
Worst-Case Synchronous Grammar Rules

Daniel Gildea and Daniel Štefankovǐc
Computer Science Dept.
University of Rochester
Rochester, NY 14627

Abstract

We relate the problem of finding the best
application of a Synchronous Context-
Free Grammar (SCFG) rule during pars-
ing to a Markov Random Field. This
representation allows us to use the the-
ory of expander graphs to show that the
complexity of SCFG parsing of an input
sentence of lengthN is Ω(N cn), for a
grammar with maximum rule lengthn and
some constantc. This improves on the
previous best result ofΩ(N c

√
n).

1 Introduction

Recent interest in syntax-based methods for statis-
tical machine translation has lead to work in pars-
ing algorithms for synchronous context-free gram-
mars (SCFGs). Generally, parsing complexity de-
pends on the length of the longest rule in the gram-
mar, but the exact nature of this relationship has only
recently begun to be explored. It has been known
since the early days of automata theory (Aho and
Ullman, 1972) that the languages of string pairs gen-
erated by a synchronous grammar can be arranged in
an infinite hierarchy, with each rule size≥ 4 pro-
ducing languages not possible with grammars re-
stricted to smaller rules. For any grammar with
maximum rule sizen, a fairly straightforward dy-
namic programming strategy yields anO(Nn+4) al-
gorithm for parsing sentences of lengthN . How-
ever, this is often not the best achievable complexity,
and the exact bounds of the best possible algorithms
are not known. Satta and Peserico (2005) showed
that a permutation can be defined for any lengthn

such that tabular parsing strategies must take at least
Ω(N c

√
n), that is, the exponent of the algorithm is

proportional to the square root of the rule length.
In this paper, we improve this result, showing that
in the worst case the exponent grows linearly with
the rule length. Using a probabilistic argument, we
show that the number of easily parsable permuta-
tions grows slowly enough that most permutations
must be difficult, where by difficult we mean that the
exponent in the complexity is greater than a constant
factor times the rule length. Thus, not only do there
exist permutations that have complexity higher than
the square root case of Satta and Peserico (2005),
but in fact the probability that a randomly chosen
permutation will have higher complexity approaches
one as the rule length grows.

Our approach is to first relate the problem of
finding an efficient parsing algorithm to finding the
treewidthof a graph derived from the SCFG rule’s
permutation. We then show that this class of graphs
areexpander graphs, which in turn means that the
treewidth grows linearly with the graph size.

2 Synchronous Parsing Strategies

We write SCFG rules as productions with one
lefthand side nonterminal and two righthand side
strings. Nonterminals in the two strings are linked
with superscript indices; symbols with the same in-
dex must be further rewritten synchronously. For ex-
ample,

X → A(1) B(2) C(3) D(4), A(1) B(2) C(3) D(4)

(1)
is a rule with four children and no reordering, while

X → A(1) B(2) C(3) D(4), B(2) D(4) A(1) C(3)

(2)

Algorithm 1 BottomUpParser(grammarG, input stringse, f)
for x0, xn such that1 < x0 < xn < |e| in increasing order ofxn − x0 do

for y0, yn such that1 < y0 < yn < |f | in increasing order ofyn − y0 do
for RulesR of form X → X

(1)
1 ...X

(n)
n , X

(π(1))
π(1) ...X

(π(n))
π(n) in G do

p = P (R) max
x1..xn−1
y1..yn−1

∏

i

δ(Xi, xi−1, xi, yπ(i)−1, yπ(i))

δ(X, x0, xn, y0, yn) = max{δ(X, x0, xn, y0, yn), p}
end for

end for
end for

expresses a more complex reordering. In general,
we can take indices in the first grammar dimen-
sion to be consecutive, and associate a permutation
π with the second dimension. If we useXi for
0 ≤ i ≤ n as a set of variables over nonterminal
symbols (for example,X1 andX2 may both stand
for nonterminalA), we can write rules in the gen-
eral form:

X0 → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

Grammar rules also contain terminal symbols, but as
their position does not affect parsing complexity, we
focus on nonterminals and their associated permuta-
tion π in the remainder of the paper. In a probabilis-
tic grammar, each ruleR has an associated proba-
bility P (R). The synchronous parsing problem con-
sists of finding the tree covering both strings having
the maximum product of rule probabilities.1

We assume synchronous parsing is done by stor-
ing a dynamic programming table of recognized
nonterminals, as outlined in Algorithm 1. We refer
to a dynamic programming item for a given nonter-
minal with specified boundaries in each language as
a cell. The algorithm computes cells by maximiz-
ing overboundary variablesxi andyi, which range
over positions in the two input strings, and specify
beginning and end points for the SCFG rule’s child
nonterminals.

The maximization in the inner loop of Algo-
rithm 1 is the most expensive part of the proce-
dure, as it would takeO(N2n−2) with exhaustive

1We describe our methods in terms of the Viterbi algorithm
(using the max-product semiring), but they also apply to non-
probabilistic parsing (boolean semiring), language modeling
(sum-product semiring), and Expectation Maximization (with
inside and outside passes).

search; making this step more efficient is our fo-
cus in this paper. The maximization can be done
with further dynamic programming, storing partial
results which contain some subset of an SCFG rule’s
righthand side nonterminals that have been recog-
nized. A parsing strategy for a specific SCFG rule
consists of an order in which these subsets should
be combined, until all the rule’s children have been
recognized. The complexity of an individual parsing
step depends on the number of free boundary vari-
ables, each of which can takeO(N) values. It is
often helpful to visualize parsing strategies on the
permutation matrixcorresponding to a rule’s per-
mutationπ. Figure 1 shows the permutation matrix
of rule (2) with a three-step parsing strategy. Each
panel shows one combination step along with the
projections of the partial results in each dimension;
the endpoints of these projections correspond to free
boundary variables. The second step has the high-
est number of distinct endpoints, five in the vertical
dimension and three horizontally, meaning parsing
can be done in timeO(N8).

As an example of the impact that the choice of
parsing strategy can make, Figure 2 shows a per-
mutation for which a clever ordering of partial re-
sults enables parsing in timeO(N10) in the length
of the input strings. Permutations having this pattern
of diagonal stripes can be parsed using this strat-
egy in timeO(N10) regardless of the lengthn of
the SCFG rule, whereas a naı̈ve strategy proceeding
from left to right in either input string would take
timeO(Nn+3).

2.1 Markov Random Fields for Cells

In this section, we connect the maximization of
probabilities for a cell to the Markov Random Field

{A, B, C, D}

{A, B, C}

{A, B}

{A} {B}

{C}

{D}

x0 x1 x2 x3 x4

y0

y1

y2

y3

y4

A

B

C

D

x0 x1 x2 x3 x4

y0

y1

y2

y3

y4

A

B

C

D

x0 x1 x2 x3 x4

y0

y1

y2

y3

y4

A

B

C

D

Figure 1: The tree on the left defines a three-step parsing strategy for rule (2). In each step, the two subsets
of nonterminals in the inner marked spans are combined into a new chart item withthe outer spans. The
intersection of the outer spans, shaded, has now been processed. Ticmarks indicate distinct endpoints of the
spans being combined, corresponding to the free boundary variables.

