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Abstract

Training a statistical machine translation

starts with tokenizing a parallel corpus.

Some languages such as Chinese do not in-

corporate spacing in their writing system,

which creates a challenge for tokenization.

Moreover, morphologically rich languages

such as Korean present an even bigger

challenge, since optimal token boundaries

for machine translation in these languages

are often unclear. Both rule-based solu-

tions and statistical solutions are currently

used. In this paper, we present unsuper-

vised methods to solve tokenization prob-

lem. Our methods incorporate informa-

tion available from parallel corpus to de-

termine a good tokenization for machine

translation.

1 Introduction

Tokenizing a parallel corpus is usually the first

step of training a statistical machine translation

system. With languages such as Chinese, which

has no spaces in its writing system, the main chal-

lenge is to segment sentences into appropriate to-

kens. With languages such as Korean and Hun-

garian, although the writing systems of both lan-

guages incorporate spaces between “words”, the

granularity is too coarse compared with languages

such as English. A single word in these lan-

guages is composed of several morphemes, which

often correspond to separate words in English.

These languages also form compound nouns more

freely. Ideally, we want to find segmentations for

source and target languages that create a one-to-

one mapping of words. However, this is not al-

ways straightforward for two major reasons. First,

what the optimal tokenization for machine trans-

lation should be is not always clear. Zhang et al.

(2008b) and Chang et al. (2008) show that get-

ting the tokenization of one of the languages in

the corpus close to a gold standard does not nec-

essarily help with building better machine trans-

lation systems. Second, even statistical methods

require hand-annotated training data, which means

that in resource-poor languages, good tokenization

is hard to achieve.

In this paper, we explore unsupervised methods

for tokenization, with the goal of automatically

finding an appropriate tokenization for machine

translation. We compare methods that have ac-

cess to parallel corpora to methods that are trained

solely using data from the source language. Unsu-

pervised monolingual segmentation has been stud-

ied as a model of language acquisition (Goldwater

et al., 2006), and as model of learning morphol-

ogy in European languages (Goldsmith, 2001).

Unsupervised segmentation using bilingual data

has been attempted for finding new translation

pairs (Kikui and Yamamoto, 2002), and for finding

good segmentation for Chinese in machine trans-

lation using Gibbs sampling (Xu et al., 2008). In

this paper, further investigate the use of bilingual

information to find tokenizations tailored for ma-

chine translation. We find a benefit not only for

segmentation of languages with no space in the

writing system (such as Chinese), but also for the

smaller-scale tokenization problem of normaliz-

ing between languages that include more or less

information in a “word” as defined by the writ-

ing system, using Korean-English for our exper-

iments. Here too, we find a benefit from using

bilingual information, with unsupervised segmen-

tation rivaling and in some cases surpassing su-

pervised segmentation. On the modeling side,

we use dynamic programming-based variational

Bayes, making Gibbs sampling unnecessary. We

also develop and compare various factors in the

model to control the length of the tokens learned,

and find a benefit from adjusting these parame-

ters directly to optimize the end-to-end translation

quality.



2 Tokenization

Tokenization is breaking down text into lexemes

— a unit of morphological analysis. For relatively

isolating languages such as English and Chinese, a

word generally equals a single token, which is usu-

ally a clearly identifiable unit. English, especially,

incorporates spaces between words in its writing

system, which makes tokenization in English usu-

ally trivial. The Chinese writing system does not

have spaces between words, but there is less am-

biguity where word boundaries lie in a given sen-

tence compared to more agglutinative languages.

In languages such as Hungarian, Japanese, and

Korean, what constitutes an optimal token bound-

ary is more ambiguous. While two tokens are usu-

ally considered two separate words in English, this

may be not be the case in agglutinative languages.

