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Abstract

We investigate parsing accuracy on the Ko-
rean Treebank 2.0 with a number of different
grammars. Comparisons among these gram-
mars and to their English counterparts suggest
different aspects of Korean that contribute to
parsing difficulty. Our results indicate that the
coarseness of the Treebank’s nonterminal set
is a even greater problem than in the English
Treebank. We also find that Korean’s rela-
tively free word order does not impact parsing
results as much as one might expect, but in
fact the prevalence of zero pronouns accounts
for a large portion of the difference between
Korean and English parsing scores.

1 Introduction

Korean is a head-final, agglutinative, and mor-
phologically productive language. The language
presents multiple challenges for syntactic pars-
ing. Like some other head-final languages such
as German, Japanese, and Hindi, Korean exhibits
long-distance scrambling (Rambow and Lee, 1994;
Kallmeyer and Yoon, 2004). Compound nouns are
formed freely (Park et al., 2004), and verbs have
well over 400 paradigmatic endings (Martin, 1992).

Korean Treebank 2.0 (LDC2006T09) (Han and
Ryu, 2005) is a subset of a Korean newswire corpus
(LDC2000T45) annotated with morphological and
syntactic information. The corpus contains roughly
5K sentences, 132K words, and 14K unique mor-
phemes. The syntactic bracketing rules are mostly
the same as the previous version of the treebank
(Han et al., 2001) and the phrase structure annota-
tion schemes used are very similar to the ones used

in Penn English treebank. The Korean Treebank is
constructed over text that has been morphologically
analyzed; not only is the text tokenized into mor-
phemes, but all allomorphs are neutralized.

To our knowledge, there have been only a few pa-
pers focusing on syntactic parsing of Korean. Herm-
jakob (2000) implemented a shift-reduce parser for
Korean trained on very limited (1K sentences) data,
and Sarkar and Han (2002) used an earlier version
of the Treebank to train a lexicalized tree adjoining
grammar. In this paper, we conduct a range of ex-
periments using the Korean Treebank 2.0 (hereafter,
KTB) as our training data and provide analyses that
reveal insights into parsing morphologically rich lan-
guages like Korean. We try to provide comparisons
with English parsing using parsers trained on a simi-
lar amount of data wherever applicable.

2 Difficulties parsing Korean

There are several challenges in parsing Korean com-
pared to languages like English. At the root of many
of these challenges is the fact that it is highly in-
flected and morphologically productive. Effective
morphological segmentation is essential to learning
grammar rules that can generalize beyond the train-
ing data by limiting the number of out-of-vocabulary
words. Fortunately, there are good techniques for do-
ing so. The sentences in KTB have been segmented
into basic morphological units.

Second, Korean is a pro-drop language: subjects
and objects are dropped wherever they are pragmati-
cally inferable, which is often possible given its rich
morphology. Zero pronouns are a remarkably fre-
quent phenomenon in general (Han, 2006), occuring



an average of 1.8 times per sentence in the KTB.
The standard approach in parsing English is to ig-
nore NULL elements entirely by removing them (and
recursively removing unary parents of empty nodes
in a bottom-up fashion). This is less of a problem in
English because these empty nodes are mostly trace
elements that denote constituent movement. In the
KTB, these elements are removed altogether and a
crucial cue to grammatical inference is often lost.
Later we will show the profound effect this has on
parsing accuracy.

Third, word order in Korean is relatively free.
This is also partly due to the richer morphology,
since morphemes (rather than word order) are used
to denote semantic roles of phrases. Consider the
following example:

㩕㨋 㜔㛽㦂㐳 㫾㧺 㩳㥽㖰 .
John-NOM Mary-DAT book-ACC give-PAST .

In the example, any permutation of the first three
words produces a perfectly acceptable sentence.
This freedom of word order could potentially result
in a large number of rules, which could complicate
analysis with new ambiguities. However, formal
written Korean generally conforms to a canonical
word order (SOV).