(MRF) representation, which will later allow us to
use algorithms and complexity results based on the
graphical structure of MRFs. A Markov Random
Field is defined as a probability distribution2 over a
set of variablesx that can be written as a product of
factorsfi that are functions of various subsetsxi of
x. The probability of an SCFG rule instance com-
puted by Algorithm 1 can be written in this func-
tional form:

δR(x) = P (R)
∏

i

fi(xi)

where
x = {xi, yi} for 0 ≤ i ≤ n

xi = {xi−1, xi, yπ(i)−1, yπ(i)}

and the MRF has one factorfi for each child nonter-
minal Xi in the grammar ruleR. The factor’s value
is the probability of the child nonterminal, which can
be expressed as a function of its four boundaries:

fi(xi) = δ(Xi, xi−1, xi, yπ(i)−1, yπ(i))

For reasons that are explained in the following
section, we augment our Markov Random Fields
with a dummy factor for the completed parent non-
terminal’s chart item. Thus there is one dummy fac-
tor d for each grammar rule:

d(x0, xn, y0, yn) = 1

expressed as a function of the fourouter boundary
variablesof the completed rule, but with a constant

2In our case unnormalized.

Figure 2: A parsing strategy maintaining two spans
in each dimension isO(N10) for any length permu-
tation of this general form.

value of 1 so as not to change the probabilities com-
puted.

Thus an SCFG rule withn child nonterminals al-
ways results in a Markov Random Field with2n+2
variables andn + 1 factors, with each factor a func-
tion of exactly four variables.

Markov Random Fields are often represented as
graphs. Afactor graph representation has a node
for each variable and factor, with an edge connect-
ing each factor to the variables it depends on. An ex-
ample for rule (2) is shown in Figure 3, with round
nodes for variables, square nodes for factors, and a
diamond for the special dummy factor.

2.2 Junction Trees

Efficient computation on Markov Random Fields
is performed by first transforming the MRF into
a junction tree (Jensen et al., 1990; Shafer and
Shenoy, 1990), and then applying the standard

d

y0 y1 y2 y3 y4

f1 f2 f3 f4

x0 x1 x2 x3 x4

Figure 3: Markov Random Field for rule (2).

message-passing algorithm for graphical models
over this tree structure. The complexity of the mes-
sage passing algorithm depends on the structure of
the junction tree, which in turn depends on the graph
structure of the original MRF.

A junction tree can be constructed from a Markov
Random Field by the following three steps:

• Connect all variable nodes that share a factor,
and remove factor nodes. This results in the
graphs shown in Figure 4.

• Choose atriangulation of the resulting graph,
by adding chords to any cycle of length greater
than three.

• Decompose the triangulated graph into a tree of
cliques.

We call nodes in the resulting tree, corresponding
to cliques in the triangulated graph,clusters. Each
cluster has apotential function, which is a function
of the variables in the cluster. For each factor in the
original MRF, the junction tree will have at least one
cluster containing all of the variables on which the
factor is defined. Each factor is associated with one
such cluster, and the cluster’s potential function is
set to be the product of its factors, for all combina-
tions of variable values. Triangulation ensures that
the resulting tree satisfies thejunction tree property,
which states that for any two clusters containing the
same variablex, all nodes on the path connecting the
clusters also containx. A junction tree derived from
the MRF of Figure 3 is shown in Figure 5.

The message-passing algorithm for graphical
models can be applied to the junction tree. The algo-

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 4: The graphs resulting from connecting
all interacting variables for the identity permutation
(1, 2, 3, 4) (top) and the(2, 4, 1, 3) permutation of
rule (2) (bottom).

rithm works from the leaves of the tree inward, alter-
nately multiplying in potential functions and maxi-
mizing over variables that are no longer needed, ef-
fectively distributing themax and product operators
so as to minimize the interaction between variables.
The complexity of the message-passing isO(nNk),
where the junction tree containO(n) clusters,k is
the maximum cluster size, and each variable in the
cluster can takeN values.

