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We study the problem of sampling trees from forests, in the setting where probabilities for each

tree may be a function of arbitrarily large tree fragments. This setting extends recent work for

sampling to learn Tree Substitution Grammars to the case where the tree structure (TSG derived

tree) is not fixed. We develop a Markov chain Monte Carlo (MCMC) algorithm which corrects

for the bias introduced by unbalanced forests, and we present experiments using the algorithm to

learn Synchronous Context-Free Grammar rules for machine translation. In this application, the

forests being sampled represent the set of Hiero-style rules that are consistent with fixed input

word-level alignments. We demonstrate equivalent machine translation performance to standard

techniques but with much smaller grammars.

1. Introduction

Recent work on learning Tree Substitution Grammars (TSGs) has developed procedures
for sampling TSG rules from known derived trees (Cohn, Goldwater, and Blunsom
2009; Post and Gildea 2009). Here one samples binary variables at each node in the
tree, indicating whether the node is internal to a TSG rule or is a split point between
two rules. We consider the problem of learning TSGs in cases where the tree structure
is not known, but rather where possible tree structures are represented in a forest. For
example, we may wish to learn from text where treebank annotation is unavailable,
but a forest of likely parses can be produced automatically. Another application, on
which we focus our attention in this paper, arises in machine translation, where we
want to learn translation rules from a forest representing the phrase decompositions that
are consistent with an automatically derived word alignment. Both these applications
involve sampling TSG trees from forests, rather than from fixed derived trees.

Chappelier and Rajman (2000) present a widely-used algorithm for sampling trees
from forests: one first computes an inside probability for each node bottom-up, and
then chooses an incoming hyperedge for each node top-down, sampling according to
each hyperedge’s inside probability. Johnson, Griffiths, and Goldwater (2007) use this
sampling algorithm in a Markov chain Monte Carlo framework for grammar learning.
We can combine the representations used in this algorithm and in the TSG learning
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algorithm discussed above, maintaining two variables at each node of the forest, one
for the identity of the incoming hyperedge, and another representing whether the node
is internal to a TSG rule or is a split point. However, computing an inside probability
for each node, as in the first phase of the algorithm of Johnson, Griffiths, and Goldwater
(2007), becomes difficult because of the exponential number of TSG rules that can apply
at any node in the forest. Not only is the number of possible TSG rules that can apply
given a fixed tree structure exponentially large in the size of the tree, but the number of
possible tree structures under a node is also exponentially large. This problem is par-
ticularly acute during grammar learning, as opposed to sampling according to a fixed
grammar, because any tree fragment is a valid potential rule. Cohn and Blunsom (2010)
address the large number of valid unseen rules by decomposing the prior over TSG
rules into an equivalent probabilistic context-free grammar; however, this technique
only applies to certain priors. In general, algorithms that match all possible rules are
likely to be prohibitively slow, as well as unwieldy to implement. In this paper, we
design a sampling algorithm that avoids explicitly computing inside probabilities for
each node in the forest.

In Section 2, we derive a general algorithm for sampling tree fragments from forests.
We avoid computing inside probabilities, as in the TSG sampling algorithms of Cohn,
Goldwater, and Blunsom (2009) and Post and Gildea (2009), but we must correct for
the bias introduced by the forest structure, a complication that does not arise when the
tree structure is fixed. In order to simplify the presentation of the algorithm, we first set
aside the complication of large, TSG-style rules, and describe an algorithm for sampling
trees from forests while avoiding computation of inside probabilities. This algorithm is
then generalized to learn the composed rules of TSG in Section 2.3.

As an application of our technique, we present machine translation experiments in
the remainder of the paper. We learn Hiero-style Synchronous Context-Free Grammar
(SCFG) rules (Chiang 2007) from bilingual sentences for which a forest of possible
minimal SCFG rules has been constructed fromfixedword alignments. The construction
of this forest and its properties are described in Section 3. We make the assumption
that the alignments produced by a word-level model are correct in order to simplify
the computation necessary for rule learning. This approach seems safe given that the
pipeline of alignment followed by rule extraction has generally remained the state of
the art despite attempts to learn joint models of alignment and rule decomposition
(DeNero, Bouchard-Cote, and Klein 2008; Blunsom et al. 2009; Blunsom and Cohn
2010a). We apply our sampling algorithm to learn the granularity of rule decomposition
in a Bayesian framework, comparing sampling algorithms in Section 4. The end-to-end
machine translation experiments of Section 5 show that our algorithm is able to achieve
performance equivalent to the standard technique of extracting all rules, but results in
a significantly smaller grammar.

2. Sampling Trees from Forests

As a motivating example, consider the small example forest of Figure 1. This forest
contains a total of five trees, one under the hyperedge labeled A, and four under the
hyperedge labeled B (the cross-product of the two options for deriving node 4 and the
two options for deriving node 5).

Let us suppose that we wish to sample trees from this forest according to a distribu-
tion Pt, and further suppose that this distribution is proportional to the product of the
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Figure 1
Example forest

weights of each tree’s hyperedges:

Pt(t) ∝ ∏
h∈t

w(h) (1)

To simplify the example, suppose that in Figure 1 each hyperedge has weight one,

∀h w(h) = 1

giving us a uniform distribution over trees:

∀t Pt(t) =
1
5

A tree can be specified by attaching a variable zn to each node n in the forest
indicating which incoming hyperedge is to be used in the current tree. For example,
variable z1 can take values A and B in Figure 1, while variables z2 and z3 can only
take a single value. We use z to refer to the entire set of variables zn in a forest. Each
assignment to z specifies a unique tree, τ(z), which can be found by following the
incoming hyperedges specified by z from the goal node of each forest down to the
terminals.

A naïve sampling strategy would be resample each of these variables zn in order,
holding all others constant, as in standard Gibbs sampling. If we choose an incoming
hyperedge according to the probability Pt(τ(z)) of the resulting tree, holding all other
variable assignments fixed, we see that, because Pt is uniform, we will choose with uni-
form probability of 1/m among the m incoming hyperedges at each node. In particular,
we will choose among the two incoming hyperedges at the root (node 1) with equal
probability, meaning that, over the long run, the sampler will spend half its time in the
state for the single tree corresponding to nodes 2 and 3, and only one eighth of its time
in each of the four other possible trees. Our naïve algorithm has failed at its goal of
sampling among the five possible trees each with probability 1/5.
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Table 1
Notation

Pt desired distribution on trees
z vector of variables
Z random vector over z

τ(z) tree corresponding to setting of z.
Z[t] subset of random variables that occur in tree t
ζ(t) setting of variables in Z[t]

Z[¬t] subset of random variables that do not occur in t

Thus, we cannot adopt the simple Gibbs sampling strategy, used for TSG induction
from fixed trees, of resampling one variable at a time according to the target distribution,
conditioned on all other variables. The intuitive reason for this, as illustrated by the
example, is the bias introduced by forests that are bushier (that is, havemore derivations
for each node) in some parts than in others. The algorithm derived in the remainder of
this section corrects for this bias, while avoiding the computation of inside probabilities
in the forest.

2.1 Choosing a Stationary Distribution

Wewill design our sampling algorithm by first choosing a distribution Pz over the set of
variables z defined above. We will show correctness for our algorithm by showing that
it is a Markov chain converging to Pz, and that Pz results in the desired distribution Pt
over trees.

The tree specified by an assignment to z will be denoted τ(z) (see Table 1). For a
tree t the vector containing the variables found at nodes in t will be denoted z[t]. This is
a subvector of z: for example, in Figure 1, if t chooses A at node 1 then z[t] = (z1, z2, z3),
and if t chooses B at node 1 then z[t] = (z1, z4, z5). We use z[¬t] to denote the variables
not used in the tree t. The vectors z[t] and z[¬t] differ according to t, but for any tree
t, the two vectors form a partition of z. There are many values of z that correspond to
the same tree, but each tree t corresponds to a unique subvector of variables z[t] and a
unique assignment to those specific variables—we will denote this unique assignment
of variables in z[t] by ζ(t). (In terms of τ and ζ one has for any z and t that τ(z) = t if
and only if z[t] = ζ(t).)

