends in two voiced stops, as it too returns to its state 0 upon seeing a second
voiced stop, rather than staying in state 1.

These kind of errors suggest that while a phonological rewrite rule can be expressed
as regular relations, the evaluation procedures for the two mechanisms must be different;
the correct flapping transducer is in no way smaller than the incorrect one. In other
words, the traditional formalism of context-sensitive rewrite rules contains implicit
biases about how phonological rules usually work that are not present in the transducer
system.

8. Related Work

Recent work in the machine learning of phonology includes algorithms for learning both
segmental and non-segmental information. Non-segmental approaches include those of
Daelemans, Gillis, and Durieux (1994) for learning stress systems, as well as approaches
to learning morphology such as Gasser (1993) system for inducing Semitic morphology,
and Ellison’s (1992) extensive work on syllabicity, sonority, and harmony. Since our
approach learns solely segmental structure, a more relevant comparison is with other
algorithms for inducing segmental structure.

Johnson (1984) gives one of the first computational algorithms for phonological rule
induction. His algorithm works for rules of the form

(16) a! b=C

where C is the feature matrix of the segments around a. Johnson’s algorithm sets up a
system of constraint equations which C must satisfy, by considering both the positive
contexts, i.e., all the contexts Ci in which a b occurs on the surface, as well as all the
negative contexts Cj in which an a occurs on the surface. The set of all positive and
negative contexts will not generally determine a unique rule, but will determine a set
of possible rules. Johnson then proposes that principles from universal grammar might
be used to choose between candidate rules, although he does not suggest any particular
principles.

Johnson’s system, while embodying an important insight about the use of positive
and negative contexts for learning, did not generalize to insertion and deletion rules,
and it is not clear how to extend his system to modern autosegmental phonological
systems. Touretzky, Elvgren, and Wheeler (1990) extended Johnson’s insight by using
the version spaces algorithm of Mitchell (1981) to induce phonological rules in their Many
Maps architecture. Like Johnson’s, their system looks at the underlying and surface
realizations of single segments. For each segment, the system uses the version space
algorithm to search for the proper statementof the context. The model also has a separate
algorithm which handles harmonic effects by looking for multiple segmental changes in
the same word, and has separate processes to deal with epenthesis and deletion rules.
Touretzky’s approach seems quite promising; our use of decision trees to generalize each
state is a similar use of phonological feature information to form generalizations.

Riley (1991) and Withgott and Chen (1993) first proposed a decision-tree approach
to segmental mapping. A decision tree is induced for each segment, classifying pos-
sible realizations of the segment in terms of contextual factors such as stress and the
surrounding segments. One problem with these particular approaches is that since the

28

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

decision tree for each segment is learned separately, the technique has difficulty forming
generalizations about the behavior of similar segments. In addition, no generalizations
are made about segments in similar contexts, or about long-distance dependencies. In a
transducer based formalism, generalizations about segments in similar contexts follow
naturally from generalizations about the behavior of individual segments. The context is
represented by the current state of the machine, which in turn depends on the behavior
of the machine on the previous segments. A possible augmentation to the decision tree
approach to capture some of these generalizations would be to augment the decision
tree with information about the features of the output segment, or about features of
more distant phones, perhaps about nearby syllables.

9. Conclusion

Our experiments have suggested that adding domain-specific learning biases to a
domain-independent, empiricist induction algorithm allowed it to successfully learn
simple phonological rules of English and German. The Faithfulness, Community, and
Context biases are so fundamental to generative phonology that, although they are
present in some respect in every phonological theory, they are left implicit in most. Fur-
thermore, we have shown that some of the remaining errors in our augmented model
are due to implicit biases in the traditional SPE-style rewrite system which are not
similarly represented in the transducer formalism, suggesting that while transducers
may be formally equivalent to SPE-style rules, they may not have identical evaluation
procedures.

Although our biases were applied to the learning of very simple SPE-style rules, and
to a non-probabilistic theory of purely deterministic transducers, these biases may also
prove useful when applied to other, stochastic, linguistic rule induction algorithms (e.g.
(Kupiec, 1992; Lucke, 1993; Stolcke and Omohundro, 1993; Stolcke and Omohundro,
1994; Ron, Singer, and Tishby, 1994). We believe the idea of augmenting an empirical
learning element with relatively abstract learning biases to be a very fruitful ground for
research between the often restated strict nativist and strict empiricist language learning
paradigms.