Although what is considered a single morpholog-

ical unit is different from language to language,

if someone were given a task to align words be-

tween two languages, it is desirable to have one-

to-one token mapping between two languages in

order to have the optimal problem space. For ma-

chine translation, one token should not necessarily

correspond to one morphological unit, but rather

should reflect the morphological units and writing

system of the other language involved in transla-

tion.

For example, consider a Korean “word” meok-

eoss-da, which means ate. It is written as a sin-

gle word in Korean but consists of three mor-

phemes eat-past-indicative. If one uses morpho-

logical analysis as the basis for Korean tokeniza-

tion, meok-eoss-da would be split into three to-

kens, which is not desirable if we are translat-

ing Korean to English, since English does not

have these morphological counterparts. However,

a Hungarian word szekrényemben, which means in

my closet, consists of three morphemes closet-my-

inessive that are distinct words in English. In this

case, we do want our tokenizer to split this “word”

into three morphemes szekrény em ben.

In this paper, we use segmentation and to-

kenization interchangeably as blanket terms to

cover the two different problems we have pre-

sented here. The problem of segmenting Chinese

sentences into words and the problem of segment-

ing Korean or Hungarian “words” into tokens of

right granularity are different in their nature. How-

ever, our models presented in section 3 handle the

both problems.

3 Models

We present two different methods for unsuper-

vised tokenization. Both are essentially unigram

tokenization models. In the first method, we try

learning tokenization from word alignments with

a model that bears resemblance to Hidden Markov

models. We use IBM Model 1 (Brown et al., 1993)

for the word alignment model. The second model

is a relatively simpler monolingual tokenization

model based on counts of substrings which serves

as a baseline of unsupervised tokenization.

3.1 Learning tokenization from alignment

We use expectation maximization as our primary

tools in learning tokenization form parallel text.

Here, the observed data provided to the algorithm

are the tokenized English string e
n
1 and the unto-

kenized string of foreign characters c
m
1 . The un-

observed variables are both the word-level align-

ments between the two strings, and the tokeniza-

tion of the foreign string. We represent the tok-

enization with a string s
m
1 of binary variables, with

si = 1 indicating that the ith character is the final

character in a word. The string of foreign words

f
ℓ
1 can be thought of as the result of applying the

tokenization s to the character string c:

f = s ◦ c where ℓ =

m∑

i=1

si

We use IBM Model 1 as our word-level align-

ment model, following its assumptions that each

foreign word is generated independently from one

English word:

P (f |e) =
∑

a

P (f ,a | e)

=
∑

a

∏

i

P (fi | eai
)P (a)

=
∏

i

∑

j

P (fi | ej)P (ai = j)

and that all word-level alignments a are equally

likely: P (a) = 1

n
for all positions. While Model 1

has a simple EM update rule to compute posteri-

ors for the alignment variables a and from them

learn the lexical translation parameters P (f | e),
we cannot apply it directly here because f itself is

unknown, and ranges over an exponential number

of possibilities depending on the hidden segmenta-

tion s. This can be addressed by applying dynamic

programing over the sequence s. We compute the



posterior probability of a word beginning at posi-

tion i, ending at position j, and being generated by

English word k:

P (si...j = (1, 0, . . . , 0, 1), a = k | e)

=
α(i)P (f | ek)P (a = k)β(j)

P (c | e)

where f = ci . . . cj is the word formed by con-

catenating characters i through j, and a is a vari-

able indicating which English position generated

f . Here α and β are defined as:

α(i) = P (ci
1, si = 1 | e)

β(j) = P (cm
j+1, sj = 1 | e)

These quantities resemble forward and backward

probabilities of hidden Markov models, and can

be computed with similar dynamic programming

recursions:

α(i) =
L∑

ℓ=1

α(i− ℓ)
∑

a

P (a)P (cii−ℓ | ea)

β(j) =
L∑

ℓ=1

∑

a

P (a)P (cj+ℓ
j | ea)β(j + ℓ)

where L is the maximum character length for a

word.