However, the standard algorithm assumes that the
factor functions are predefined as part of the input.
In our case, however, the factor functions themselves
depend on message-passing calculations from other
grammar rules:

fi(xi) = δ(Xi, xi−1, xi, yπ(i)−1, yπ(i))

= max
R′:Xi→α,β

P (R′) max
x
′:

x′

0=xi−1,x′

n′
=xi

y′

0=yπ(i−1),y
′

n′
=yπ(i)

δR′

(x′) (3)

We must modify the standard algorithm in order
to interleave computation among the junction trees
corresponding to the various rules in the grammar,
using the bottom-up ordering of computation from
Algorithm 1. Where, in the standard algorithm, each
message contains a complete table for all assign-
ments to its variables, we break these into a sepa-
rate message for each individual assignment of vari-
ables. The overall complexity is unchanged, because
each assignment to all variables in each cluster is
still considered only once.

The dummy factord ensures that every junction

x0 x3 x4 y0 y2 y3 y4

x0 x2 x3 y0 y1 y2 y3 y4

x0 x1 x2 y1 y2 y3 y4

Figure 5: Junction tree for rule (2).

tree we derive from an SCFG rule has a cluster con-
taining all four outer boundary variables, allowing
efficient lookup of the inner maximization in (3).
Because the outer boundary variables need not ap-
pear throughout the junction tree, this technique al-
lows reuse of some partial results across different
outer boundaries. As an example, consider message
passing on the junction tree of shown in Figure 5,
which corresponds to the parsing strategy of Fig-
ure 1. Only the final step involves all four bound-
aries of the complete cell, but the most complex step
is the second, with a total of eight boundaries. This
efficient reuse would not be achieved by applying
the junction tree technique directly to the maximiza-
tion operator in Algorithm 1, because we would be
fixing the outer boundaries and computing the junc-
tion tree only over the inner boundaries.

3 Treewidth and Tabular Parsing

The complexity of the message passing algorithm
over an MRF’s junction tree is determined by the
treewidthof the MRF. In this section we show that,
because parsing strategies are in direct correspon-
dence with valid junction trees, we can use treewidth
to analyze the complexity of a grammar rule.

We define a tabular parsing strategy as any dy-
namic programming algorithm that stores partial re-
sults corresponding to subsets of a rule’s child non-
terminals. Such a strategy can be represented as a
recursive partition of child nonterminals, as shown
in Figure 1(left). We show below that a recursive
partition of children having maximum complexityk
at any step can be converted into a junction tree hav-
ing k as the maximum cluster size. This implies that
finding the optimal junction tree will give a parsing
strategy at least as good as the strategy of the opti-
mal recursive partition.

A recursive partition of child nonterminals can be

converted into a junction tree as follows:

• For each leaf of the recursive partition, which
represents a single child nonterminali, cre-
ate a leaf in the junction tree with the cluster
(xi−1, xi, yπ(i)−1, yπ(i)) and the potential func-
tion fi(xi−1, xi, yπ(i)−1, yπ(i)).

• For each internal node in the recursive parti-
tion, create a corresponding node in the junc-
tion tree.

• Add each variablexi to all nodes in the junction
tree on the path from the node for child nonter-
minal i− 1 to the node for child nonterminali.
Similarly, add each variableyπ(i) to all nodes
in the junction tree on the path from the node
for child nonterminalπ(i) − 1 to the node for
child nonterminalπ(i).

Because each variable appears as an argument of
only two factors, the junction tree nodes in which it
is present form a linear path from one leaf of the tree
to another. Since each variable is associated only
with nodes on one path through the tree, the result-
ing tree will satisfy the junction tree property. The
tree structure of the original recursive partition im-
plies that the variable rises from two leaf nodes to
the lowest common ancestor of both leaves, and is
not contained in any higher nodes. Thus each node
in the junction tree contains variables correspond-
ing to the set of endpoints of the spans defined by
the two subsets corresponding to its two children.
The number of variables at each node in the junction
tree is identical to the number of free endpoints at
the corresponding combination in the recursive par-
tition.

Because each recursive partition corresponds to a
junction tree with the same complexity, finding the
best recursive partition reduces to finding the junc-
tion tree with the best complexity, i.e., the smallest
maximum cluster size.