Acknowledgments
Many thanks to Jerry Feldman for advice and encouragement, to Isabel Galiano-Ronda for her
help with the OSTIA algorithm, and to Eric Fosler, Sharon Inkelas, Lauri Karttunen, Jose Oncina,
Orhan Orgun, Ronitt Rubinfeld, Andreas Stolcke, Gary Tajchman, three anonymous CL
reviewers, and an anonymous reviewer for ACL-95. This work was partially funded by ICSI.

References

Aha, David W., Dennis Kibler, and Marc K. Albert. 1991. Instance-based learning algorithms.
Machine Learning, 6:37–66.

Aronoff, Mark. 1976. Word-Formation in Generative Grammar. Linguistic Inquiry Monograph no.
1. Cambridge, MA: MIT Press.

Berstel, Jean. 1979. Transductions and context-free languages. Stuttgart: Teubner.
Bird, Steven. 1995. Computational Phonology: A constraint-based approach. Cambridge: Cambridge

University Press.
Bird, Steven and T. Mark Ellison. 1994. One-level phonology: Autosegmental representations

and rules as finite automata. Computational Linguistics, 20(1).
Brown, Peter F., Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai, and Robert L. Mercer.

1992. Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–479.
Celex. 1993. The CELEX lexical database. Centre for Lexical Information, Max Planck Institute for

Psycholinguistics.

29

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

Chomsky, N. and M. Halle. 1968. The Sound Pattern of English. New York: Harper and Row.
Chomsky, Noam. 1981. Lectures on Government and Binding. Dordrecht: Foris.
CMU. 1993. The Carnegie Mellon Pronouncing Dictionary v0.1. Carnegie Mellon University.
Daelemans, Walter, Steven Gillis, and Gert Durieux. 1994. The acquisition of stress: A

data-oriented approach. Computational Linguistics, 20(3):421–451.
Dresher, Elan and Jonathan Kaye. 1990. A computational learning model for metrical phonology.

Cognition, 34:137–195.
Eimas, P. D., E. R. Siqueland, P. Jusczyk, and J. Vigorito. 1971. Speech perception in infants.

Science, 171:303–306.
Ellison, T. Mark. 1992. The Machine Learning of Phonological Structure. Ph.D. thesis, University of

Western Australia.
Ellison, T.M. 1994. Phonological derivation in optimality theory. In COLING-94.
Freund, Y., M. Kearns, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. 1993. Efficient learning of

typical finite automata from random walks. In Proc. 25rd ACM Symposium on Theory of
Computing, pages 315–324.

Gasser, Michael. 1993. Learning words in time: Towards a modular connectionist account of the
acquisition of receptive morphology. Draft.

Goldsmith, John. 1993. Harmonic phonology. In John Goldsmith, editor, The Last Phonological
Rule. University of Chicago Press, Chicago, pages 21–60.

Gupta, Prahlad and David S. Touretzky. 1977. Connectionist models and linguistic theory:
Investigations of stress systems in language. Cognitive Science, 18:1–50.

Jakobson, Roman. 1968. Child Language, Aphasia, and Phonological Universals. The Hague:
Mouton.

Jakobson, Roman, Gunnar Fant, and Morris Halle. 1952. Preliminaries to Speech Analysis.
Cambridge, Mass: MIT Press.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The Hague: Mouton.
Johnson, Mark. 1984. A discovery procedure for certain phonological rules. In Proceedings of the

Tenth International Conference on Computational Linguistics, pages 344–347, Stanford.
Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological rule systems.

Computational Linguistics, 20(3):331–378.
Karttunen, Lauri. 1993. Finite-state constraints. In John Goldsmith, editor, The Last Phonological

Rule. University of Chicago Press.
Koskenniemi, Kimmo. 1983. Two-level morphology: A general computational model of

word-form recognition and production. Publication No. 11, Department of General Linguistics,
Univ of Helsinki.

Kupiec, Julian. 1992. Hidden Markov estimation for unrestricted stochastic context-free
grammars. In Proceedings of ICASSP-92, pages 177–180, San Francisco.