Let Z be the random vector generated by our algorithm. As long as Pz(τ(Z) =
t) = Pt(t) for all trees t, our algorithm will generate trees from the desired distribution.
Thus for any tree t the probability Pz(Z[t] = ζ(t)) is fixed to Pt(t), but any distribution
over the remaining variables not contained in t will still yield the desired distribution
over trees. Thus, in designing the sampling algorithm, we may choose any distribution
Pz(Z[¬t] | Z[t] = ζ(t)). A simple and convenient choice is to make Pz(Z[¬t] | Z[t] =
ζ(t)) uniform. That is, each incoming hyperedge variable with m alternatives assigns
each hyperedge probability 1/m. (In fact, our algorithm can easily be adapted to other
product distributions of Pz(Z[¬t] | Z[t] = ζ(t)).) This choice of P(Z[¬t] | Z[t] = ζ(t))
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determines a unique distribution for Pz:

Pz(Z = z) = Pt(τ(z)) Pz(Z[¬τ(z)] = z[¬τ(z)] | Z[τ(z)] = z[τ(z)])

= Pt(τ(z)) ∏
v∈z[¬τ(z)]

1
deg(v)

(2)

where deg(v) is the number of possible values for v.
We proceed by designing a Gibbs sampler for this Pz. The sampler resamples vari-

ables from z one at a time, according to the joint probability Pz(z) for each alternative.
The set of possible values for zn at a node n having m incoming hyperedges consists of
the hyperedges ej, 1 ≤ j ≤ m. Let sj be the vector z with the value of zn changed to ej.
Note that the τ(sj)’s only differ at nodes below n.

Let z[in(n)] be the vector consisting of the variables at nodes below n (that is,
contained in subtrees rooted at n, or “inside” n) in the forest, and let z[in(n)] be the
vector consisting of variables not under node n. Thus the vectors z[in(n)] and z[in(n)]
partition the complete vector z. We will use the notation z[t ∩ in(n)] to represent the
vector of variables from z that are both in a tree t and under a node n.

For Gibbs sampling, we need to compute the relative probabilities of sj’s. We now
consider the two terms of eq. 2 in this setting. Because of our requirement that Pz
correspond to the desired distribution Pt, the first term of eq. 2 can be computed, up
to a normalization constant, by evaluating our model over trees (eq. 1).

The second term of eq. 2 is a product of uniform distributions which can be decom-
posed into nodes below n and all other nodes:

Pz(Z[¬t] = z[¬t] | Z[t] = z[t]) = ∏
v∈z[¬t∩ in(n)]

1
deg(v) ∏

v∈z[¬t∩ in(n)]

1
deg(v)

(3)

where t = τ(z). Recall that τ(sj)’s only differ at vertices below n and hence

Pz(Z[¬t] = z[¬t] | Z[t] = z[t]) ∝ ∏
v∈z[¬t∩ in(n)]

1
deg(v)

(4)

where we emphasize that ∝ refers to the relative probabilities of the sj’s, which corre-
spond to the options from which the Gibbs sampler chooses at a given step. We can
manipulate eq. 4 into a more computationally convenient form by multiplying by the
deg(v) term for each node v inside n. Because the terms for all nodes not included in
the current tree cancel, we are left with:

Pz(Z[¬t] = z[¬t] | Z[t] = z[t]) ∝ ∏
v∈z[t∩ in(n)]

deg(v) (5)

Note that we only need to consider the nodes z[t] in the current tree, without needing
to examine the remainder of the forest at all.

Substituting eq. 5 into eq. 2 gives a simple update rule for use in our Gibbs sampler:

Pz(Z
(i+1) = sj | Z

(i) = z, n is updated) ∝ Pt(τ(sj)) ∏
v∈z[τ(sj)∩in(n)]

deg(v) (6)
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Algorithm 1 Sampling Algorithm
Require: A function v(z, i) returning the index of the ith variable of z in a top-down ordering of

the variables of the tree τ(z).
1: i← 1
2: while i ≤ |Z[τ(z)]| do ⊲ Until last node of current tree.
3: Resample zv(z,i) according to eq. 6
4: i← i + 1
5: end while

To make a step of the Markov chain, we compute the right-hand side of (6) for every sj

and then choose the next state of the chain Z(i+1) from the corresponding distribution
on the sj’s. The second term, which we refer to as the density factor, is equal to the
total number of trees in the forest under node n. This factor compensates for the bias
introduced by forests that are bushier in some places than in others, as in the example
of Figure 1. A related factor, defined on graphs rather than hypergraphs, can be traced
back as far as Knuth (1975), who wished to estimate the sum of values at all nodes in a
large tree by sampling a small number of the possible paths from the root to the leaves.
Knuth sampled paths uniformly and independently, rather than using a continuously
evolving Markov chain as in our Gibbs sampler.

2.2 Sampling Schedule

In a standard Gibbs sampler, updates are made iteratively to each variable z1, . . . , zN ,
and this general strategy can be applied in our case. However, it may be wasteful to
continually update variables that are not used by the current tree and are unlikely to be
used by any tree. We propose an alternative sampling schedule consisting of sweeping
from the root of the current tree down to its leaves, resampling variables at each node
in the current tree as we go. If an update changes the structure of the current tree, the
sweep continues along the new tree structure. This strategy is shown in Algorithm 1,
where v(z, i) denotes the ith variable in a top-down ordering of the variables of the
current tree τ(z). The top-down ordering may be depth-first or breadth-first, among
other possibilities, as long as the variables at each node have lower indices than the
variables at the node’s descendants in the current tree.

To show that this sampling schedule will converge to the desired distribution over
trees, we will first show that Pz is a stationary distribution for the transition defined by
a single step of the sweep:

Lemma 1
For any setting of variables z, any top-down ordering v(z, i), and any i, updating
variable zv(z,i) according to eq. 6 is stationary with respect to the distribution Pz defined
by eq. 2.

Proof
We will show that each step of the sweep is stationary for Pz by showing that it satisfies
the detailed balance. Detailed balance is the condition that, on average, for each pair of
states z and z′, the number of transitions between the two states is the same in either
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direction:

Pz(Z = z)P(Z(i+1) = z′ | Z(i) = z) = Pz(Z = z′)P(Z(i+1) = z | Z(i) = z′) (7)

where P(Z(i+1) = z′ | Z(i) = z) is the transition performed by one step of the sweep:

P(Z(i+1) = z′ | Z(i) = z) =







Pz(Z=z′)
∑z′′ Pz(Z=z′′)I(z′′

¬v(z,i)=z¬v(z,i))
if z′¬v(z,i) = z¬v(z,i)

0 otherwise
(8)

It is important to observe that, because the resampling step only changes the tree
structure below the ith node, the ith node in the new tree remains the same node. That
is, after making an update from z to z′, v(z, i) = v(z′, i), and, mathematically:

z′¬v(z,i) = z¬v(z,i) ⇔ v(z, i) = v(z′, i) ∧ z′¬v(z′,i) = z¬v(z,i)

⇔ z′¬v(z′,i) = z¬v(z′,i)

Thus, the condition in eq. 8 is symmetric in z and z′, and we define the predicate
match(z, z′, i) to be equivalent to this condition. Substituting eq. 8 into the lefthand side
of eq. 7, we have:

Pz(Z = z)P(Z(i+1) = z′ | Z(i) = z) =







Pz(Z=z)Pz(Z=z′)
∑z′′ Pz(Z=z′′)I(z′′

¬v(z,i)=z¬v(z,i))
if match(z, z′, i)

0 otherwise
(9)

By symmetry of the righthand side of eq. 9 in z and z′, we see that eq. 7 is satis-
fied. Because detailed balance implies stationarity, Pz is a stationary distribution of
P(Z(i+1) = z′ | Z(i) = z). �

This lemma allows us to prove the correctness of our main algorithm:

Theorem 1
For any top-down sampling schedule v(z, i), and any desired distribution over trees Pt
that assigns non-zero probability to all trees in the forest, Algorithm 1 will converge to
Pt.