Finding the junction tree with the smallest clus-
ter size is equivalent to finding the input graph’s
treewidth, the smallestk such that the graph can be
embedded in ak-tree. In general, this problem was
shown to be NP-complete by Arnborg et al. (1987).
However, because the treewidth of a given rule lower
bounds the complexity of its tabular parsing strate-
gies, parsing complexity for general rules can be

bounded with treewidth results for worst-case rules,
without explicitly identifying the worst-case permu-
tations.

4 Treewidth Grows Linearly

In this section, we show that the treewidth of the
graphs corresponding to worst-case permutations
growths linearly with the permutation’s length. Our
strategy is as follows:

1. Define a 3-regular graph for an input permu-
tation consisting of a subset of edges from the
original graph.

2. Show that the edge-expansion of the 3-regular
graph grows linearly for randomly chosen per-
mutations.

3. Use edge-expansion to bound the spectral gap.

4. Use spectral gap to bound treewidth.

For the first step, we defineH = (V, E) as a ran-
dom 3-regular graph on2n vertices obtained as fol-
lows. Let G1 = (V1, E1) andG2 = (V2, E2) be
cycles, each on a separate set ofn vertices. These
two cycles correspond to the edges(xi, xi+1) and
(yi, yi+1) in the graphs of the type shown in Fig-
ure 4. LetM be a random perfect matching be-
tweenV1 andV2. The matching represents the edges
(xi, yπ(i)) produced from the input permutationπ.
Let H be the union ofG1, G2, andM . While H
contains only some of the edges in the graphs de-
fined in the previous section, removing edges cannot
increase the treewidth.

For the second step of the proof, we use a proba-
bilistic argument detailed in the next subsection.

For the third step, we will use the following con-
nection between the edge-expansion and the eigen-
value gap (Alon and Milman, 1985; Tanner, 1984).

Lemma 4.1 Let G be ak-regular graph. Letλ2 be
the second largest eigenvalue ofG. Leth(G) be the
edge-expansion ofG. Then

k − λ2 ≥
h(G)2

2k
.

Finally, for the fourth step, we use a relation be-
tween the eigenvalue gap and treewidth for regu-
lar graphs shown by Chandran and Subramanian
(2003).

Lemma 4.2 Let G be ak-regular graph. Letn be
the number of vertices ofG. Let λ2 be the second
largest eigenvalue ofG. Then

tw(G) ≥
⌊ n

4k
(k − λ2)

⌋

− 1

Note that in our settingk = 3. In order to use
Lemma 4.2 we will need to give a lower bound on
the eigenvalue gapk − λ2 of G.

4.1 Edge Expansion

Theedge-expansionof a set of verticesT is the ra-
tio of the number of edges connecting vertices inT
to the rest of the graph, divided by the number of
vertices inT ,

|E(T, V − T)|

|T |

where we assume that|T | ≤ |V |/2. The edge ex-
pansion of a graph is the minimum edge expansion
of any subset of vertices:

h(G) = min
T⊆V

|E(T, V − T)|

min{|T |, |V − T |}
.

Intuitively, if all subsets of vertices are highly con-
nected to the remainder of the graph, there is no way
to decompose the graph into minimally interacting
subgraphs, and thus no way to decompose the dy-
namic programming problem of parsing into smaller
pieces.

Let
(

n
k

)

be the standard binomial coefficient, and
for α ∈ R, let

(

n

≤ α

)

=

⌊α⌋
∑

k=0

(

n

k

)

.

We will use the following standard inequality valid
for 0 ≤ α ≤ n:

(

n

≤ α

)

≤
(ne

α

)α
(4)

Lemma 4.3 With probability at least0.98 the graph
H has edge-expansion at least1/50.

