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Abstract

We use the property of unimodular functions to perform approximate inference
with dual decomposition in binary labeled graphs. Exact inference is possible
for a subclass of binary labeled graphs that have unimodular functions. We call
such graphs unimodular graphs. These are graphs where the submodular and non-
submodular edges follow a specific pattern– essentially that an isomorphism or
”flipping” exists to a fully submodular graph. Examples of unimodular graphs
include tree-structured graphs, submodular graphs, and bipartite graphs with all
non-submodular edges. We investigate the use of unimodular graphs in dual de-
composition, based on different decomposition strategies. Experimentally, for im-
age segmentation problems, we find that decomposition using unimodular graphs
outperform traditional tree-based dual decomposition. Dual decomposition is also
more easily parallelizable.

1 Introduction

This paper considers the common Maximum a Posteriori (MAP) problem of minimizing an en-
ergy function of the form E(x) =

∑
(i,j)∈E e(xi, xj) +

∑
i∈V e(xi) over binary vectors x, where

G = (V, E) is an undirected graph where V and E are the vertices and edges of the graph respectively.
As this problem is NP-hard in general, research has focused in two directions. The first is finding
special cases where the energy can be minimized efficiently i.e. in polynomial time. Common ex-
amples of this include the case where G is tree-structured using dynamic programming [2], planar
problems with no univariate energies [12], binary labeled graphs with single cycle hidden variables
that can have univariate energies [1], in binary labeled graphs when the interaction energies e(xi, xj)
are submodular, or in lesser known unimodular functions [6]. The second direction is finding ap-
proximate algorithms for minimizing general energies, such as TRW-S [7], max-product loopy belief
propagation [11], dual decomposition [9], Quadratic Pseudo Boolean Optimization (QPBO) [8] or
inference using planar graphs [5]. These algorithms may even provably find the exact solution for
individual problem instances, even in the absence of a general guarantee.

In this paper, we propose the use of unimodular functions instead of trees or submodular func-
tions in dual decomposition. The motivation of using larger subgraphs compared to trees is
to improve convergence speed. The contributions of this paper include study of dual de-
composition using subproblems of unimodular energies, proposing two alternatives for sub-
graph construction, one from building on spanning trees and the other by splitting the graph
into submodular and non-submodular subgraphs, and present experimental results on synthetic
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problems with different energy patterns and a real image segmentation problem. We find
that our setup greatly improves the convergence of dual decomposition over the use of trees.
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Figure 1: Examples of unimodular graphs. Edges
marked with a “×” are non-submodular, while
all others are submodular. In each case, if the
shaded nodes are flipped, a submodular energy is
obtained.

2 Unimodular graphs
An edge (i, j) is said to be submodular if
eij(0, 0)+ eij(1, 1) ≤ eij(0, 1)+ eij(1, 0) and
otherwise non-submodular. We will also re-
fer to energy E as submodular if this is true
for all edges of the graph. For such energies,
it is possible to solve the problem efficiently
by reducing it to a max-flow/min-cut problem
[3]. Whether or not an energy is unimodular
depends on global properties of the energy and
graph structure, and so cannot be characterized
as easily as submodularity.
Definition 1. Given a subset F ⊆ V , flipped energy functions (“relabeled”) are given by EF (x) =∑

(i,j)∈E eij(x
′
i, x

′
j) +

∑
i∈V ei(x

′
i) where x′i = xi if i 6∈ F , or x′i = 1− xi if i ∈ F .

Lemma 2. The submodularity of an edge energy eij(xi, xj) will be changed (from submodular to
non-submodular or vice-versa) in eij(x′i, x

′
j) if exactly one of i and j is in F . Otherwise it will

remain the same. (Proof in supplemental text.)
Theorem 3. EF will be submodular if and only if: For each non-submodular edge (i, j) exactly
one of i and j is in F and for each submodular edge (i, j) either (a) both i and j are in F or (b)
neither i nor j is in F .
An energy function is unimodular if there exists a subset F ⊆ V such that EF (x) is submodular.
We call graphs that have unimodular functions as unimodular graphs. There exists an isomorphism
between a unimodular energy and the corresponding EF (x) submodular energy. Graph cuts will
give a minimum energy labeling for the flipped graph (corresponding to EF (x)). After re-flipping
the nodes back from the flipped graph labeling, a minimum energy labeling is obtained for the
original unimodular graph. Fig. 1 shows some examples of unimodular graphs. One can imagine
flipping the shaded nodes to obtain a submodular graph. An efficient method (complexity O(|E| +
|V|)) to check if an energy is unimodular, based on a reduction to 2-SAT, has been proposed [6].
In our implementation, we use a breath first search algorithm instead. QPBOP [8] implements a
variant of the construction of Hammer et al. [6] that performs inference on general graphs but can
leave nodes unlabeled. It however solves unimodular functions efficiently. In our algorithm (detailed
differences in supplemental text), we only wish to use unimodular graphs for exact inference, as a
dual decomposition subproblem. Thus, we explicitly verify that the subproblem is unimodular by
finding a set F (using O(n) breadth first search) that renders it submodular, then explicitly construct
the modified energy keeping the graph size the same, and solve it via graph cuts.

