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The general problem of finding satisfying solutions to constraint-based underspecified represen-
tations of quantifier scope is NP-complete. Existing frameworks, including Dominance Graphs,
Minimal Recursion Semantics, and Hole Semantics, have struggled to balance expressivity and
tractability, in order to cover real natural language sentences with efficient algorithms. We
address this trade-off with a general principle of coherence, which requires that every variable
introduced in the domain of discourse must contribute to the overall semantics of the sentence.
We show that every underspecified representation meeting this criterion can be efficiently pro-
cessed, and that our set of representations subsumes all previously identified tractable sets.

1. Introduction

Quantifier scope ambiguity (QSA) is a big challenge in deep language understanding
systems. Consider the following conversation:

Woman: I believe there is one true soulmate for every person.
Man. He must be very busy.1

Most people find the man’s answer unusual (humorous, sarcastic, etc.). This is because
one of the two scopings of the woman’s sentence feels so obvious that the less likely
scoping is often missed at first glance. In the most likely interpretation, where there are
many soulmates, the quantifier every has wide scope, and, in the second interpretation,
where there is a unique soulmate, every has narrow scope. The following conversation
is of a similar nature:

Bob: How long have you and Opal been married now Earl?
Earl: I’ve lost track. But I can tell you this ... I don’t regret one day of it.
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Bob: Which day don’t you regret?2

The difference, however, is that, in this example, the scope ambiguity is not between two
quantifiers, but between a quantifier (one) and a scopal operator (negation). Underspec-
ification, that is, generating an unscoped semantic representation, has been the most
common way of dealing with QSA since the early days of natural language processing.
Underspecification is not adopted only because quantifier scope disambiguation is
difficult, but also because, for most practical purposes, an underspecified representation
(UR)3 will do the job. Eq. (1) and (2) show an unscoped logical form (LF) for the
sentences There is one soulmate for every person and I do not regret one day respectively.

〈One x Soulmate〉

〈Every y Person〉

Of(x , y)

(1)
〈One x Day〉

Not(Regret(I , x))
(2)

Eq. (3) shows the two scopings of the unscoped LF in Eq. (2):

One(x ,Day(x),Not(Regret(I, x)))

Not(One(x ,Day(x),Regret(I, x)))
(3)

When the number of quantifiers increases, the number of possible scopings will increase
exponentially. More recent underspecification formalisms are constraint-based, that is,
they allow for constraints, restricting the order of quantifiers, to be added to filter out
unwanted scopings. The constraints can come from different sources, e.g. motivated
by deeper processing steps, such as discourse or pragmatics. Several constraint-based
underspecification frameworks have been developed over the past couple of decades.
Minimal Recursion Semantics (MRS) (Copestake, Lascarides, and Flickinger 2001), Hole
Semantics (Bos 2002), and Dominance Constraints (Koller, Niehren, and Thater 2003)
are among those frameworks. Each framework is different in the type of constraints it
allows, and has its own advantages and disadvantages. A constraint-based UR defines
a computational problem which needs to be solved: given a UR with a set of constraints,
one needs to check if these constraints are consistent, that is, whether there is a scoping
satisfying all the constraints. This is called the satisfiability problem. The satisfiability
problem for all the above frameworks, in their general form, is intractable (Althaus et al.
2003). There has been some effort for defining a notion of well-formedness within the
context of these frameworks. The goal has been to define a subset of URs, the so-called
well-formed UR, for which the satisfiability problem becomes tractable. For example,
Niehren and Thater (2003) defined the notion of (weak) net to characterize such a subset.
Well-formedness was also intended to bridge the gap between these underspecification

2 From Pickles (Brian Crane, 2005).
3 In the literature, UR is used to refer to underspecified representation within the context of hole

Semantics. In this article, unless otherwise specified, we use UR as a blanket term for any
scope-underspecified representation.
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formalisms; the hope was that the differences between these formalisms disappear and
they become equivalent, once restricted to well-formed structures.