Proof :
Let ε = 1/50. Assume thatT ⊆ V is a set with a
small edge-expansion, i. e.,

|E(T, V − T)| ≤ ε|T |, (5)

and |T | ≤ |V |/2 = n. Let Ti = T ∩ Vi and let
ti = |Ti|, for i = 1, 2. We will w.l.o.g. assume
t1 ≤ t2. We will denote asℓi the number of spans of
consecutive vertices fromEi contained inT . Thus
2ℓi = |E(Ti, Vi − Ti)|, for i = 1, 2. The spans
counted byℓ1 andℓ2 correspond to continuous spans
counted in computing the complexity of a chart pars-
ing operation. However, unlike in the diagrams in
the earlier part of this paper, in our graph theoretic
argument there is no requirement thatT select only
corresponding pairs of vertices fromV1 andV2.

There are at least2(ℓ1+ℓ2)+t2−t1 edges between
T andV − T . This is because there are2ℓi edges
within Vi at the left and right boundaries of theℓi

spans, and at leastt2− t1 edges connecting the extra
vertices fromT2 that have no matching vertex inT1.
Thus from assumption (5) we have

t2 − t1 ≤ ε(t1 + t2)

which in turn implies

t1 ≤ t2 ≤
1 + ε

1 − ε
t1. (6)

Similarly, using (6), we have

ℓ1 + ℓ2 ≤
ε

2
(t1 + t2) ≤

ε

1 − ε
t1. (7)

That is, for T to have small edge expansion,
the vertices inT1 andT2 must be collected into a
small number of spansℓ1 andℓ2. This limit on the
number of spans allows us to limit the number of
ways of choosingT1 and T2. Suppose thatt1 is
given. Any pairT1, T2 is determined by the edges
in E(T1, V1 − T1), andE(T2, V2 − T2), and two
bits (corresponding to the possible “swaps” ofTi

with Vi − Ti). Note that we can choose at most
2ℓ1 + 2ℓ2 ≤ t1 · 2ε/(1 − ε) edges in total. Thus the
number of choices ofT1 andT2 is bounded above by

4 ·

(

2n

≤ 2ε
1−ε t1

)

. (8)

For a given choice ofT1 andT2, for T to have
small edge expansion, there must also not be too
many edges that connectT1 to vertices inV2 − T2.
Let k be the number of edges betweenT1 andT2.
There are at leastt1 + t2 − 2k edges betweenT and
V − T and from assumption (5) we have

t1 + t2 − 2k ≤ ε(t1 + t2)

Thus

k ≥ (1 − ε)
t1 + t2

2
≥ (1 − ε)t1. (9)

The probability that there are≥ (1 − ε)t1 edges be-
tweenT1 andT2 is bounded by

(

t1
≤ εt1

)(

t2
n

)(1−ε)t1

where the first term selects vertices inT1 connected
to T2, and the second term upper bounds the proba-
bility that the selected vertices are indeed connected
to T2. Using 6, we obtain a bound in terms oft1
alone:

(

t1
≤ εt1

)(

1 + ε

1 − ε
·
t1
n

)(1−ε)t1

, (10)

Combining the number of ways of choosingT1

andT2 (8) with the bound on the probability that the
edgesM from the input permutation connect almost
all the vertices inT1 to vertices fromT2 (10), and
using the union bound over values oft1, we obtain
that the probabilityp that there existsT ⊆ V with
edge-expansion less thanε is bounded by:

2

⌊n/2⌋
∑

t1=0

4·

(

2n

≤ 2ε
1−ε t1

)(

t1
≤ εt1

)(

1 + ε

1 − ε
·
t1
n

)(1−ε)t1

(11)
where the factor of2 is due to the assumptiont1 ≤
t2.