3 Dual Decomposition using Unimodular Graphs

(a) Origi-
nal Graph

(b) DD-T (c) DD-S (d) DD-F (e) edge
sharing

Figure 2: Methods for splitting a graph into subgraphs. (a) A binary graph with non-submodular
edges marked with crosses. Flipped nodes are darkened. (b) DD-T splits into two spanning trees. (c)
DD-S splits into one subgraph for all submodular edges, and one for all non-submodular. (d) DD-F
splits into one subgraph being a tree with edges added greedily, and one graph with the remaining
edges. (e) Decomposition into two subgraphs initialized from spanning trees shown in (b).

Komodakis et al. [9], observed that, by use of the classic optimization strategy of dual decomposi-
tion, minimization of the energy function can be approximated by selecting a set of subgraphs G (so
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that each vertex and edge in the original graph is present in at least one subgraph) and solving the
alternative problem

max
{eG

i
}
min
{xG}

∑
G

EG(x
G
), where EG(x

G
) =

∑
i∈V

e
G
i (x

G
i ) +

∑
(i,j)∈G

e
G
ij(x

G
i , x

G
j ) s.t. ei(xi) =

∑
G

e
G
i (xi) (1)

where {eGij} is implicitly given by some (fixed) set of functions such that eij(xi, xj) =∑
G:(i,j)∈G e

G
ij(xi, xj) and where E(x) =

∑
GEG(x

G). We will not need to update eGij the way
we decompose our graphs. The motivation for this is that the graphs G should be chosen in such a
way that the subproblems minxG EG(x

G) can be solved quickly. The most common subproblems
are tree-structured problems which can be solved efficiently by dynamic programming. Fig. 2(b)
shows an example of using trees as subproblems. Komodakis et al. [9, section 6.3] also discuss
high-treewidth graphs where the edge costs eGij are submodular and so can be solved via graph cuts.
The outer problem is maximizing D({eGi }) = min{xG}

∑
GEG(x

G) over the constraint set induced by
Eq. 1. D can be shown to be continuous, concave and non-differentiable. A supergradient can
be computed by dD

deGi (a)
= I[xGi = a] where xG = argminxG EG(x

G). D can be maximized via projected
supergradient ascent.

Dual decomposition can also be used when subgraphs are not all spanning. Then, univariate energies
eGi are only adjusted for variables that are shared between at least two subgraphs. When some
vertices or edges are unique to only one subgraph, no updates are necessary for those vertices and
edges. It is also useful to point out that an important advantage of dual decomposition methods over
other methods like QPBO is that the decomposition methods can be used to parallelize inference
in very large graphs that might not fit on one machine and thus can be decomposed into smaller
subgraphs and run on multiple machines. We make use of unimodular graphs as subproblems and
it is easy to see that any submodular or tree-structured [8] graph will be a unimodular graph, and so
this is a generalization of previously-used subproblems for dual decomposition.

We consider two methods for decomposing a graph into unimodular graphs. The first, DD-
submodular (DD-S), is illustrated in Fig. 2(c). Given a grid graph, it is split into one subgraph
consisting of all submodular edges, and one subgraph containing all non-submodular energies so
each graph is a valid unimodular graph. (We use the property that for a bipartite graph consisting
of all non-submodular energies a flipping of alternate nodes will always render it submodular.). It is
also important to note that more general non-grid graphs can also be decomposed using this strategy
except that there will possibly be more than two subgraphs depending on the graph structure. The
second method, DD-flipper (DD-F) is illustrated in Fig. 2 (d) and (e). Here, we begin with a de-
composition consisting of spanning trees, as might be used in traditional dual decomposition. After
this we try to add edges to the spanning trees so that the graph being constructed is an unimodular
graph. It is always possible to convert a tree to a submodular tree by flipping some of the nodes.
This determines the status of each node flipped or unflipped. Next, each edge from the original
graph is considered to be added according to the conditions in Theorem 3. If it can be added (can be
checked in constant time) to the decomposition, it is, otherwise it is left out. Thus, one ends up with
a decomposition with subproblems containing at least as many edges as in a tree decomposition,
and possibly many more. Potentially, we can avoid sharing edges between subgraphs as in Fig. 2(d)
(by starting with one spanning tree and a forest of smaller trees so that each edge exists in one of
the trees) or allow edge sharing (as in Fig. 2(e)) by dividing the pairwise energies by the number of
subgraphs and making no updates to these energies during dual decomposition. In both cases, we
only need two subgraphs for rectangular grid graphs. This is because in the first case where there
is no edge sharing, removing a spanning tree from a rectangular grid leaves behind a forest of trees
that are always unimodular. In the edge sharing case, the graph is broken into spanning trees as in
Fig. 2 (b) and so both trees already cover all edges of the graph. Edges are added to these trees to
make them more connected while maintaining the unimodular property.