Proof
Since Pz is stationary for each step of the sweep, it is stationary for one entire sweep
from top to bottom.

To show that theMarkov chain defined by an entire sweep is ergodic, wemust show
that it is aperiodic and irreducible. It is aperiodic because the chain can stay in the same
configuration with non-zero probability by selecting the same setting for each variable
in the sweep. The chain is irreducible because any configuration can be reached in a
finite number of steps by sorting the variables in topological order bottom-up in the
forest, and then, for each variable, executing one sweep that selects a tree that includes
the desired variable with the desired setting.

Because Pz is stationary for the chain defined by entire sweeps, and this chain is
ergodic, the chain will converge to Pz. Because eq. 2 guarantees that Pz(τ(Z) = t) =
Pt(t), convergence to Pz implies convergence to Pt. �
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2.3 Sampling Composed Rules

Our approach to sampling was motivated by a desire to learn TSG-style grammars,
where one grammar rule is the composition of a number of hyperedges in the forest.
We extend our sampling algorithm to handle this problem by using the same methods
that are used to learn a TSG from a single, fixed tree (Cohn, Goldwater, and Blunsom
2009; Post and Gildea 2009). We attach a binary variable to each node in the forest
indicating whether the node is a boundary between two TSG rules, or is internal to a
single TSG rule. Thus, the complete set of variables used by the sampler, z, now consists
of two variables at each node in the forest: one indicating the incoming hyperedge, and
one binary boundary variable. The proof of Section 2.1 carries through, with each new
binary variable v having deg(v) = 2 in eq. 2. As before, the current setting of z partitions
z into two sets of variables, those used in the current tree, z[τ(z)], and those outside the
current tree, z[¬τ(z)]. Given a fixed assignment to z, we can read off both the current
tree and its segmentation into TSG rules. We modify the tree probability of eq. 1 to be a
product over TSG rules r:

Pt(t) ∝ ∏
r∈t

w(r) (10)

in order to emphasize that grammar rules are no longer strictly equivalent to hyper-
edges in the forest. We modify the sampling algorithm of Algorithm 1 to make use of
this definition of Pt and to resample both variables at the current node. The incoming
hyperedge variable is resampled according to eq. 6, while the segmentation variable is
simply resampled according to Pt, as the update does not change the sets z[τ(z)] and
z[¬τ(z)].

The proof that the sampling algorithm converges to the correct distribution still
applies in the TSG setting, as it makes use of the partition of z into z[τ(z)] and z[¬τ(z)],
but does not depend on the functional form of the desired distribution over trees Pt.

3. Phrase Decomposition Forest

In the remainder of this paper, we will apply the algorithm developed in the previous
section to the problem of learning rules for machine translation in the context of a
Hiero-style, SCFG-based system. As in Hiero, our grammars will make use of a single
nonterminal X, and will contain rules with a mixture of nonterminals and terminals
on the righthand side, with at most two nonterminal occurrences in the righthand side
of a rule. In general, many overlapping rules of varying sizes are consistent with the
input word alignments, meaning that we must address a type of segmentation problem
in order learn rules of the right granularity. Given the restriction to two righthand side
(r.h.s.) nonterminals, the maximum number of rules that can be extracted from an input
sentence pair is O(n12) in the sentence length, because the left and right boundaries of
the lefthand side (l.h.s.) nonterminal and each of the two r.h.s. nonterminals can take
O(n) positions in each of the two languages. This complexity leads us to explore sam-
pling algorithms, as dynamic programming approaches are likely to be prohibitively
slow. In this section, we show that the problem of learning rules can be analyzed as a
problem of identifying tree fragments of unknown size and shape in a forest derived
from the input word alignments for each sentence. These tree fragments are similar
to the tree fragments used in TSG learning. As in TSG learning, each rule of the final
grammar consists of some number of adjacent, minimal tree fragments: one-level tree-
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我

I

今天

have

和

a

她

date

有

with

约会

her

today

Figure 2
Example word alignment, with boxes showing valid phrase pairs. In this example, all individual
alignment points are also valid phrase pairs.

bank expansions in the case of TSG learning and minimal SCFG rules, defined below,
in the case of translation. The internal structure of TSG rules is used during parsing
to determine the final tree structure to output, while the internal structure of machine
translation rules will not be used at decoding time. This distinction is irrelevant during
learning. Amore significant difference from TSG learning is that the sets of minimal tree
fragments in our SCFG application come not from a single, known tree, but rather from
a forest representing the set of bracketings consistent with the input word alignments.

We now proceed to precisely define this phrase decomposition forest and discuss
some of its theoretical properties. The phrase decomposition forest is designed to extend
the phrase decomposition tree defined by Zhang, Gildea, and Chiang (2008) in order to
explicitly represent each possible minimal rule with a hyperedge.

A span [i, j] is a set of contiguous word indices {i, i+ 1, . . . , j− 1}. Given an aligned
Chinese-English sentence pair, a phrase n is a pair of spans n = ([i1, j1], [i2, j2]) such that
Chinese words in positions [i1, j1] are aligned only to English words in positions [i2, j2],
and vice versa. A phrase forest H = 〈V, E〉 is a hypergraph made of a set of hypernodes
V and a set of hyperedges E. Each node n = ([i1, j1], [i2, j2]) ∈ V is a tight phrase as
defined by Koehn, Och, and Marcu (2003), i.e., a phrase containing no unaligned words
at its boundaries. A phrase n = ([i1, j1], [i2, j2]) covers n′ = ([i′1, j

′
1], [i

′
2, j
′
2]) if

i1 ≤ i′1 ∧ j′1 ≤ j1 ∧ i2 ≤ i′2 ∧ j′2 ≤ j2

Note that every phrase covers itself. It follows from the definition of phrases that if
i1 ≤ i′1 ∧ j′1 ≤ j1, then i2 ≤ i′2 ∧ j′2 ≤ j2. That means we can determine phrase coverage
by only looking at one language side of the phrases. We are going to use this property
to simplify the discussion of our proofs. We also define coverage between two sets of
phrases. Given two sets of phrases T and T′, we say T′ covers T if for all t ∈ T, there
exists a t′ ∈ T′ such that t′ covers t. We say that two phrases overlap if they intersect,
but neither covers the other.
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([0 1], [0 1])

X ���, I

([4 5], [1 2])

X ��� , have

([5 6], [3 4])

X ����, date

([2 3], [4 5])

X ��� , with

([3 4], [5 6])

X ���, her

([2 4], [4 6])

X ��X��X�, X��X�

([4 6], [1 4])

X ��X��X�, X��a X�

([1 4], [4 7])

X ��X��X�, X��X�

([2 6], [1 6])

X ��X��X�, X��X�

([1 6], [1 7])

X ��X��X�, X��X� X ��X��X�, X��X�

([0 6], [0 7])

X ��X��X�, X��X�

([1 2], [6 7])

X ����, today

Figure 3
A phrase decomposition forest extracted from the sentence pair 〈我今天和她有约会, I have a
date with her today〉. Each edge is a minimal SCFG rule, and the rules at the bottom level are
phrase pairs. Unaligned word “a” shows up in the rule X → X1X2,X1aX2 after unaligned words
are put back into the alignment matrix. The highlighted portion of the forest shows an SCFG rule
built by composing minimal rules.