3 Initial experiments

There has been some work on Korean morphologi-
cal analysis showing that common statistical meth-
ods such as maximum entropy modeling and condi-
tional random fields perform quite well (Lee et al.,
2000; Sarkar and Han, 2002; Han and Palmer, 2004;
Lee and Rim, 2005). Most claim accuracy rate over
95%. In light of this, we focus on the parsing part of
the problem utilizing morphology analysis already
present in the data.

3.1 Setup

For our experiments we used all 5,010 sentences in
the Korean Treebank (KTB), which are already seg-
mented. Due to the small size of the corpus, we used
ten-fold cross validation for all of our experiments,
unless otherwise noted. Sentences were assigned to
folds in blocks of one (i.e., fold 1 contained sen-
tences 1, 11, 21, and so on.). Within each fold, 80%
of the data was assigned to training, 10% to devel-
opment, and 10% to testing. Each fold’s vocabulary

model F1 F1≤40 types tokens
Korean 52.78 56.55 6.6K 194K
English (§02–03) 71.06 72.26 5.5K 96K
English (§02–04) 72.20 73.29 7.5K 147K
English (§02–21) 71.61 72.74 23K 950K

Table 1: Parser scores for Treebank PCFGs in Korean
and English. For English, we vary the size of the training
data to provide a better point of comparison against Ko-
rean. Types and tokens denote vocabulary sizes (which
for Korean is the mean over the folds).

was set to all words occurring more than once in its
training data, with a handful of count one tokens re-
placing unknown words based on properties of the
word’s surface form (all Korean words were placed
in a single bin, and English words were binned fol-
lowing the rules of Petrov et al. (2006)). We report
scores on the development set.

We report parser accuracy scores using the stan-
dard F1 metric, which balances precision and recall
of the labeled constituents recovered by the parser:
2PR/(P + R). Throughout the paper, all evalua-
tion occurs against gold standard trees that contain
no NULL elements or nonterminal function tags or
annotations, which in some cases requires the re-
moval of those elements from parse trees output by
the parser.

3.2 Treebank grammars

We begin by presenting in Table 1 scores for the
standard Treebank grammar, obtained by reading a
standard context-free grammar from the trees in the
training data and setting rule probabilities to rela-
tive frequency (Charniak, 1996). For these initial
experiments, we follow standard practice in English
parsing and remove all (a) nonterminal function tags
and (b) NULL elements from the parse trees before
learning the grammar. For comparison purposes, we
present scores from parsing the Wall Street Journal
portion of the English Penn Treebank (PTB), using
both the standard training set and subsets of it cho-
sen to be similar in size to the KTB. All English
scores are tested on section 22.

There are two interesting results in this table.
First, Korean parsing accuracy is much lower than
English parsing accuracy, and second, the accuracy
difference does not appear to be due to a difference
in the size of the training data, since reducing the



size of the English training data did not affect accu-
racy scores very much.

Before attempting to explain this empirically, we
note that Rehbein and van Genabith (2007) demon-
strate that the F1 metric is biased towards parse trees
with a high ratio of nonterminals to terminals, be-
cause mistakes made by the parser have a smaller
effect on the overall evaluation score.1 They rec-
ommend that F1 not be used for comparing parsing
accuracy across different annotation schemes. The
nonterminal to terminal ratio in the KTB and PTB
are 0.40 and 0.45, respectively. It is a good idea to
keep this bias in mind, but we believe that this small
ratio difference is unlikely to account for the huge
gap in scores displayed in Table 1.

The gap in parsing accuracy is unsurprising in
light of the basic known difficulties parsing Korean,
summarized earlier in the paper. Here we observe a
number of features of the KTB that contribute to this
difficulty.

Sentence length On average, KTB sentences are
much longer than PTB sentences (23 words versus
48 words, respectively). Sentence-level F1 is in-
versely correlated with sentence length, and the rel-
atively larger drop in F1 score going from column 3
to 2 in Table 1 is partially accounted for by the fact
that column 3 represents 33% of the KTB sentences,
but 92% of the English sentences.