As discussed by Komodakis et al. [9, Section 6], any decomposition using subproblems with the
property of integrality will achieve a dual objective with the same value (namely that of a LP-
relaxation of the original integer program). Tree-structured and submodular graphs are both known
to obey integrality. Similarly, since unimodular graphs are essentially a relabeling of a submodular
graph, they will also obey this property, and so decomposition based on unimodular graphs will
obtain the same dual. Nevertheless, certain decompositions can be easier to round into a higher-
quality primal solution with fewer iterations, and convergence rates can differ. Both of these are
observed in our experiments.
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Figure 3: Inference using different algorithms on a 1000 x 1000 grid (left and middle). Details of
the graph structures in text. Best viewed in color. DD-S, DD-F and TRW-S are along the flat lines
with minimum energies but magnification shows DD-S does better than TRW-S.

Table 1: Segmentation metrics for 128 test images
TRW-S DD-T DD-F DD-S QPBO MaxProd

% pixel error 8.97 10.12 9.44 8.99 8.86 18.10
avg precision 0.8735 0.7857 0.8744 0.8772 0.8687 0.8278

avg recall 0.7606 0.7002 0.7515 0.7596 0.7722 0.3281

4 Experiments and Conclusions
We found edge sharing for both DD-T and DD-F perform no better than without edge sharing and
have the additional penalty of running inference on more than one larger subgraph. Hence, unless
explicitly mentioned we provide results for the case where no edge sharing is done. We obtain
primal solutions for the dual decomposition methods as follows. For DD-T and DD-F we take the
best primal energy from the larger subgraph containing all nodes. For DD-S, we use the submodular
graph for shared nodes, and otherwise whichever graph contains a node. We use the adaptive step
size method for projected subgradient [9].

Synthetic experiments : All the synthetic experiments are based on 1000 × 1000 node grids with
randomly chosen energy terms. All algorithms are implemented in C++ and use a single core of a
3.33GHz processor, based on and extending a MRF package [13]. We generate the local data cost
terms as e(xi) ∼ N (0, 1). For submodular pairwise terms, we set e(xi, xj) = 0 when xi = xj and
take e(xj , xj) ∼ |N (0, σ)| when xi 6= xj . The experiments we show are for σ = 3. Changing this
parameter did not seem to have effect on the results. For non-submodular edges, we do the opposite–
set e(xi, xj) = 0 when xi 6= xj and otherwise take the absolute value of a Normal variable. Our
termination criteria for algorithms that did not converge was 500 iterations.

We consider the results on graphs that are not unimodular. (More experiments and plots in
supplemental text.) Fig. 3 left shows results from a graph which has the left half edges with
submodular energies and the remaining edges (right half and edges connecting left and right halves)
with nonsubmodular energies. Both DD-F and DD-S perform similar to TRW-S and QPBO and
better than DD-T. Even though, it is not the global optimum, QPBO does provide its solution
quickly. Fig. 3 (right) is based on a graph emulating an image segmentation task. There exists a
square boundary of size of 500x500 in the center with non-submodular edges. All other edges, both
inside (the “foreground”) and outside (the “background”) the square are submodular. DD-T does
worse than our decomposition methods in the experiments above.

Image Segmentation : We use the Weizman horse dataset for segmentation. A MRF model has
been trained using 200 horse images. 128 images were reserved for testing. The two labels (two
class MAP estimation) are pixels belonging to a horse and those belonging to the background.
The parameters of the model were trained using truncated fitting using TRW-S based on the
univariate logistic loss [4], [10]. Univariate terms were predicted using a linear function of 100
local features modeling color, position and Histogram of Oriented Gradients (HOG). Pairwise
terms were predicted using a linear function of 42 features modeling discretized gradients between
neighboring pixels. The same trained parameters were used during testing inference by all the
inference methods. Table 1 provides the total percentage pixel error values on the test images, i.e.,
all foreground and background image pixels are considered to compute pixel error. Energy plot
(Fig. 3 right) shows DD-S does better than DD-T on each test image.

Conclusion : We have discussed how to construct unimodular graphs and shown that unimodu-
lar graphs are better than the traditional trees for dual decomposition since they greatly improve
convergence speed. Experimentally, the best results are obtained by using a decomposition with
unimodular graphs with fewer shared nodes between subgraphs.
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