If two phrases n = ([i1, j1], [i2, j2]) and n′ = ([i′1, j
′
1], [i

′
2, j
′
2]) intersect, we can take the

union of the two phrases by taking the union of the source and target language spans
respectively. That is, n1∪ n2 = ([i1, j1]∪ [i′1, j

′
1], [i2, j2]∪ [i′2, j

′
2]). An important property of

phrases is that if two phrases intersect, their union is also a phrase. For example, given
that “have a date with her” and “with her today” are both valid phrases in Figure 2,
“have a date with her today” must also be a valid phrase. Given a set T of phrases,
we define the union closure of the phrase set T, denoted

⋃∗(T), to be constructed by
repeatedly joining intersecting phrases until there are no intersecting phrases left.

Each edge in E, written as T → n, is made of a set of non-intersecting tail nodes
T ⊂ V, and a single head node n ∈ V that covers each tail node. Each edge is an SCFG
rule consistent with the word alignments. Each tail node corresponds to a righthand-
side nonterminal in the SCFG rule, while any position included in n but not included in
any tail node corresponds to a righthand-side terminal in the SCFG rule. For example,
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⋃∗(T1 ∪ T2)

T2

T1

⋃∗(T1 ∪ T2)

T2

i k1k2 j2 j
T1

Figure 4
Sketch of proof for Lemma 2. In the first case

⋃∗(T1 ∪ T2) consists of more than one span, or
consists of one span that is strictly smaller than n. In the second case,

⋃∗(T1 ∪ T2) = {n}.

given the aligned sentence pair of Figure 2, the edge {([3, 4], [5, 6]), ([5, 6], [3, 4])} →
([2, 6], [1, 6]), corresponds to a SCFG rule X →和 X1 有 X2, have a X2 with X1.

For the rest of this section, we assume that there are no unaligned words. Unaligned
words can be temporarily removed from the alignment matrix before building the
phrase decomposition forest. After extracting the forest, they are put back into the
alignment matrix. For each derivation in the phrase decomposition forest, an unaligned
word appears in the SCFG rule whose left-hand side corresponds to the lowest forest
node that covers the unaligned word.

Definition 1
An edge T → n is minimal if there does not exist another edge T′ → n such that T′

covers T.

A minimal edge is an SCFG rule that cannot be decomposed by factoring out some
part of its r.h.s. as a separate rule. We define a phrase decomposition forest to be made
of all phrases from a sentence pair, connected by all minimal SCFG rules. A phrase
decomposition forest compactly represents all possible SCFG rules that are consistent
with word alignments. For the example word alignment shown in Figure 2, the phrase
decomposition forest is shown in Figure 3. Each boxed phrase in Figure 2 corresponds to
a node in the forest of Figure 3, while hyperedges in Figure 3 represent ways of building
phrases out of shorter phrases.

A phrase decomposition forest has the important property that any SCFG rule
consistent with the word alignment corresponds to a contiguous fragment of some
complete tree found in the forest. For example, the highlighted tree fragment of the
forest in Figure 3 corresponds to the SCFG rule:

X → 和 X2 有 X1, have a X1 with X2

Thus any valid SCFG rule can be formed by selecting a set of adjacent hyperedges from
the forest and composing the minimal SCFG rules specified by each hyperedge. We
will apply the sampling algorithm developed in Section 2 to this problem of selecting
hyperedges from the forest.

The structure and size of phrase decomposition forests are constrained by the
following lemma:

Lemma 2
When there exists more than one minimal edge leading to the same head node n =
([i1, j1], [i2, j2]), each of these minimal edges is a binary split of phrase pair n, which
gives us either a straight or inverted binary SCFG rule with no terminals.
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Proof
Suppose that there exist two minimal edges T1 → n and T2 → n leading to node n.
Consider the node set we get by taking the union closure of the tail nodes in T1 and
T2:

⋃∗
(T1 ∪ T2)→ n

Figure 4 shows two cases of this construction. We show only the spans on the source
language side, which is enough to determine coverage properties. Let n have span [i, j]
on the source side. In the first case (left),

⋃∗(T1 ∪ T2) 6= {n}. We know
⋃∗(T1 ∪ T2)→ n

is also a valid edge because the unions of intersecting phrases are phrases, too. By the
definition of union closure,

⋃∗(T1 ∪ T2) covers both T1 and T2. Therefore T1 → n and
T2 → n cannot both be minimal. In the second case (right),

⋃∗(T1 ∪ T2) = {n}. This
means that the phrases in T1 ∪ T2 overlap one another in a chain covering the entire span
of n. There must exist a phrase n1 = [i, k1] in T1 or T2 that begins at the left boundary
i of n. Without loss of generality, assume that n1 ∈ T1. There must exist another phrase
n2 = [k2, j2] ∈ T2 that overlaps with n such that k2 < k1 and j2 > k1. The span [k2, j] is
a valid phrase, because it consists of the union closure of all phrases that begin to the
right of k2:

⋃∗ {

[i′, j′] | [i′, j′] ∈ T1 ∪ T2 ∧ i′ ≥ k2
}

= {[k2, j]}

We also know that n1 − n2 = [i, k2] is a valid phrase because the difference of two
overlapping phrases is also a valid phrase. Therefore k2 is a valid binary split point of n,
which means that either T2 is an edge formed by this binary split, or T2 is not minimal.
The span [k2, j] − n1 = [k1, j] is also a valid phrase formed by taking the difference of
two overlapping phrases, which makes k1 a valid binary split point for n. This makes T1
either an edge formed by the binary split at k1, or not a minimal phrase. Thus, whenever
we have two minimal edges, both consist of a binary split. �

Another interesting property of phrase decomposition forests relates to the length
of derivations. A derivation is a tree of minimal edges reaching from a given node all
the way down to the forest’s terminal nodes. The length of a derivation is the number
of minimal edges it contains.

Lemma 3
All derivations under a node in a phrase decomposition forest have the same length.

Proof
This is proved by induction. As the base case, all the nodes at the bottom of the phrase
decomposition forest have only one derivation of length 1. For the induction step, we
consider the two possible cases in Lemma 2. The case where a node n has only a single
edge underneath is trivial. It can have only one derivation length since the children
under that single edge already do. For the case where there are multiple valid binary
splits for a node n at span (i, j), we assume the split points are k1, . . . , ks. Because the
intersection of two phrases is also a phrase, we know that spans (i, k1), (k1, k2), . . . , (ks, j)
are all valid phrases, and so is any concatenation of consecutive phrases in these spans.
Any derivation in this sub-forest structure leading from these s+ 1 spans to n has length
s, which completes the proof under the assumption of the induction. �
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Algorithm 2 The CYK-like algorithm for building a phrase decomposition forest from
word-aligned sentence pair 〈 f , e〉
1: Extract all phrase pairs in the form of ([i1, j1], [i2, j2])
2: Build a forest node for each phrase pair, and let n(i, j) be the node corresponding to the phrase

pair whose source side is [i, j]
3: for s = 1 . . . | f | do
4: for i = 0 . . . | f | − s do
5: j← i + s
6: if n(i, j) exists then
7: continue
8: end if
9: split← 0
10: for k = i + 1 . . . j− 1 do
11: if both n(i, k) and n(k, j) exist then
12: add edge {n(i, k), n(k, j)} → n(i, j)
13: split← split+ 1
14: end if
15: end for
16: if split = 0 then
17: T ← ∅
18: l ← i
19: while l < j do
20: l′ ← l + 1
21: for m← j . . . l do
22: if n(l,m) exists then
23: T ← T ∪ n(l,m)
24: l′ ← m
25: break
26: end if
27: end for
28: l ← l′

29: end while
30: add edge T → n(i, j)
31: end if
32: end for
33: end for

Since all the different derivations under the same node in a minimal phrase forest
contain the same number of minimal rules, we call that number the level of a node. The
fact that nodes can be grouped by levels forms the basis of our fast iterative sampling
algorithm as described in Section 5.3.