Lakoff, George. 1993. Cognitive phonology. In John Goldsmith, editor, The Last Phonological Rule.
University of Chicago Press, Chicago.

Ling, Charles X. 1994. Learning the past tense of English verbs: The symbolic patter associator
vs. connectionist models. Journal of Artificial Intelligence Research, 1:209–229.

Lucke, Helmut. 1993. Inference of stochastic context-free grammar rules from example data
using the theory of bayesian belief propagation. In Eurospeech 93, pages 1195–1198, Berlin.

McCarthy, John J. 1988. Feature geometry and dependency: A review. Phonetica, 45:84–108.
McCarthy, John J. and Alan Prince. 1995. Prosodic morphology. In J. Goldsmith, editor, Handbook

of Phonological Theory. Basil Blackwell Ltd., pages 318–366.
Mitchell, Tom M. 1981. Generalization as search. In Bonnie Lynn Webber and Nils J. Nilsson,

editors, Readings in Artificial Intelligence. Morgan Kaufmann, Los Altos, pages 517–542.
Oncina, José, Pedro Garcı́a, and Enrique Vidal. 1993. Learning subsequential transducers for

pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15:448–458, May.

Orgun, Orhan. 1995. A declaritive theory of phonology-morphology interleaving. Unpublished
ms., U. of California-Berkeley, Department of Linguistics, October.

Orgun, Orhan. 1996. Correspondence and identity constraints in two-level optimality theory. In
Proceedings of the 14th West Coast Conference on Formal Linguistics (WCCFL-95).

30

Gildea and Jurafsky Learning Bias and Phonological Rule Induction

Padgett, Jaye. 1995a. Feature classes. In Papers in Optimality Theory. GLSA, UMass, Amherst.
University of Massachusetts Occasional Paers (UMOP) 18.

Padgett, Jaye. 1995b. Partial class behavior and nasal place assimilation. to appear in Proceedings
of the Arizona Phonology Conference: Workshop on Features in Optimality Theory, Coyote Working
Papers, University of Arizona, Tucson.

Prince, Alan and Paul Smolensky. 1993. Optimality theory: Constraint interaction in generative
grammar. Unpublished ms., Rutgers University.

Pulman, Stephen G. and Mark R. Hepple. 1993. A feature-based formalism for two-level
phonology: a description and implementation. Computer Speech and Language, 7:333–358.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning, 1:81–106.
Riley, Michael D. 1991. A statistical model for generating pronunciation networks. In IEEE

ICASSP-91, pages 737–740.
Ron, Dana, Yoram Singer, and Naftali Tishby. 1994. The power of amnesia. In Jack Cowan,

Gerald Tesauro, and Joshua Alspector, editors, Advances in Neural Information Processing
Systems 6. Morgan Kaufmann, San Mateo, CA.

Stolcke, Andreas and Stephen Omohundro. 1993. Hidden Markov Model induction by Bayesian
model merging. In Advances in Neural Information Processing Systems 5. Morgan Kaufman, San
Mateo, Ca.

Stolcke, Andreas and Stephen Omohundro. 1994. Best-first model merging for hidden Markov
model induction. Technical Report TR-94-003, ICSI, Berkeley, CA, January.

Tesar, Bruce. 1995. Computational Optimality Theory. Ph.D. thesis, University of Colorado,
Boulder.

Tesar, Bruce and Paul Smolensky. 1993. The learnability of optimality theory: An algorithm and
some basic complexity results. Technical Report CU-CS-678-93, University of Colorado at
Boulder Department of Computer Science.

Touretzky, David S., Gillette Elvgren, III, and Deirdre W. Wheeler. 1990. Phonological rule
induction: An architectural solution. In Proceedings of the 12th Annual Conference of the Cognitive
Science Society (COGSCI-90), pages 348–355.

Touretzky, David S. and Deirdre W. Wheeler. 1990. A computational basis for phonology. In
Advances in Neural Information Processing Systems 2, pages 372–379.

Wagner, R. A. and M. J. Fischer. 1974. The string-to-string correction problem. Journal of the
Association for Computation Machinery, 21:168–173.

Withgott, M. M. and F. R. Chen. 1993. Computation Models of American Speech. Center for the
Study of Language and Information.

31