As seen in Niehren and Thater (2003) and Fuchss et al. (2004), the problem with
those efforts on defining a notion of well-formedness is that their satisfaction of both
properties was only empirically supported, and hence, the correctness of those state-
ments has remained a conjecture. In better words, first, there was no mathematical proof
to show that nets enforce the equivalence of qeq vs. dominance relations, the two dif-
ferent types of constraint used in MRS vs. Dominance Constraints/Hole Semantics, and
second, although they were proved to be tractable, there was no convincing linguistic
justification as why nets cover all URs corresponding to coherent sentences. In fact, this
claim was later falsified when Thater (2007) presented examples of coherent sentences
that were unaccounted for by nets (Section 7.1). In summary, it has remained an open
question whether there is a linguistically justified notion of well-formedness that not
only (provably) bridges the gap between the above formalisms, but also guarantees
tractability. In this article, we propose such a notion of semantic coherence that not
only answers both of these open questions but also solves several other unanswered
questions within the context of scope underspecification. The contribution of this work
can be summarized as follows:

• We extend the previous tractable frameworks to cover those natural language sen-
tences that were known to be unaccounted for without increasing the complexity
of the algorithms.

• We go beyond those known unaccounted examples and, once and for all, prove
that every semantically coherent natural language sentence (based on a linguis-
tically justified notion of semantic coherence) can be solved in polynomial time,
presenting a definitive answer to the open question of whether solving unscoped
representations of real life natural language sentences within the context of the
above formalisms is tractable.

• We prove that, under our notion of coherence, the two fundamentally different
types of constraint, dominance and qeq, become equivalent, hence, the principal
difference between these formalisms disappears.

• We further bridge the gap between the constraint-based formalisms by proving
that binding constraints (constraints enforcing that quantified variables be bound
within the scope of their quantifiers), which are label-to-label dominance relations
in nature, can be represented by hole-to-label dominance relations, as long as the
URs are coherent. This explains how a formalism such as Hole Semantics which
does not incorporate label-to-label dominance relations does not lack the power
to model binding constraints.

• Finally, given that quantifier scoping has traditionally been treated as an ordering
problem (that is, predicting a permutation of quantifiers), while in the constraint-
based formalisms, it is defined as predicting a tree structure, our notion of co-
herence allows us to explain this discrepancy. We show that, for coherent URs,
quantifier scoping is reduced from predicting a tree structure to finding a permu-
tation.
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Coherent UG
Section 4

Dominance Graph

Coherent MRS
(satisfiable and heart-connected)

Section 7.2

MRS

Normal DG

Hole Semantics’s UR
(satisfiable and hyper-normally connected)

Section 7.3

Hypernet
Section 5

Weak net
Section 7.1

Weakly Normal DG

Underspecification Graph
Section 2

CF-MRS

Complete UG
Section 3

Figure 1: Classes of Underspecification Graph introduced in this article. We define
Hypernet, show that it is computationally tractable, and further show that it covers
all coherent sentences, and that it subsumes previously identified tractable classes.

While we focus on finding solutions to underspecified representations with hard
constraints, our results have implications for statistical systems based on soft con-
straints. Since weighted soft constraints generalize hard constraints, finding efficient
algorithms for solving systems with hard constraints is a first step toward finding
efficient algorithms for finding the highest-scoring solution under weighted constraints.
We also show how our algorithm for finding solutions under hard constraints can be
used to guide search for the highest scoring solution given a combination of hard and
soft constraints.

Some of this article’s results or a weaker version of them have been proved in our
own previous work. In Manshadi, Allen, and Swift (2008b), we proved the equivalence
of qeq and dominance for canonical form MRS, which motivated the notion of com-
pleteness. In Manshadi, Allen, and Swift (2009), we introduced the notion of heart-
connectedness which, in the current work, forms the basis of coherence. In another line
of work (Manshadi and Allen 2012), we introduced a superset of nets, called supernets,
which covered the known examples unaccounted for by nets.
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In this article, however, we combine completeness and heart-connectedness, to
define a mathematically characterized notion of coherence. We show that this notion
directly follows from a linguistic property of semantically coherent sentences, as dis-
cussed by Frege (1923) among others. Under such a linguistically justified and math-
ematically characterized notion of coherence, we prove that i) the above formalisms
become equivalent, ii) coherence guarantees tractability, and iii) quantifier scoping is
reduced to an ordering problem. More importantly, to connect our work to the previous
work within the context of Dominance Graph, we define the notion of hypernet, the
largest tractable subset of Dominance Graph found so far. Hypernets, in particular,
contain downward connected nets (Koller and Thater 2007) as well as all coherent URs.