Flat annotation scheme The KTB makes rela-
tively frequent use of very flat and ambiguous rules.
For example, consider the extreme cases of rule am-
biguity in which the lefthand side nonterminal is
present three or more times on its righthand side.
There are only three instances of such “triple+-
recursive” NPs among the∼40K trees in the training
portion of the PTB, each occurring only once.

NP→ NP NP NP , CC NP
NP→ NP NP NP CC NP
NP→ NP NP NP NP .

The KTB is an eighth of the size of this, but has
fifteen instances of such NPs (listed here with their
frequencies):

1We thank one of our anonymous reviewers for bringing this
to our attention.

NP→ NP NP NP NP (6)
NP→ NP NP NP NP NP (3)
NP→ NP NP NP NP NP NP (2)
NP→ NP NP NP NP NP NP NP (2)
NP→ SLQ NP NP NP SRQ PAD (1)
NP→ SLQ NP NP NP NP SRQ PAN (1)

Similar rules are common for other nonterminals as
well. Generally, flatter rules are easier to parse with
because they contribute to parse trees with fewer
nodes (and thus fewer independent decision points).
However, the presence of a single nonterminal on
both the left and righthand side of a rule means that
the annotation scheme is failing to capture distribu-
tional differences which must be present.

Nonterminal granularity This brings us to a final
point about the granularity of the nonterminals in the
KTB. After removing function tags, there are only
43 nonterminal symbols in the KTB (33 of them
preterminals), versus 72 English nonterminals (44
of them preterminals). Nonterminal granularity is
a well-studied problem in English parsing, and there
is a long, successful history of automatically refin-
ing English nonterminals to discover distributional
differences. In light of this success, we speculate
that the disparity in parsing performance might be
explained by this disparity in the number of nonter-
minals. In the next section, we provide evidence that
this is indeed the case.

4 Nonterminal granularity

There are many ways to refine the set of nontermi-
nals in a Treebank. A simple approach suggested
by Johnson (1998) is to simply annotate each node
with its parent’s label. The effect of this is to re-
fine the distribution of each nonterminal over se-
quences of children according to its position in the
sentence; for example, a VP beneath an SBAR node
will have a different distribution over children than a
VP beneath an S node. This simple technique alone
produces a large improvement in English Treebank
parsing. Klein and Manning (2003) expanded this
idea with a series of experiments wherein they manu-
ally refined nonterminals to different degrees, which
resulted in parsing accuracy rivaling that of bilexi-
calized parsing models of the time. More recently,
Petrov et al. (2006) refined techniques originally
proposed by Matsuzaki et al. (2005) and Prescher



SBJ subject with nominative case marker
OBJ complement with accusative case marker
COMP complement with adverbial postposition
ADV NP that function as adverbial phrase
VOC noun with vocative case maker
LV NP coupled with “light” verb construction

Table 2: Function tags in the Korean treebank

model F1 F1≤40

Korean
coarse 52.78 56.55
w/ function tags 56.18 60.21
English (small)
coarse 72.20 73.29
w/ function tags 70.50 71.78
English (standard)
coarse 71.61 72.74
w/ function tags 72.82 74.05

Table 3: Parser scores for Treebank PCFGs in Korean
and English with and without function tags. The small
English results were produced by training on§02–04.

(2005) for automatically learning latent annotations,
resulting in state of the art parsing performance with
cubic-time parsing algorithms.

We begin this section by conducting some sim-
ple experiments with the existing function tags, and
then apply the latent annotation learning procedures
of Petrov et al. (2006) to the KTB.

4.1 Function tags

The KTB has function tags that mark grammatical
functions of NP and S nodes (Han et al., 2001),
which we list all of them in Table 2. These function
tags are principally grammatical markers. As men-
tioned above, the parsing scores for both English
and Korean presented in Table 1 were produced with
grammars stripped of their function tags. This is
standard practice in English, where the existing tags
are known not to help very much. Table 3 presents
results of parsing with grammars with nonterminals
that retain these function tags (we include results
from Section 3 for comparison). Note that evalua-
tion is done against the unannotated gold standard
parse trees by removing the function tags after pars-
ing with them.