Then, we can calculate the expected counts of

individual word pairs being aligned (c
j
i , ek) by ac-

cumulating these posteriors over the data:

ec(cji , ek) +=
α(i)P (a)P (cji | ek)β(j)

α(m)

The M step simply normalizes the counts:

P̃ (f | e) =
ec(f, e)∑
e ec(f, e)

Our model can be compared to a hidden Markov

model in the following way: a target word gen-

erates a source token which spans a zeroth order

Markov chain of characters in source sentence,

where a “transition” represents a segmentation and

a “emission” represents an alignment. The model

uses HMM-like dynamic programming to do in-

ference. For the convenience, we refer to this

model as the bilingual model in the rest of the

paper. Figure 1 illustrates our first model with

an small example. Under this model we are not

learning segmentation directly, but rather we are

learning alignments between two sentences. The

c1 c2 c3 c4

f1 f2

e1 e2

Figure 1: The figure shows a source sentence

f = f1, f2 = s ◦ c1 . . . c4 where s = (0, 0, 1, 1)
and a target sentence e = e1, e2. There is a seg-

mentation between c3 and c4; thus c1, c2, c3 form

f1 and c3 forms f2. f1 is generated by e2 and f2 is

generated by e1.

segmentation is by-product of learning the align-

ment. We can find the optimal segmentation of

a new source language sentence using the Viterbi

algorithm. Given two sentences e and f ,

a
∗ = argmax

a

P (f ,a | e)

and segmentation s
∗ implied by alignment a

∗ is

the optimal segmentation of f found by this model.

3.2 Learning tokenization from substring

counts

The second tokenization model we propose is

much simpler. More sophisticated unsupervised

monolingual tokenization models using hierarchi-

cal Bayesian models (Goldwater et al., 2006)

and using the minimum description length prin-

ciple (Goldsmith, 2001; de Marcken, 1996) have

been studied. Our model is meant to serve as

a computationally efficient baseline for unsuper-

vised monolingual tokenization. Given a corpus

of only source language of unknown tokenization,

we want to find the optimal s given c — s that

gives us the highest P (s | c). According to Bayes’

rule,

P (s | c) ∝ P (c | s)P (s)

Again, we assume that all P (s) are equally likely.

Let f = s◦c = f1 . . . fℓ, where fi is a word under

some possible segmentation s. We want to find the

s that maximizes P (f). We assume that

P (f) = P (f1) × . . .× P (fℓ)

To calculate P (fi), we count every possible



substring — every possible segmentation of char-

acters — from the sentences. We assume that

P (fi) =
count(fi)∑
k count(fk)

We can compute these counts by making a sin-

gle pass through the corpus. As in the bilingual

model, we limit the maximum size of f for prac-

tical reasons and to prevent our model from learn-

ing unnecessarily long f . With P (f), given a se-

quence of characters c, we can calculate the most

likely segmentation using the Viterbi algorithm.

s
∗ = argmax

s

P (f)

Our rationale for this model is that if a span of

characters f = ci . . . cj is an independent token, it

will occur often enough in different contexts that

such a span of characters will have higher prob-

ability than other spans of characters that are not

meaningful. For the rest of the paper, this model

will be referred to as the monolingual model.

3.3 Tokenizing new data

Since the monolingual tokenization only uses in-

formation from a monolingual corpus, tokenizing

new data is not a problem. However, with the

bilingual model, we are learning P (f | e). We are

relying on information available from e to get the

best tokenization for f. However, the parallel sen-

tences will not be available for new data we want

to translate. Therefore, for the new data, we have

to rely only on P (f) to tokenize any new data,

which can be obtained by calculating

P (f) =
∑

e

P (f | e)P (e)

With P (f) from the bilingual model, we can run

the Viterbi algorithm in the same manner as mono-

lingual tokenization model for monolingual data.

We hypothesize that we can learn valuable infor-

mation on which token boundaries are preferable

in language f when creating a statistical machine

translation system that translates from language f

to language e.