3.1 Constructing the Phrase Decomposition Forest

Given a word-aligned sentence pair, a phrase decomposition tree can be extracted with
a shift-reduce algorithm (Zhang, Gildea, and Chiang 2008). While the algorithm of
Zhang, Gildea, and Chiang (2008) constructs a single tree which compactly represents
the set of possible phrase trees, we wish to represent the set of all trees as a forest. We
now describe a bottom-up parsing algorithm, shown in Algorithm 2, for building this
forest. The algorithm considers all spans (i, j) in order of increasing length. The CYK-
like loop over split points k (line 10) is only used for the case where a phrase can be
decomposed into two phrases, corresponding to a binary SCFG rule with no righthand
side terminals. By Lemma 2, this is the only source of ambiguity in constructing phrase
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decompositions. When no binary split is found (line 16), a single hyperedge is made
that connects the current span with all its maximal children. (A child is maximal if it
is not itself covered by another child.) This section can produce SCFG rules with more
than two righthand side nonterminals, and it also produces any rules containing both
terminals and nonterminals in the righthand side. Righthand-side nonterminals corre-
spond to previously constructed nodes n(l,m) in line 23, and righthand-side terminals
correspond to advancing a position in the string in line 20.

The running time of the algorithm is O(n3) in terms of the length of the Chinese
sentence f . The size of the resulting forests depends on the input alignments. The worst
case in terms of forest size is when the input consists of a monotonic, one-to-one word
alignment. In this situation, all (i, k, j) tuples correspond to valid hyperedges, and the
size of the output forest isO(n3). At the other extreme, when given a non-decomposable
permutation as an input alignment, the output forest consists of a single hyperedge.
In practice, given Chinese-English word alignments from GIZA++, we find that the
resulting forests are highly constrained, and the algorithm’s running time is negligible
in our overall system. In fact, we find it better to rebuild every forest from a word
alignment every time we re-sample a sentence, rather than storing the hypergraphs
across sampling iterations.

4. Comparison of Sampling Methods

To empirically verify the sampling methods presented in Section 2, we construct phrase
decomposition forests over which we try to learn composed translation rules. In this
section, we use a simple probability model for the tree probability Pt in order to study
the convergence behavior of our sampling algorithm. We will use a more sophisticated
probability model for our end-to-end machine translation experiments in Section 5.
For studying convergence, we desire a simpler model with a probability that can be
evaluated in closed form.

4.1 Model

We use a very basic generative model based on a Dirichlet Process defined over com-
posed rules. The model is essentially the same as the Tree Substitution Grammar (TSG)
model used by Cohn, Goldwater, and Blunsom (2009) and Post and Gildea (2009).

We define a single Dirichlet process over the entire set of rules. We draw the rule
distribution G from a Dirichlet process, and then rules from G.

G | α, P0 ∼ Dir(α, P0),

r | G ∼ G.

For the base distribution P0, we use a very simple uniform distribution where all rules
of the same size have equal probability:

P0(r) = Vf
−|r f |Ve

−|re |

where Vf is the vocabulary size of source language, and |r f | is the length of the source
side of the rule r. Integrating over G, we get a Chinese restaurant process for the
Dirichlet process. Customers in the Chinese restaurant analogy represent translation
rule instances in the machine translation setting, while tables represent rule types. The
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Chinese restaurant has an infinite number of tables, and customers enter one by one and
choose a table to sit at. Let zi be the table chosen by ith customer. Then, the probability
of the customer choosing a table which is already occupied by customers who entered
the restaurant previously, or a new table, is given by following equations:

P(zi = t | z−i) =

{

nt
i−1+α 1 ≤ t ≤ T

α
i−1+α t = T + 1

where z−i is the current seating arrangement, t is the index of the table, nt is the number
of customers at the table t, and T is the total number of occupied tables in the restaurant.
In our model, a table t has a label indicating to which rule r the table is assigned. The
label of a table is drawn from the base distribution P0.

If we marginalize over tables labeled with the same rule, we get the following
probability of choosing r given the current analysis z−i of the data:

P(ri = r | z−i) =
nr + αP0(r)

n + α
(11)

where nr is the number of times rule r has been observed in z−i, and n is total number
of rules observed in z−i.

4.2 Sampling Methods

We wish to sample from the set of possible decompositions into rules, including com-
posed rules, for each sentence in our training data. We follow the top-down sampling
schedule discussed in Section 2 and also implement tree-level rejection sampling as a
baseline.

Our rejection sampling baseline is a form of Metropolis-Hastings where a new tree
t is resampled from a simple proposal distribution Q(t), and then either accepted or
rejected according the Metropolis-Hastings acceptance rule, as shown in Algorithm 3.
As in Algorithm 1, we use v(z, i) to denote a top-down ordering of forest variables. As
in all our experiments, Pt is the current tree probability conditioned on the current trees
for all other sentences in our corpus, using eq. 11 as the rule probability in eq. 10.

Our proposal distribution samples each variable with uniform probability working
top-down through the forest. The proposal distribution for an entire tree is thus:

Q(t) = ∏
w∈z[t]

1
deg(w)

This does not correspond to a uniform distribution over entire trees for the reasons dis-
cussed in Section 2. However, the Metropolis-Hastings acceptance probability corrects
for this, and thus the algorithm is guaranteed to converge to the correct distribution in
the long term. We will show that, because that the proposal distribution does not re-
use any of the variable settings from the current tree, the rejection sampling algorithm
converges more slowly in practice than the more sophisticated alternative described in
Section 2.2.

We now describe in more detail our implementation of the approach of Section 2.2.
We define two operations on a hypergraph node n, SAMPLECUT and SAMPLEEDGE, to
change the sampled tree from the hypergraph. SAMPLECUT(n) chooses whether n is a
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Algorithm 3 Metropolis-Hastings Sampling Algorithm
Require: A function v(z, i) returning the index of the ith variable of z in a top-down ordering of

the variables of the tree τ(z).
1: i← 1
2: while i < |Z[τ(z)]| do
3: Sample znew

v(z,i) according to uniform(znew
v(z,i))

4: i← i + 1
5: end while

6: z←

{

znew w/probmin
{

1, Pt(t(z
new))Q(t(zold))

Pt(t(zold))Q(t(znew))

}

zold otherwise

Algorithm 4 Top-down Sampling Algorithm
1: queue.push(root)
2: while queue is not empty do
3: n = queue.pop()
4: SAMPLEEDGE(n)
5: SAMPLECUT(n)
6: for each child c of node n do
7: queue.push(c)
8: end for
9: end while

segmentation point or not, deciding if two rules shouldmerged, while SAMPLEEDGE(n)
chooses a hyperedge under n, making an entire new subtree. Algorithm 4 shows our
implementation of Algorithm 1 in terms of tree operations and the sampling operations
SAMPLEEDGE(n) and SAMPLECUT(n).

4.3 Experiments

We used a Chinese-English parallel corpus available from LDC, composed of newswire
text. The corpus consists of 41K sentence pairs, which is 1M words on the English side.
We constructed phrase decomposition forests with this corpus and ran the top-down
sampling algorithm and the rejection sampling algorithm described in Section 4.2 for
one hundred iterations. We used α = 100 for every experiment. The likelihood of the
current state was calculated for every iteration. Each setting was repeated five times,
and then we computed the average likelihood for each iteration.

Figure 5 shows a comparison of the likelihoods found by rejection sampling and
top-down sampling. As expected, we found that the likelihood converged much more
quickly with top-down sampling. Figure 6 shows a comparison between two different
versions of top-down sampling: the first experiment was run with the density factor de-
scribed in Section 2, Equation 6, and the second one was run without the density factor.
The density factor has a much smaller effect on the convergence of our algorithm than
does the move from rejection sampling to top-down sampling, such that the difference
between the two curves shown in Figure 6 is not visible at the scale of Figure 5. (The
first ten iterations are omitted in Figure 6 in order to highlight the difference.) The small
difference is likely due to the fact that our trees are relatively evenly balanced, such that
the ratio of the density factor for two trees is not significant in comparison to the ratio
of their model probabilities. Nevertheless, we do find higher likelihood states with the
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Likelihood graphs for rejection sampling and top-down sampling
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Likelihood graphs for top-down sampling with and without density factor. The first ten
iterations are omitted to highlight the difference
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density factor than without it. This shows that, in addition to providing a theoretical
guarantee that our Markov chain converges to the desired distribution Pt in the limit,
the density factor also helps us find higher probability trees in practice.