The results for Korean are quite pronounced:
we see a nearly seven-point improvement when re-

taining the existing tags. This very strongly sug-
gests that the KTB nonterminals are too coarse
when stripped of their function tags, and raises the
question of whether further improvement might be
gained from latent annotations.

The English scores allow us to make another point.
Retaining the provided function tags results in a
solid performance increase with the standard train-
ing corpus, but actually hurts performance when
training on the small dataset. Note clearly that this
doesnot suggest that parsing performance with the
grammar from the small English data could not be
improved with latent annotations (indeed, we will
show that they can), but only that the given annota-
tions do not help improve parsing accuracy. Taking
the Korean and English accuracy results from this ta-
ble together provides another piece of evidence that
the Korean nonterminal set is too coarse.

4.2 Latent annotations

We applied the latent annotation learning procedures
of Petrov et al.2 to refine the nonterminals in the
KTB. The trainer learns refinements over the coarse
version of the KTB (with function tags removed). In
this experiment, rather than doing 10-fold cross vali-
dation, we split the KTB into training, development,
and test sets that roughly match the 80/10/10 splits
of the folds:

section file IDs
training 302000 to 316999
development 317000 to 317999
testing 320000 to 320999

This procedure results in grammars which can then
be used to parse new sentences. Table 4 displays the
parsing accuracy results for parsing with the gram-
mar (after smoothing) at the end of each split-merge-
smooth cycle.3 The scores in this table show that,
just as with the PTB, nonterminal refinement makes
a huge difference in parser performance.

Again with the caveat that direct comparison of
parsing scores across annotation schemes must be
taken loosely, we note that the KTB parsing accu-
racy is still about 10 points lower than the best ac-

2http://code.google.com/p/berkeleyparser/
3As described in Petrov et al. (2006), to score a parse tree

produced with a refined grammar, we can either take the Viterbi
derivation or approximate a sum over derivations before project-
ing back to the coarse tree for scoring.



Viterbi max-sum
cycle F1 F1≤40 F1 F1≤40

1 56.93 61.11 61.04 64.23
2 63.82 67.94 66.31 68.90
3 69.86 72.83 72.85 75.63
4 74.36 77.15 77.18 78.18
5 78.07 80.09 79.93 82.04
6 78.91 81.55 80.85 82.75

Table 4: Parsing accuracy on Korean test data from the
grammars output by the Berkeley state-splitting grammar
trainer. For comparison, parsing all sentences of§22 in
the PTB with the same trainer scored 89.58 (max-sum
parsing with five cycles) with the standard training corpus
and 85.21 when trained on§2–4.

curacy scores produced in parsing the PTB which,
in our experiments, were 89.58 (using max-sum to
parse all sentences with the grammar obtained after
five cycles of training).

An obvious suspect for the difference in parsing
accuracy with latent grammars between English and
Korean is the difference in training set sizes. This
turns out not to be the case. We learned latent anno-
tations on sections 2–4 of the PTB and again tested
on section 22. The accuracy scores on the test set
peak at 85.21 (max-sum, all sentences, five cycles of
training). This is about five points lower than the En-
glish grammar trained on sections 2–21, but is still
over four points higher than the KTB results.

In the next section, we turn to one of the theoret-
ical difficulties with Korean parsing with which we
began the paper.

5 NULL elements

Both the PTB and KTB include many NULL ele-
ments. For English, these elements are traces de-
noting constituent movement. In the KTB, there
are many more kinds of NULL elements, in includ-
ing trace markers, zero pronouns, relative clause re-
duction, verb deletions, verb ellipsis, and other un-
known categories. Standard practice in English pars-
ing is to remove NULL elements in order to avoid
the complexity of parsing withǫ-productions. How-
ever, another approach to parsing that avoids such
productions is to retain the NULL elements when
reading the grammar; at test time, the parser is given
sentences that contain markers denoting the empty
elements. To evaluate, we remove these elements

model F1 F1≤40 tokens
English (standard training corpus)
coarse 71.61 72.74 950K
w/ function tags 72.82 74.05 950K
w/ NULLs 73.29 74.38 1,014K
Korean
w/ verb ellipses 52.85 56.52 3,200
w/ traces 55.88 59.42 3,868
w/ r.c. markers 56.74 59.87 3,794
w/ zero pronouns 57.56 61.17 4,101
latent (5) w/ NULLs 89.56 91.03 22,437

Table 5: Parser scores for Treebank PCFGs in English
and Korean with NULL elements. Tokensdenotes the
number of words in the test data. The latent grammar
was trained for five iterations.

from the resulting parse trees output by the parser
and compare against the stripped-down gold stan-
dard used in previous sections, in order to provide
a fair point of comparison.