In order to build a mathematical infrastructure to be able to rigorously prove
the above properties, in particular, the equivalence of different formalisms within a
newly defined notion of well-formedness (i.e. coherence), we define a framework, the
underspecification graph, by simultaneously incorporating both qeq and dominance
constraints. This allows us to compare URs represented within each of the individual
formalisms under a universal framework, and ultimately to formally prove equivalence.
The structure of this paper is as follows. In Section 2, we give a formal definition
of our universal framework (i.e. underspecification graph). Section 3 defines a notion
of completeness and proves that, under this notion, the two fundamentally different
types of constraint used in underspecification formalisms (qeq and dominance) become
equivalent. Section 4 defines a notion of coherence for a complete UR. Section 5 dis-
cusses the tractability issue. We propose a tractable subset of URs and prove that it is
the largest tractable subset found so far. We then show that every coherent UR belongs
to this set, and we discuss implications for systems of mixed hard and soft constraints.
Section 6 shows that scope disambiguation can be treated as an ordering problem.
Finally, Section 7 gives a detailed comparison of our framework with previous work.

2. Underspecification Graph

Consider the following example.

1. Every child of a politician runs.

Early systems (Schubert and Pelletier 1982; Hobbs and Shieber 1987; Allen 1995) rep-
resented the semantics of such a sentence using an unscoped logical form (LF) of the
following general form:

Every(x ,Child(x , y),©), A(y , Politician(y),©), Run(x) (4)

To scope this LF, at each step, a quantifier is picked and the main predication (i.e.,
Run(x)) or the partially scoped formula built so far is fused to its body hole:

Step 1. Every(x ,Child(x , y),Run(x))

Step 2. A(y , Politician(y), Every(x ,Child(x , y),Run(x)))
(5)

By picking quantifiers in different orders, different scopings are generated.
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Next, the notion of constraints was introduced into the domain of scope underspec-
ified semantics. For example, Quasi Logical Form or QLF (Alshawi and Crouch 1992),
allows for constraints such as A > Every to be used to force one quantifier to rest within
the scope of another. By inventing some machinery that allows for Discourse Represen-
tation Theory or DRT (Kamp 1981) to support scope underspecification, Reyle (1993)
takes the notion of constraint-based underspecification to a new level. He introduces a
complex system of constraints, that among other things, can define a maximum and a
minimum range for the scope of a quantifier relative to other scope bearing elements. It
is fair to say that Reyle’s work inspired the next two decades of research on constraint-
based scope underspecification resulting in several underspecification formalisms such
as Hole Semantics or HS (Bos 1996), Minimal Recursion Semantics or MRS (Copestake,
Lascarides, and Flickinger 2001), and Dominance Graph or DG (Thater 2007). Unlike
QLF or UDRT, the new formalisms treat underspecification as an abstract algebraic
framework which is independent of the target object language, whether it is first order
predicate calculus, modal logic, DRT, etc. A UR in these formalisms is a set of abstract
labeled formulas with holes that can be filled in with other labeled formulas. The
formulas come with a set of constraints between the labels and holes, and in order for
a scoping to be considered valid, the set of constraints ought to be respected. Despite
all the similarities, as will be seen shortly, HS/DG and MRS differ in how they interpret
the constraints.

Figure 2 shows the graphical depiction of the UR of Example 1 as proposed by
MRS. Solid nodes represent labeled formulas, and are called label nodes. The holes

Politician(y)

A(y)

Child(x,y)

Every(x)

Run(x)

q q

(a) UR for Example 1

Politician(y)

A(y)

Child(x,y)

Every(x)

Run(x)

(b) Fusing labels to holes

Every(x)

A(y)

Politician(y)

Run(x)

Child(x, y)

(c) Resulting scoping (d) Explicit binding constraints

Figure 2: Using graphical notation to represent unscoped LF

of the formulas are represented by nodes with hollow circles, called the hole nodes.
Scopings of such a structure are built by fusing label nodes to hole nodes as shown
in Figure 2b. The above UR leaves both the body and the restriction of the quantifiers
underspecified. This is to allow for scopings such as Figure 2c, in which quantifier A
lies between quantifier Every and its restriction. The dotted line between the label node
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Child(x,y), call it l, and the restriction hole of Every, call it h, is an example of a constraint.
This constraint (also represented as h �q l), requires that either h is directly filled by l or
h is filled by a quantifier and the body hole of that quantifier is filled by l (or by another
quantifier and the body hole of the latter is filled by l and so on so forth). This type of
constraint, first introduced by the MRS framework, is called a qeq constraint. It is easy
to see that qeq directly implements the idea of wrapping a quantifier around a formula
as shown in Eq. 5. It is easy to see that not every assignment of labels to holes in the
above UR is a valid scoping, even if it satisfies both qeq constraints. This is because, in
addition to qeq constraints, the UR carries a group of implicit constraints, the so-called
binding constraints. The binding constraints force every variable (x, y, etc.) to be in the
scope of its quantifier. Unlike qeq, binding constraints enforce a mere outscoping (a.k.a.
dominance) relation. That is, to satisfy a binding constraint from u to v, it is enough that
u outscopes (a.k.a. dominates) v.