4 Preventing overfitting

We introduce two more refinements to our word-

alignment induced tokenization model and mono-

lingual tokenization model. Since we are consid-

ering every possible token f that can be guessed

from our corpus, the data is very sparse. For the

bilingual model, we are also using the EM algo-

rithm to learn P (f | e), which means there is a

danger of the EM algorithm memorizing the train-

ing data and thereby overfitting. We put a Dirichlet

prior on our multinomial parameter for P (f | e)
to control this situation. For both models, we also

want a way to control the distribution of token

length after tokenization. We address this problem

by adding a length factor to our models.

4.1 Variational Bayes

Beal (2003) and Johnson (2007) describe vari-

ational Bayes for hidden Markov model in de-

tail, which can be directly applied to our bilingual

model. With this Bayesian extension, the emission

probability of our first model can be summarized

as follows:

θe | α ∼ Dir(α),

fi | ei = e ∼ Multi(θe).

Johnson (2007) and Zhang et al. (2008a) show

having small α helps to control overfitting. Fol-

lowing this, we set our Dirichlet prior to be as

sparse as possible. It is set at α = 10−6, the num-

ber we used as floor of our probability.

For the model incorporating the length factor,

which is described in the next section, we do not

place a prior on our transition probability, since

there are only two possible states, i.e. P (s = 1)
and P (s = 0). This distribution is not as sparse as

the emission probability.

Comparing variational Bayes to the traditional

EM algorithm, the E step stays the same but the

M step for calculating the emission probability

changes as follows:

P̃ (f | e) =
exp(ψ(ec(f, e) + α))

exp(ψ(
∑

e ec(f, e) + sα))

where ψ is the digamma function, and s is the size

of the vocabulary from which f is drawn. Since

we do not accurately know s, we set s to be the

number of all possible tokens. As can be seen from

the equation, by setting α to a small value, we are

discounting the expected count with help of the

digamma function. Thus, having lower α leads to

a sparser solution.

4.2 Token length

We now add a parameter that can adjust the to-

kenizer’s preference for longer or shorter tokens.
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Figure 2: Distribution of token length for (from left to right) Chinese, and Korean. “ref” is the empirical

distribution from supervised tokenization. Two length factors — φ1 and φ2 are also shown. For φ1, the

parameter to geometric distribution P (s) is set to the value learned from our bilingual model. For φ2, λ

is set using the criterion described in the experiment section.

This parameter is beneficial because we want our

distribution of token length after tokenization to

resemble the real distribution of token length. This

parameter is also useful because we also want to

incorporate information on the number of tokens

in the other language in the parallel corpus. This is

based on the assumption that, if tokenization cre-

ates a one-to-one mapping, the number of tokens

in both languages should be roughly the same. We

can force the two languages to have about the same

number of tokens by adjusting this parameter. The

third reason is to further control overfitting. Our

observation is that certain morphemes are very

common, such that they will be always observed

attached to other morphemes. For example, in Ko-

rean, a noun attached with nominative case marker

is very common. Our model is likely to learn a

noun attached with the morpheme — nominative

case marker — rather than noun itself. This is not

desirable when the noun occurs with less common

morphemes; in these cases the morpheme will be

split off creating inconsistencies.

We have experimented with two different length

factors, each with one adjustable parameter:

φ1(ℓ) = P (s)(1 − P (s))ℓ−1

φ2(ℓ) = 2−ℓλ

The first, φ1, is the geometric distribution, where

l is length of a token and P (s) is probability of

segmentation between two characters. The second

length factor φ2 was acquired through several ex-

periments and was found to work well. As can

been seen from Figure 2, the second factor dis-

counts longer tokens more heavily than the geo-

metric distribution. We can adjust the value of λ

and P (s) to increase or decrease number of tokens

after segmentation.