5. Application to Machine Translation

The results of the previous section demonstrate the performance of our algorithm in
terms of the probabilities of the model it is given, but do not constitute an end-to-end
application. In this section we demonstrate its use in a complete machine translation
system, using the SCFG rules found by the sampler in a Hiero-style MT decoder. We
discuss our approach and how it relates to previous work in machine translation in
Section 5.1 before specifying the precise probability model used for our experiments in
Section 5.2, discussing a technique to speed-up the model’s burn-in in Section 5.3, and
describing our experiments in Section 5.4.

5.1 Approach

A typical pipeline for training current statistical machine translation systems consists
of the following three steps: word alignment, rule extraction, and tuning of feature
weights. Word alignment is most often performed using the models of Brown et al.
(1993) and Vogel, Ney, and Tillmann (1996). Phrase extraction is performed differently
for phrase-based (Koehn, Och, andMarcu 2003), hierarchical (Chiang 2005), and syntax-
based (Galley et al. 2004) translation models, while tuning algorithms are generally
independent of the translation model (Och 2003; Chiang, Marton, and Resnik 2008;
Hopkins and May 2011).

Recently, a number of efforts have been made to combine the word alignment and
rule extraction steps into a joint model, with the hope both of avoiding some of the
errors of the word-level alignment, and of automatically learning the decomposition
of sentence pairs into rules (DeNero, Bouchard-Cote, and Klein 2008; Blunsom et al.
2009; Blunsom and Cohn 2010a; Neubig et al. 2011). This approach treats both word
alignment and rule decomposition as hidden variables in an EM-style algorithm. While
these efforts have been able to match the performance of systems based on two succes-
sive steps for word alignment and rule extraction, they have generally not improved
performance enough to become widely adopted. One possible reason for this is the
added complexity and in particular the increased computation time when compared
to the standard pipeline. The accuracy of word-level alignments from the standard
GIZA++ package has proved hard to beat, in particular when large amounts of training
data are available.

Given this state of affairs, the question arises whether static word alignments can
be used to guide rule learning in a model which treats the decomposition of a sentence
pair into rules as a hidden variable. Such an approach would favor rules which are
consistent with the other sentences in the data, and would contrast with the standard
practice inHiero-style systems of simply extracting all overlapping rules consistent with
static word alignments. Constraining the search over rule decomposition with word
alignments has the potential to significantly speed up training of rule decomposition
models, overcoming one of the barriers to their widespread use. Rule decomposition
models also have the benefit of producing much smaller grammars than are achieved
when extracting all possible rules. This is desirable given that the size of translation
grammars is one of the limiting computational factors in current systems, necessitating
elaborate strategies for rule filtering and indexing.
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In this section, we apply our sampling algorithm to learn rules for the Hiero trans-
lation model of Chiang (2005). Hiero is based on Synchronous Context-Free Grammar
(SCFG), with a number of constraints on the form that rules can take. The grammar
has a single nonterminal, and each rule has at most two righthand-side nonterminals.
Most significantly, Hiero allows rules with mixed terminals and nonterminals on the
righthand side. This has the great benefit of allowing terminals to control re-ordering
between languages, but also leads to very large numbers of valid rules during the rule
extraction process. We wish to see whether, by adding a learned model of sentence
decomposition to Hiero’s original method of leveraging fixed word-level alignments,
we can learn a small set of rules in a system that is both efficient to train and efficient
to decode. Our approach of beginning with fixed word alignments is similar to that
of Sankaran, Haffari, and Sarkar (2011), although their sampling algorithm reanalyzes
individual phrases extracted with Hiero heuristics rather than entire sentences, and
produces rules with no more than one nonterminal on the righthand side.

Most previous works on joint word alignment and rule extraction models were
evaluated indirectly by resorting to heuristic methods to extract rules from learned
word alignment or bracketing structures (DeNero, Bouchard-Cote, and Klein 2008;
Zhang et al. 2008; Blunsom et al. 2009; Levenberg, Dyer, and Blunsom 2012), and do
not directly learn the SCFG rules that are used during decoding. In this paper, we work
with lexicalized translation rules with a mix of terminals and nonterminals, and we
use the rules found by our sampler directly for decoding. Since word alignments are
fixed in our model, any improvements we observe in translation quality indicate that
our model learns how SCFG rules interplay with each other, rather than fixing word
alignment errors.

The problem of rule decomposition is not only relevant to the Hiero model. Trans-
lation models that make use of monolingual parsing, such as string-to-tree (Galley
et al. 2004), tree-to-string (Liu, Liu, and Lin 2006), are all known to benefit greatly
from learning composed rules (Galley et al. 2006). In the particular case of Hiero rule
extraction, although there is no explicit rule composition step, the extracted rules are
in fact “composed rules” in the sense of string-to-tree or tree-to-string rule extraction,
because they can be further decomposed into smaller SCFG rules that are also consistent
with word alignments. Although our experiments only include the Hiero model, the
method presented in this paper is also applicable to string-to-tree and tree-to-string
models, because the phrase decomposition forest presented in Section 3 can be extended
to rule learning and extraction of other syntax-based MT models.

5.2 Model

In this section, we describe a generative model based on the Pitman-Yor process (Pitman
and Yor 1997; Teh 2006) over derivation trees consisting of composed rules. Bayesian
methods have been applied to a number of segmentation tasks in NLP, including
word segmentation, Tree Substitution Grammar (TSG) learning, and learning machine
translation rules, as a way of controlling the overfitting produced when Expectation
Maximization would tend to prefer longer segments. However, it is important to note
that the Bayesian priors in most cases control the size and number of the clusters, but
do not explicitly control the size of rules. In many cases, this type of Bayesian prior
alone is not strong enough to overcome the preference for longer, less generalizable
rules. For example, some previous work in word segmentation (Liang and Klein 2009;
Naradowsky and Toutanova 2011) adopts a “length penalty” to remedy this situation.
Since we have the prior knowledge that longer rules are less likely to generalize and are
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therefore less likely to be a good rule, we adopt a similar scheme to control the length
of rules in our model.

In order to explicitly control the length of our rules, we generate a rule r in two
stages. First, we draw the length of a rule |r| = ℓ from a probability distribution defined
over positive integers. We use a Poisson distribution:

P(ℓ;λ) =
λℓe−λ

ℓ!

Because of the factorial in the denominator, the Poisson distribution decays quickly as
ℓ becomes larger, which is ideal for selecting rule length because we want to encourage
learning of shorter rules and learn longer rules only when there is strong evidence for
them in the data.

A separate Pitman-Yor process is defined for the rules of each length ℓ. We draw
the rule distribution G from a Pitman-Yor process, and then rules of length ℓ are drawn
from G.

G | α, d, P0 ∼ PY(α, d, P0),

r | G ∼ G.

The first two parameters, a concentration parameter α and a discount parameter d,
control the shape of distribution G by controlling the size and the number of clusters.
The label of the cluster is decided by the base distribution P0. Since our alignment is
fixed, we do not need a complex base distribution that differentiates better aligned
phrases from others. We use a uniform distribution where each rule of the same size
has equal probability. Since the number of possible shorter rules is smaller than that of
longer rules, we need to reflect this fact and need to have larger uniform probability
for shorter rules and smaller uniform probability for longer rules. We reuse the Poisson
probability for the base distribution, essentially assuming that the number of possible
rules of length ℓ is 1/P(ℓ;λ).