Parsing in this manner helps us to answer the ques-
tion of how much easier or more difficult parsing
would be if the NULL elements were present. In
this section, we present results from a variety of ex-
periments parsing will NULL tokens in this manner.
These results can be seen in Table 5. The first ob-
servation from this table is that in English, retaining
NULL elements makes a few points difference.

The first four rows of the KTB portion of Table 5
contains results with retaining different classes of
NULL elements, one at a time, according to the man-
ner described above. Restoring deleted pronouns
and relative clause markers has the largest effect,
suggesting that the absence of these optional ele-
ments removes key cues needed for parsing.

In order to provide a more complete picture of
the effect of empty elements, we train the Berkeley
latent annotation system on a version of the KTB
in which all empty elements are retained. The fi-
nal row of Table 5 contains the score obtained when
evaluating parse trees produced from parsing with
the grammar after the fifth iteration (after which per-
formance began to fall). With the empty elements,
we have achieved accuracy scores that are on par
with the best accuracy scores obtained parsing the
English Treebank.



6 Tree substitution grammars

We have shown that coarse labels and the prevalence
of NULL elements in Korean both contribute to pars-
ing difficulty. We now turn to grammar formalisms
that allow us to work with larger fragments of parse
trees than the height-one rules of standard context-
free grammars. Tree substitution grammars (TSGs)
have been shown to improve upon the standard En-
glish Treebank grammar (Bod, 2001) in parser ac-
curacy, and more recently, techniques for inferring
TSG subtrees in a Bayesian framework have enabled
learning more efficiently representable grammars,
permitting some interesting analysis (O’Donnell et
al., 2009; Cohn et al., 2009; Post and Gildea, 2009).
In this section, we try parsing the KTB with TSGs.
We experiment with different methods of learning
TSGs to see whether they can reveal any insights
into the difficulties parsing Korean.

6.1 Head rules

TSGs present some difficulties in learning and rep-
resentation, but a simple extraction heuristic called
a spinal grammarhas been shown to be very use-
ful (Chiang, 2000; Sangati and Zuidema, 2009; Post
and Gildea, 2009). Spinal subtrees are extracted
from a parse tree by using a set of head rules to
maximally project each lexical item (a word or mor-
pheme). Each node in the parse tree having a differ-
ent head from its parent becomes the root of a new
subtree, which induces a spinal TSG derivation in
the parse tree (see Figure 1). A probabilistic gram-
mar is derived by taking counts from these trees,
smoothing them with counts of all depth-one rules
from the same training set, and setting rule probabil-
ities to relative frequency.

This heuristic requires a set of head rules, which
we present in Table 6. As an evaluation of our rules,
we list in Table 7 the accuracy results for parsing
with spinal grammars extracted using the head rules
we developed as well as with two head rule heuris-
tics (head-left and head-right). As a point of compar-
ison, we provide the same results for English, using
the standard Magerman/Collins head rules for En-
glish (Magerman, 1995; Collins, 1997). Function
tags were retained for Korean but not for English.