For our monolingual model, incorporating these

factors is straightforward. We assume that

P (f) ∝ P (f1)φ(ℓ1) × . . .× P (fn)φ(ℓn)

where ℓi is the length of fi. Then, we use the same

Viterbi algorithm to select the f1 . . . fn that max-

imizes P (f), thereby selecting the optimal s ac-

cording to our monolingual model with a length

factor. We pick the value of λ and P (s) that

produces about the same number of tokens in the

source side as in the target side, thereby incorpo-

rating some information about the target language.

For our bilingual model, we modify our model

slightly to incorporate φ1, creating a hybrid

model. Now, our forward probability of forward-

backward algorithm is:

α(i) =

L∑

ℓ=1

α(i− l)φ1(ℓ)
∑

a

P (a)P (cii−ℓ | ea)

and the expected count of (cji , ek) is

ec(cji , ek) +=
α(i)P (a)P (cji | ek)β(j)φ1(j − i)

α(m)

For φ1, we can learn P (s) for the geometric dis-

tribution from the model itself:1

P (s) =
1

m

m∑

i

α(i)β(i)

α(m)

1The equation is for one sentence, but in practice, we sum
over all sentences in the training data to calculate P (s).



We can also fix P (s) instead of learning it through

EM. We incorporate φ2 into the bilingual model

as follows: after learning P (f) from the bilingual

model, we pick the λ in the same manner as the

monolingual model and run the Viterbi algorithm.

After applying the length factor, what we have

is a log-linear model for tokenization, with two

feature functions with equal weights: the length

factor and P (f) learned from model.

5 Experiments

5.1 Data

We tested our tokenization methods on two differ-

ent language pairs: Chinese-English, and Korean-

English. For Chinese-English, we used FBIS

newswire data. The Korean-English parallel data

was collected from news websites and sentence-

aligned using two different tools described by

Moore (2002) and Melamed (1999). We used sub-

sets of each parallel corpus consisting of about 2M

words and 60K sentences on the English side. For

our development set and test set, Chinese-English

had about 1000 sentences each with 10 reference

translations taken from the NIST 2002 MT eval-

uation. For Korean-English, 2200 sentence pairs

were randomly sampled from the parallel corpus,

and held out from the training data. These were

divided in half and used for test set and develop-

ment set respectively. For all language pairs, very

minimal tokenization — splitting off punctuation

— was done on the English side.

5.2 Experimental setup

We used Moses (Koehn et al., 2007) to train

machine translation systems. Default parameters

were used for all experiments except for the num-

ber of iterations for GIZA++ (Och and Ney, 2003).

GIZA++ was run until the perplexity on develop-

ment set stopped decreasing. For practical rea-

sons, the maximum size of a token was set at three

for Chinese, and four for Korean.2 Minimum error

rate training (Och, 2003) was run on each system

afterwards and BLEU score (Papineni et al., 2002)

was calculated on the test sets.

For the monolingual model, we tested two ver-

sions with the length factor φ1, and φ2. We picked

λ and P (s) so that the number of tokens on source

side (Chinese, and Korean) will be about the same

2In the Korean writing system, one character is actually
one syllable block. We do not decompose syllable blocks
into individual consonants and vowels.

as the number of tokens in the target side (En-

glish).

For the bilingual model, as explained in the

model section, we are learning P (f | e), but only

P (f) is available for tokenizing any new data. We

compared two conditions: using only the source

data to tokenize the source language training data

according to P (f) (which is consistent with the

conditions at test time), and using both the source

and English data to tokenize the source language

training data (which might produce better tok-

enization by using more information). For the first

length factor φ1, we ran an experiment where the

model learns P (s) as described in the model sec-

tion, and we also had experiments where P (s) was

pre-set at 0.9, 0.7, 0.5, and 0.3 for comparison. We

also ran an experiment with the second length fac-

tor φ2 where λ was picked as the same manner as

the monolingual model.