The Pitman-Yor process gives us the following probability of choosing r of size ℓ

given the current analysis z−i of the data:

P(ri = r | ℓ, z−i) =
nr − Trd + (Tℓd + α)P0(r)

nℓ + α

where nr is the number of times rule r has been observed in z−i, Tr is the number of
tables (in the Chinese restaurant metaphor) labeled r, and nℓ is total number of rules
of length ℓ observed in z−i. Since we have drawn the length of the rule from a Poisson
distribution, the rule length probability is multiplied by this equation in order to obtain
the probability of the rule under our model.

Keeping track of table assignments during inference requires a lot of book-keeping.
In order to simplify the implementation, instead of explicitly keeping track of the
number of tables for each rule, we estimate the number of tables using the following
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equations (Huang and Renals 2010):

Tr = ndr ,

Tℓ = ∑
r:|r|=ℓ

ndr

In order to encourage learning rules with smaller parsing complexity and rules with
mixed terminals and nonterminals, which are useful for replicating re-orderings that are
seen in the data, we made use of the concept of scope (Hopkins and Langmead 2010)
in our definition of rule length. The scope of a rule is defined as the number of pairs of
adjacent nonterminals in the source language r.h.s. plus the number of nonterminals at
the beginning or end of the source language r.h.s. For example,

X → f1X1X2 f2X3, X1e1X2X3e2

has scope two because X1 and X2 are adjacent in the source language and X3 is at the end
of the source language r.h.s. The target side of the rule is irrelevant. The intuition behind
this definition is that it measures the number of free indices into the source language
string required during parsing, under the assumption that the terminals provide fixed
anchor points into the string. Thus a rule of scope of k can be parsed inO(nk). We define
the length of a rule to be the number of terminals in the source and the target side plus
the scope of the rule. This is equivalent to counting the total number of symbols in
the rule, but only counting a nonterminal if it contributes to parsing complexity. For
example, the length of a rule that consists only of two consecutive nonterminals would
be three, and the length of a rule that has two consecutive nonterminals bounded by
terminals on both sides would be three as well. This definition of rule length encourages
rules with mixed terminals and nonterminals over rules with only nonterminals, which
tend not to provide useful guidance to the translation process during decoding.

5.3 Stratified sampling

We follow the same Gibbs sampler introduced in Section 4.2. The SAMPLEEDGE op-
eration in our Gibbs sampler can be a relatively expensive operation, since the entire
subtree under a node is being changed during sampling. We observe that in a phrase
decomposition forest, lexicalized rules, which are crucial to translation quality, appear
at the bottom level of the forest. This lexicalized information propagates up the forest as
rules get composed. It is reasonable to constrain initial sampling iterations to work only
on those bottom level nodes, and then gradually lift the constraint. This not only makes
the sampler much more efficient, but also gives it a chance to focus on getting better
estimates of the more important parameters, before starting to consider nodes at higher
levels, which correspond to rules of larger size. Fortunately, as mentioned in Section 3,
each node in a phrase decomposition forest already has a unique level, with level one
nodes corresponding tominimal phrase pairs. We design the sampler to use an stratified
sampling process, i.e., sampling level one nodes for K iterations, then level one and two
nodes for K iterations, and so on. We emphasize that when we sample for level two
nodes, level one nodes are also sampled, which means parameters for the smaller rules
are given more chance to mix, and thereby settle into a more stable distribution.

In our experiments, running the first 100 iteration of sampling with regular sam-
pling technique took us about 18 hours. However, with stratified sampling, it took
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Table 2
Comparisons of decoding results.

iteration model pruning #rules dev test time (s)
Baseline heuristic Hiero 3.59M 25.5 25.1 809
No-singleton heuristic Hiero 1.09M 24.7 24.2 638
Sampled 0th (init) Pitman-Yor scope < 3 212K 19.9 19.1 489
Sampled 100th Pitman-Yor scope < 3 313K 23.9 23.3 1214
Sampled averaged (0 to 70) Pitman-Yor scope < 3 885K 26.2 24.5 1488
Sampled averaged (0 to 70) Pitman-Yor Hiero 785K 25.6 25.1 532
Sampled averaged (0 to 70) Dirichlet scope < 3 774K 24.6 23.8 930

only about 6 hours. We also compared translation quality as measured by decoding
with rules from the 100th sample, and by averaging over every 10th sample. Both
sampling methods gave us roughly the same translation quality as measured in BLEU.
We therefore used stratified sampling throughout our experiments.

5.4 Experiments

We used a Chinese-English parallel corpus available from LDC,1 composed of newswire
text. The corpus consists of 41K sentence pairs, which is 1M words on the English side.
We used a 392-sentence development set with four references for parameter tuning, and
a 428-sentence test set with four references for testing.2 The development set and the test
set have sentences with less than 30 words. A trigram language model was used for all
experiments. BLEU (Papineni et al. 2002) was calculated for evaluation.

5.4.1 Baseline. For our baseline system, we extract Hiero translation rules using the
heuristic method (Chiang 2007), with the standard Hiero rule extraction constraints.
We use our in-house SCFG decoder for translation with both the Hiero baseline and our
sampled grammars. Our features for all experiments include differently normalized rule
counts and lexical weightings (Koehn, Och, and Marcu 2003) of each rule. Weights are
tuned using Pairwise Ranking Optimization (Hopkins andMay 2011) using the baseline
grammar and development set, then used throughout the experiments.

Since our sampling procedure results in a smaller rule table, we also establish a no-
singleton baseline to compare our results to a simple heuristic method of reducing rule
table size. The no-singleton baseline discards rules that occur only once and that have
more than one word on the Chinese side during the Hiero rule extraction process, before
counting the rules and computing feature scores.

5.4.2 Experimental Settings.

1 We randomly sampled our data from various different sources (LDC2006E86, LDC2006E93, LDC2002E18,
LDC2002L27, LDC2003E07, LDC2003E14, LDC2004T08, LDC2005T06, LDC2005T10, LDC2005T34,
LDC2006E26, LDC2005E83, LDC2006E34, LDC2006E85, LDC2006E92, LDC2006E24, LDC2006E92,
LDC2006E24) The language model is trained on the English side of entire data (1.65M sentences, which is
39.3M words.)

2 They are from newswire portion of NIST MT evaluation data from 2004, 2005, and 2006.
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Model Parameters. For all experiments, we used d = 0.5 for the Pitman-Yor discount
parameter, except where we compared the Pitman-Yor process with Dirichlet process
(d = 0). Although we have a separate Pitman-Yor process for each rule length, we used
same α = 5 for all rule sizes in all experiments, including Dirichlet process experiments.
For rule length probability, a Poisson distribution where λ = 2 was used for all experi-
ments.

Sampling. The samples are initialized such that all nodes in a forest are set to be seg-
mented, and a random edge is chosen under each node. For all experiments, we ran
the sampler for one hundred iterations and took the sample from the last iteration to
compare with the baseline. For stratified sampling, we increased the level we sample at
every 10th iteration. We also tried “averaging” samples, where samples from every 10th
iteration are merged to a single grammar. For averaging samples, we took the samples
from 0th iteration (initialization) to 70th iteration at every 10th iteration3. We decided
on the 70th iteration (last iteration of level 7 sampling) as the last iteration because we
constrained the sampler not to sample nodes whose span covers more than 7 words (for
SAMPLECUT only, SAMPLECUT always segments for these nodes), and the likelihood
becomes very stable at that point.

Rule extraction. Since every tree fragment in the sampled derivation represents a trans-
lation rule, we do not need to explicitly extract the rules; we merely need to collect
them and count them. However, derivations include purely non-lexical rules that do
not conform to the rule constraints of Hiero, and which are not useful for translation. To
get rid of this type of rule, we prune every rule that has scope greater than two.Whereas
Hiero does not allow two adjacent nonterminals in the source side, our pruning crite-
rion allows some rules of scope two that are not allowed by Hiero. For example, the
following rule (only source side shown) has scope two but is not allowed by Hiero:

X → w1X1X2w2X3

In order to see if these rules have any positive or negative effects on translation, we
compare a rule set that strictly conforms to the Hiero constraints and a rule set that
includes all the rules of scope two or less.