We observe a number of things from Table 7.
First, the relative performance of the head-left and

NT RC rule
S SFN second rightmost child

VV EFN rightmost XSV
VX EFN rightmost VJ or CO

ADJP EFN rightmost VJ
CV EFN rightmost VV
LV EFN rightmost VV
NP EFN rightmost CO
VJ EFN rightmost XSV or XSJ
VP EFN rightmost VX, XSV, or VV

⋆ ⋆ rightmost child

Table 6: Head rules for the Korean Treebank. NT is the
nonterminal whose head is being determined, RC identi-
fies the label of its rightmost child. The default is to take
the rightmost child as the head.

head-right spinal grammars between English and
Korean capture the linguistic fact that English is pre-
dominantly head-first and Korean is predominantly
head-final. In fact, head-finalness in Korean was so
strong that our head rules consist of only a handful
of exceptions to it. The default rule makes heads
of postpositions (case and information clitics) such
as dative case marker and topic marker. It is these
words that often have dependencies with words in
the rest of the sentence. The exceptions concern
predicates that occur in the sentence-final position.
As an example, predicates in Korean are composed
of several morphemes, the final one of which indi-
cates the mood of the sentence. However, this mor-
pheme often does not require any inflection to re-
flect long-distance agreement with the rest of the
sentence. Therefore, we choose the morpheme that
would be considered the root of the phrase, which
in Korean is the verbalization/adjectivization suf-
fix, verb, adjective, auxiliary predicate, and copula
(XSV, XSJ, VV, VJ, VX, CO). These items often in-
clude the information about valency of the predicate.

Second, in both languages, finer-grained specifi-
cation of head rules results in performance above
that of the heuristics (and in particular, the head-
left heuristic for English and head-right heuristic for
Korean). The relative improvements in the two lan-
guages are in line with each other: significant, but
not nearly as large as the difference between the
head-left and head-right heuristics.

Finally, we note that the test results together sug-
gest that parsing with spinal grammars may be a



(a) TOP

S

NP-SBJ

NPR

㣙㧗㭐

NNC

㞇㡐

PAU

㧹
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NP-ADV

DAN

㒔
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.

(b) S

NP-SBJ

NPR

㣙㧗㭐

NNC PAU

VP SFN

(c) S

NP-SBJ VP SFN

.

Figure 1: (a) A KTB parse tree; the bold nodes denote the top-level spinal subtree using our head selection rules. (b)
The top-level spinal subtree using the head-left and (c) head-right extraction heuristics. A gloss of the sentence is
Doctor Schwartz was fired afterward.

model F1 F1≤40 size
Korean
spinal (head left) 59.49 63.33 49K
spinal (head right) 66.05 69.96 29K
spinal (head rules) 66.28 70.61 29K
English
spinal (head left) 77.92 78.94 158K
spinal (head right) 72.73 74.09 172K
spinal (head rules) 78.82 79.79 189K

Table 7: Spinal grammar scores on the KTB and on PTB
section 22.

good evaluation of a set of head selection rules.

6.2 Induced tree substitution grammars

Recent work in applying nonparametric machine
learning techniques to TSG induction has shown that
the resulting grammars improve upon standard En-
glish treebank grammars (O’Donnell et al., 2009;
Cohn et al., 2009; Post and Gildea, 2009). These
techniques use a Dirichlet Process prior over the sub-
tree rewrites of each nonterminal (Ferguson, 1973);
this defines a model of subtree generation that pro-
duces new subtrees in proportion to the number of
times they have previously been generated. Infer-
ence under this model takes a treebank and uses
Gibbs sampling to determine how to deconstruct a
parse tree into a single TSG derivation. In this sec-
tion, we apply these techniques to Korean.

This TSG induction requires one to specify a base
measure, which assigns probabilities to subtrees be-
ing generated for the first time in the model. One
base measure employed in previous work scored a
subtree by multiplying together the probabilities of
the height-one rules inside the subtree with a ge-

ometric distribution on the number of such rules.
Since Korean is considered to be a free word-order
language, we modified this base measure to treat the
children of a height-one rule as a multiset (instead of
a sequence). This has the effect of producing equiva-
lence classes among the sets of children of each non-
terminal, concentrating the mass on these classes in-
stead of spreading it across their different instantia-
tions.

To build the sampled grammars, we initialized the
samplers from the best spinal grammar derivations
and ran them for 100 iterations (once again, func-
tion tags were retained). We then took the state of
the training data at every tenth iteration, smoothed
together with the height-one rules from the standard
Treebank. The best score on the development data
for a sampled grammar was 68.93 (all sentences)
and 73.29 (sentences with forty or fewer words):
well above the standard Treebank scores from ear-
lier sections and above the spinal heuristics, but well
below the scores produced by the latent annotation
learning procedures (a result that is consistent with
English).