We varied tokenization of development set and

test set to match the training data for each ex-

periment. However, as we have implied in the

previous paragraph, in the one experiment where

P (f | e) was used to segment training data, di-

rectly incorporating information from target cor-

pus, tokenization for test and development set is

not exactly consistent with tokenization of train-

ing corpus. Since we assume only source corpus

is available at the test time, the test and the devel-

opment set was tokenized only using information

from P (f).

We also trained MT systems using supervised

tokenizations and tokenization requiring a mini-

mal effort for the each language pair. For Chinese-

English, the minimal effort tokenization is maxi-

mal tokenization where every Chinese character is

segmented. Since a number of Chinese tokeniz-

ers are available, we have tried four different to-

kenizations for the supervised tokenizations. The

first one is the LDC Chinese tokenizer available at

the LDC website3, which is compiled by Zhibiao

Wu. The second tokenizer is a maxent-based to-

kenizer described by Xue (2003). The third and

fourth tokenizations come from the CRF-based

Stanford Chinese segmenter described by Chang

et al. (2008). The difference between third and

fourth tokenization comes from the different gold

standard, the third one is based on Beijing Uni-

versity’s segmentation (pku) and the fourth one is

based on Chinese Treebank (ctb). For Korean-

3http://projects.ldc.upenn.edu/Chinese/LDC ch.htm



Chinese Korean

BLEU F-score BLEU

Supervised

Rule-based morphological analyzer 7.27

LDC segmenter 20.03 0.94

Xue’s segmenter 23.02 0.96

Stanford segmenter (pku) 21.69 0.96

Stanford segmenter (ctb) 22.45 1.00

Unsupervised

Splitting punctuation only 6.04

Maximal (Character-based MT) 20.32 0.75

Bilingual P (f | e) with φ1 P (s) = learned 19.25 6.93

Bilingual P (f) with φ1 P (s) = learned 20.04 0.80 7.06

Bilingual P (f) with φ1 P (s) = 0.9 20.75 0.87 7.46

Bilingual P (f) with φ1 P (s) = 0.7 20.59 0.81 7.31

Bilingual P (f) with φ1 P (s) = 0.5 19.68 0.80 7.18

Bilingual P (f) with φ1 P (s) = 0.3 20.02 0.79 7.38

Bilingual P (f) with φ2 22.31 0.88 7.35

Monolingual P (f) with φ1 20.93 0.83 6.76

Monolingual P (f) with φ2 20.72 0.85 7.02

Table 1: BLEU score results for Chinese-English and Korean-English experiments and F-score of seg-

mentation compared against Chinese Treebank standard. The highest unsupervised score is highlighted.

English, the minimal effort tokenization splitting

off punctuation and otherwise respecting the spac-

ing in the Korean writing system. A Korean mor-

phological analysis tool4 was used to create the su-

pervised tokenization.

For Chinese-English, since a gold standard for

Chinese segmentation is available, we ran an addi-

tional evaluation of tokenization from each meth-

ods we have tested. We tokenized the raw text

of Chinese Treebank (Xia et al., 2000) using all

of the methods (supervised/unsupervised) we have

described in this section except for the bilingual

tokenization using P (f | e) because the English

translation of the Chinese Treebank data was not

available. We compared the result against the gold

standard segmentation and calculated the F-score.

6 Results

Results from Chinese-English and Korean-English

experiments are presented in Table 1. Note that

nature of data and number of references are dif-

ferent for the two language pairs, and therefore

the BLEU scores are not comparable. For both

language pairs, our models perform equally well

as supervised baselines, or even better. We can

4http://nlp.kookmin.ac.kr/HAM/eng/main-e.html

observe three things from the result. First, tok-

enization of training data using P (f | e) tested on

a test set tokenized with P (f) performed worse

than any other experiments. This affirms our be-

lief that consistency in tokenization is important

for machine translation, which was also mentioned

by Chang et al. (2008). Secondly, we are learning

valuable information by looking at the target lan-

guage. Compare the result of the bilingual model

with φ2 as the length factor to the result of the

monolingual model with the same length factor.