5.4.3 Results. Table 2 summarizes our results. As a general test of our probability
model, we compare the result from initialization and the 100th sample. The translation
performance of the grammar from the 100th iteration of sampling is much higher than
that of the initialization state. This shows that states with higher probability in our
Markov chain generally do result in better translation, and that the sampling process
is able to learn valuable composed rules.

In order to determine whether the composed rules learned by our algorithm are
particularly valuable, we compare to the standard baseline of extracting all rules. The
size of grammar taken from the single sample (100th sample) is only about 9 percent of
the baseline but still produces translation results that are not far worse than the baseline.
A simple way to reduce the number of rules in the baseline grammar is to remove all
rules that occur only once in the training data and that contain more than a single word
on the Chinese side. This “no-singleton” baseline still leaves us with more rules than

3 Not including initialization has negligible effect on translation quality.
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our algorithm, with translation results between those of the standard baseline and our
algorithm.

We also wish to investigate the trade-off between grammar size and translation
performance that is induced by including rules from multiple steps of the sampling
process. It is helpful for translation quality to include more than one analysis of each
sentence in the final grammar in order to increase coverage of new sentences. Averaging
samples also better approximates the long-term behavior of the Markov chain, whereas
takes a single sample involves an arbitrary random choice. When we average eight
different samples, we get a larger number of rules than from a single sample, but still
only a quarter as many rules as in the Hiero baseline. The translation results with eight
samples are comparable to the Hiero baseline (not significantly different according to
1000 iterations of paired bootstrap resampling (Koehn 2004)). Translation results are bet-
ter with the sampled grammar than with the no-singleton method of reducing grammar
size, while sampled grammar was smaller than no-singleton rule set. Thus, averaging
samples seems to produce a good trade-off between grammar size and quality.

The filtering applied to the final rule set affects both the grammar size and decoding
speed, since rules with different terminal/nonterminal patterns have varying decoding
complexities. We experimented with two methods of filtering the final grammar: retain-
ing rules of scope no greater than three, and the more restrictive Hiero constraints. We
do not see a consistent difference in translation quality between thesemethods, but there
is a large impact in terms of speed. The Hiero constraint dramatically speeds decoding.
The following is the full list of Hiero constraints, taken verbatim from Chiang (2007):

r If there are multiple initial phrase pairs containing the same set of
alignments, only the smallest is kept. That is, unaligned words are not
allowed at the edges of phrases.

r Initial phrases are limited to a length of 10 words on either side.
r Rules are limited to five nonterminals plus terminals on the French side.
r Rules can have at most two nonterminals, which simplifies the decoder

implementation. This also makes our grammar weakly equivalent to an
inversion transduction grammar (Wu 1997), although the conversion
would create a very large number of new nonterminal symbols.

r It is prohibited for nonterminals to be adjacent on the French side, a major
cause of spurious ambiguity.

r A rule must have at least one pair of aligned words, so that translation
decisions are always based on some lexical evidence

Of these constraints, the differences between Hiero constraint and scope filtering are:
First, the Hiero constraints limit the number of nonterminals in a rule to be nomore than
two. Second, Hiero constraint does not allow two adjacent nonterminals in the source
side of a rule. As discussed previously, these two differences limit Hiero grammar to be
a subset of scope two grammar, whereas the scope-filtered grammar retains all scope
two rules. Among grammars with the Hiero constraint, smaller grammars are generally
faster. The relationship between the number of rules and the decoding time is less
than linear. This is because the decoder never considers rules containing sequences of
terminals not present in the source sentence. As the number of rules grows, we see
rules with larger numbers of terminals that in turn apply to fewer input sentences.
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The sampled grammar has a more pronounced effect of reducing rule table size than
decoding speed. Our sampling method may be particularly valuable for very large
datasets where grammar size can become a limiting factor.

Finally, we wish to investigate whether the added power of the Pitman-Yor process
gives any benefit over the simpler Dirichlet process prior, using the same modeling
of word length in both cases. We find better translation quality with the Pitman-Yor
process indicating that the additional strength of the Pitman-Yor process in suppressing
infrequent rules helps prevent overfitting.

6. Conclusion

We presented a hypergraph sampling algorithm that overcomes the difficulties inherent
in computing inside probabilities in applications where the segmentation of the tree into
rules is not known.

Given parallel text with word-level alignments, we use this algorithm to learn
sentence bracketing and SCFG rule composition. Our rule learning algorithm is based
on a compact structure that represents all possible SCFG rules extracted from word-
aligned sentences pairs, and works directly with highly lexicalized model parameters.
We show that by effectively controlling overfitting with a Bayesian model, and design-
ing algorithms that efficiently sample that parameter space, we are able to learn more
compact grammars with competitive translation quality. Based on the framework we
built in this work, it is possible to explore other rule learning possibilities that are known
to help translation quality, such as learning refined nonterminals.

Our general sampling algorithm is likely to be useful in settings beyond machine
translation. One interesting application would be unsupervised or partially supervised
learning of (monolingual) TSGs, given text where the tree structure is completely or
partially unknown, as in the approach of Blunsom and Cohn (2010b).
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Chung, Fang, Gildea, and Štefankovič Sampling Tree Fragments from Forests

In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies, pages
632–641, Portland, Oregon, USA.

Och, Franz Josef. 2003. Minimum error rate
training for statistical machine translation.
In Proceedings of the 41th Annual Conference
of the Association for Computational
Linguistics (ACL-03), pages 160–167.

Papineni, Kishore, Salim Roukos, Todd
Ward, and Wei-Jing Zhu. 2002. BLEU: A
method for automatic evaluation of
machine translation. In Proceedings of the
40th Annual Conference of the Association for
Computational Linguistics (ACL-02), pages
311–318.

Pitman, Jim and Marc Yor. 1997. The
two-parameter Poisson-Dirichlet
distribution derived from a stable
subordinator. Annals of Probability,
25(2):855–900.

Post, Matt and Daniel Gildea. 2009. Bayesian
learning of a tree substitution grammar. In
Proc. Association for Computational
Linguistics (short paper), pages 45–48,
Singapore.

Sankaran, Baskaran, Gholamreza Haffari,
and Anoop Sarkar. 2011. Bayesian
extraction of minimal SCFG rules for
hierarchical phrase-based translation. In
Proceedings of the Sixth Workshop on
Statistical Machine Translation, pages
533–541.

Teh, Yee Whye. 2006. A hierarchical Bayesian
language model based on Pitman-Yor
processes. In Proceedings of the 21st
International Conference on Computational
Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics,
pages 985–992, Sydney, Australia, July.
Association for Computational Linguistics.

Vogel, Stephan, Hermann Ney, and
Christoph Tillmann. 1996. HMM-based
word alignment in statistical translation.
In Proceedings of the 16th International
Conference on Computational Linguistics
(COLING-96), pages 836–841.

Wu, Dekai. 1997. Stochastic inversion
transduction grammars and bilingual
parsing of parallel corpora. Computational
Linguistics, 23(3):377–403.

Zhang, Hao, Daniel Gildea, and David
Chiang. 2008. Extracting synchronous
grammar rules from word-level
alignments in linear time. In Proceedings of
the 22nd International Conference on
Computational Linguistics (COLING-08),
pages 1081–1088, Manchester, UK.

Zhang, Hao, Chris Quirk, Robert C. Moore,
and Daniel Gildea. 2008. Bayesian learning
of non-compositional phrases with
synchronous parsing. In Proceedings of the
46th Annual Meeting of the Association for
Computational Linguistics (ACL-08), pages
97–105, Columbus, Ohio.

27



28