This performance increase reflects the results for
English demonstrated in the above works. We see a
large performance increase above the baseline Tree-
bank grammar, and a few points above the best
spinal grammar. One nice feature of these induced
TSGs is that the rules learned lend themselves to
analysis, which we turn to next.

6.3 Word order

In addition to the base measure mentioned above,
we also experimented with the standard base mea-



NP

NPR NNC

㨆㧙

NNU NNX

㜼

Figure 2: Example of a long distance dependency learned
by TSG induction.

sure proposed by Cohn et al. and Post & Gildea, that
treats the children of a nonterminal as a sequence.
The grammars produced sampling under a model
with this base measure were not substantively differ-
ent from those of the unordered base measure. A par-
tial explanation for this is that although Korean does
permit a significant amount of reordering relative to
English, the sentences in the KTB come from writ-
ten newswire text, where word order is more stan-
dardized. Korean sentences are characterized as hav-
ing a subject-object-verb (SOV) word order. There
is some flexibility; OSV, in particular, is common
in spoken Korean. In formal writing, though, SOV
word order is overwhelmingly preferred. We see this
reflected in the KTB, where SOV sentences are 63.5
times more numerous that OSV among sentences
that have explicitly marked both the subject and the
object. However, word order is not completely fixed
even in the formal writing. NP-ADV is most likely
to occur right before the VP it modifies, but can be
moved earlier. For example,

S→ NP-SBJ NP-ADV VP
is 2.4 times more frequent than the alternative with
the order of the NPs reversed.

Furthermore, the notion of free(er) word order
does not apply to all constituents. An example is
nonterminals directly above preterminals. A Korean
verb may have up to seven affixes; however, they al-
ways agglutinate in a fixed order.

6.4 Long distance dependencies

The TSG inference procedure can be thought of
as discovering structural collocations in parse trees.
The model prefers subtrees that are common in the
data set and that comprise highly probable height-
one rules. The parsing accuracy of these grammars
is well below state of the art, but the grammars are
smaller, and the subtrees learned can help us analyze
the parse structure of the Treebank. One particular

class of subtree is one that includes multiple lexical
items with intervening nonterminals, which repre-
sent long distance dependencies that commonly co-
occur. In Korean, a certain class of nouns must ac-
company a particular class of measure word (a mor-
pheme) when counting the noun. In the example
shown in Figure 2, (NNC㨆㧙) (members of as-
sembly) is followed by NNU, which expands to in-
dicate ordinal, cardinal, and numeral nouns; NNU is
in turn followed by (NNX㜼), the politeness neutral
measure word for counting people.

7 Summary & future work

In this paper, we addressed several difficult aspects
of parsing Korean and showed that good parsing ac-
curacy for Korean can be achieved despite the small
size of the corpus.

Analysis of different parsing results from differ-
ent grammatical formalisms yielded a number of
useful observations. We found, for example, that the
set of nonterminals in the KTB is not differentiated
enough for accurate parsing; however, parsing accu-
racy improves substantially from latent annotations
and state-splitting techniques that have been devel-
oped with English as a testbed. We found that freer
word order may not be as important as might have
been thought from basic a priori linguistic knowl-
edge of Korean.

The prevalence of NULL elements in Korean is
perhaps the most interesting difficulty in develop-
ing good parsing approaches for Korean; this is
a key difference from English parsing that to our
knowledge is not addressed by any available tech-
niques. One potential approach is a special an-
notation of parents with deleted nodes in order to
avoid conflating rewrite distributions. For example,
S → VP is the most common rule in the Korean
treebank after stripping away empty elements; how-
ever, this is a result of condensing the rule S→ (NP-
SBJ *pro*) VP and S→ VP, which presumably have
different distributions. Another approach would be
to attempt automatic recovery of empty elements as
a pre-processing step.
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