The bilingual version consistently performed bet-

ter than the monolingual model in all language

pairs. This tells us we can learn better token

boundaries by using information from the target

language. Thirdly, our hypothesis on the need

for heavy discount for longer tokens is confirmed.

The value for P (s) learned by the model was 0.55,

and 0.58 for Chinese, and Korean respectively. For

both language pairs, this accurately reflects the

empirical distribution of token length, as can be

seen in Figure 2. However, experiments where

P (s) was directly optimized performed better, in-

dicating that this parameter should be optimized

within the context of a complete system. The sec-

ond length factor φ2, which discounts longer to-

kens even more heavily, generally performed bet-



English the two presidents will hold a joint press conference at the end of their summit talks .

Untokenized Korean 㥪㑶㩁㡜㧹㳧㖺㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾㧺㐍㑌㳧㖺㑀㑙㛵㑗㣩㞌㱶㲢㖰 .

Supervised 㥪㑶㩁㡜 㧹㳧㖺 㨋㔚㔣 ㄴ㘏㑗㗴㒟㨙㳧㐾 㧺㐍 㑌㳧㖺㑀㑙 㛵㑗㣩㞌㱶 㲠 ㄴ㖰 .

Bilingual P (f | e) with φ1 㥪㑶㩁㡜㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙 㛵㑗㣩㞌㱶㲢 㖰 .

Bilingual P (f) with φ2 㥪㑶㩁㡜 㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙 㛵㑗㣩㞌㱶 㲢㖰 .

Monolingual P (f) with φ1 㥪㑶㩁 㡜 㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙㛵㑗㣩㞌㱶㲢 㖰 .

Monolingual P (f) with φ2 㥪㑶㩁㡜 㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙㛵㑗㣩㞌㱶 㲢㖰 .

Figure 3: Sample tokenization results for Korean-English data. The underscores are added to clearly

visualize where the breaks are.

ter than the first length factor when used in con-

junction with the bilingual model. Lastly, F-scores

of Chinese segmentations compared against the

gold standard shows higher segmentation accuracy

does not necessarily lead to higher BLEU score.

F-scores presented in Table 1 are not directly com-

parable for all different experiments because the

test data (Chinese Treebank) is used in training for

some of the supervised segmenters, but these num-

bers do show how close unsupervised segmenta-

tions are to the gold standard. It is interesting to

note that our highest unsupervised segmentation

result does make use of bilingual information.

Sample tokenization results for Korean-English

experiments are presented in Figure 3. We observe

that different configurations produce different tok-

enizations, and the bilingual model produced gen-

erally better tokenizations for translation com-

pared to the monolingual models or the super-

vised tokenizer. In this example, the tokenization

obtained from the supervised tokenizer, although

morphologically correct, is too fine-grained for the

purpose of translation to English. For example,

it correctly tokenized the attributive suffix ㄴ -n

however, this is not desirable since English has no

such counterpart. Both variations of the monolin-

gual tokenization have errors such as incorrectly

not segmenting 㑀㑙㛵 gyeol-gwa-reul, which is

a compound of a noun and a case marker, into㑀

㑙 㛵 gyeol-gwa reul as the bilingual model was

able to do.

6.1 Conclusion and future work

We have shown that unsupervised tokenization for

machine translation is feasible and can outperform

rule-based methods that rely on lexical analysis,

or supervised statistical segmentations. The ap-

proach can be applied both to morphological anal-

ysis of Korean and the segmentation of sentences

into words for Chinese, which may at first glace

appear to be quite different problems. We have

only shown how our methods can be applied to

one language of the pair, where one language is

generally isolating and the other is generally syn-

thetic. However, our methods could be extended

to tokenization for both languages by iterating be-

tween languages. We also used the most simple

word-alignment model, but more complex word

alignment models could be incorporated into our

bilingual model.
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