The graphH is connected and henceT has at least
one out-going edge. Therefore ift1 + t2 ≤ 1/ε, the
edge-expansion ofT is at leastε. Thus a set with
edge-expansion less thanε must havet1 + t2 ≥ 1/ε,
which, by (6), impliest1 ≥ (1 − ε)/(2ε). Thus the
sum in (11) can be taken fort from ⌈(1 − ε)/(2ε)⌉

to ⌊n/2⌋. Using (4) we obtain

p ≤ 8

⌊n/2⌋
∑

t1=⌈ 1−ε

2ε
⌉

(

2ne
2ε

1−ε t1

)
2ε

1−ε
t1 (

t1e

εt1

)εt1

(

1 + ε

1 − ε
·
t1
n

)(1−ε)t1
]

=

8

⌊n/2⌋
∑

t1=⌈ 1−ε

2ε
⌉

(

(

e(1 − ε)

ε

)
2ε

1−ε
(e

ε

)ε

(

1 + ε

1 − ε

)1−ε(t1
n

)1−ε− 2ε

1−ε

)t1

.

(12)

We will use t1/n ≤ 1/2 and plugε = 1/50 into
(12). We obtain

p ≤ 8
∞
∑

t1=25

0.74t1 ≤ 0.02.

�

While this constant bound onp is sufficient for
our main complexity result, it can further be shown
thatp approaches zero asn increases, from the fact
that the geometric sum in (12) converges, and each
term for fixedt1 goes to zero asn grows.

This completes the second step of the proof as
outlined at the beginning of this section. The con-
stant bound on the edge expansion implies a constant
bound on the eigenvalue gap (Lemma 4.1), which in
turn implies anΩ(n) bound on treewidth (Lemma
4.2), yielding:

Theorem 4.4 Tabular parsing strategies for Syn-
chronous Context-Free Grammars containing rules
with all permutations of lengthn require time
Ω(N cn) in the input string lengthN for some con-
stantc.

We have shown our result without explicitly con-
structing a difficult permutation, but we close with
one example. The zero-based permutations of length
p, wherep is prime,π(i) = i−1 mod p for 0 <
i < p, andπ(0) = 0, provide a known family of
expander graphs (see Hoory et al. (2006)).

5 Conclusion

We have shown in the exponent in the complex-
ity of polynomial-time parsing algorithms for syn-
chronous context-free grammars grows linearly with
the length of the grammar rules. While it is very
expensive computationally to test whether a speci-
fied permutation has a parsing algorithm of a certain
complexity, it turns out that randomly chosen per-
mutations are difficult with high probability.

Acknowledgments This work was supported by
NSF grants IIS-0546554, IIS-0428020, and IIS-
0325646.

References

Albert V. Aho and Jeffery D. Ullman. 1972.The The-
ory of Parsing, Translation, and Compiling, volume 1.
Prentice-Hall, Englewood Cliffs, NJ.

N. Alon and V.D. Milman. 1985. λ1, isoperimetric
inequalities for graphs and superconcentrators.J. of
Combinatorial Theory, Ser. B, 38:73–88.

Stefen Arnborg, Derek G. Corneil, and Andrzej
Proskurowski. 1987. Complexity of finding embed-
dings in ak-tree.SIAM Journal of Algebraic and Dis-
crete Methods, 8:277–284, April.

L.S. Chandran and C.R. Subramanian. 2003. A spectral
lower bound for the treewidth of a graph and its conse-
quences.Information Processing Letters, 87:195–200.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. 2006.
Expander graphs and their applications.Bull. Amer.
Math. Soc., 43:439–561.

Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Ole-
sen. 1990. Bayesian updating in causal probabilis-
tic networks by local computations.Computational
Statistics Quarterly, 4:269–282.

Giorgio Satta and Enoch Peserico. 2005. Some com-
putational complexity results for synchronous context-
free grammars. InProceedings of HLT/EMNLP, pages
803–810, Vancouver, Canada, October.

G. Shafer and P. Shenoy. 1990. Probability propaga-
tion. Annals of Mathematics and Artificial Intelli-
gence, 2:327–353.

R.M. Tanner. 1984. Explicit construction of concentra-
tors from generalized n-gons.J. Algebraic Discrete
Methods, 5:287–294.