To simplify things, let’s make the binding constraints explicit by using unlabeled
dotted edges as shown in Figure 2d. We call the resulting representation which incor-
porates both dominance and qeq constraints an underspecification graph or UG.

Before moving to the formal definition of UG, it should be emphasized that what
is defined here as UG is nothing but the integration of the three existing concepts:
MRS, HS, and DG. Defining a framework that subsumes all three has proved very
useful in substantiating the results we have obtained and in providing rigorous proofs.
Otherwise, from practical stand point (as proved later), UG has little to no advantage
over DG. In addition, it serves us better to first define the general framework, and then
introduce subsets of it, rather than the other way around.

2.1 The formal definition

Quantifiers and scopal and non-scopal predications are the building blocks of a UR.
As seen in the above figures, in graphical notation, they are depicted as single solid
nodes or trees with solid edges. In DG terminology, these are called Fragments. We
alternatively use the term elementary tree, emphasizing that these are analogous to the
MRS’s elementary predications (Section 7.2).

Definition 1 (Elementary Tree)
An elementary tree or ET (a.k.a. Fragment is an ordered4 tree of depth 0 or 1. The roots of
all ETs are represented by small solid circles and are referred to as label nodes or simply
labels. All the leaf nodes of the ETs of depth 1 are represented as big hollow circles and
are referred to as hole nodes or simply holes. ETs with holes are called scopal ETs.5

4 Throughout this paper, unless otherwise specified, by tree we always mean a rooted ordered tree.
5 A mathematically precise definition requires ETs to be defined as graphs over pairs (u , s), where u is a

node and s is a symbol of the value L (for label nodes) orH (for hole nodes). Such notation will be quite
cumbersome and may become confusing, especially given that we later need to define two types of edges,
and even two types of dotted edges. Therefore, while we understand that the underlying mathematical
model is defined in this precise way, we avoid adopting the notation. Instead, we use l, l1, etc. to denote
labels and h, h1, etc. to denote holes. The same applies to different types of edge defined later.
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l l

h1 hn
(a) General form of ET

q q

l2 l4

l3 l5

h1 h2 h3 h4
q

l0

l1

h0

(b) An example of UG

Figure 3: Elementary tree and underspecification graph

Figure 3a shows the general form of an elementary tree for both cases of depth � 0
and depth � 1. When depth � 0, the elementary tree is a singleton.

Definition 2 (Underspecification Graph)
The 8-tuple U � 〈LU ,HU , EU ,QU ,DU , TU , L

q
U , PU〉 is called a (scope) Underspecifica-

tion Graph or in short UG, if it is a finite structure with the following properties:

• FU � 〈LU ,HU , EU , PU〉 is a forest of elementary trees, with LU being the set of
label nodes, HU the set of hole nodes, and EU the set of directed solid edges, going
from the root of ETs to their holes. The order of holes in each ET is defined by PU .6

In graphical notation, PU is not explicitly given, as it is implicit in the left-to-right
order by which the hole nodes of each ET are depicted.

• QU is a relation from HU to LU , that is, QU ⊂ HU × LU . In graphical notation, each
(h , l) ∈ QU is represented as a directed dotted edge from h to l marked with a label
q, called a qeq constraint.

• DU is a relation over HU ∪ LU . Each (u , v) ∈ DU is called a dominance constraint
and, in graphical notation, is represented as a directed dotted edge from node u to
node v. The dominance constraints can go from any node to any node, except from
holes to holes, therefore, DU ⊂ (LU ∪ HU ) × (LU ∪ HU ) − HU × HU . Dominance
(as opposed to qeq) is the default constraint type, therefore, the label d is dropped
for the sake of brevity.

• TU is a dummy ET of depth 1, with l0 ∈ LU , h0 ∈ HU , and e0 � (l0 , h0) ∈ EU being
its root, its single hole, and its single edge. It is defined to be the designated root
of every scoping, therefore, TU , l0, and h0 are called top ET, top label, and top
hole respectively.7 The set of all labels except l0 is denoted by L̃U , that is, L̃U �de f

LU − {l0}.
• Lq

U ⊂ L̃U is the set of floating scopal nodes. The ETs rooted at these nodes are
called floating scopal ETs. Every scopal ET other than the floating scopal ETs

6 Therefore, PU is a partial order over HU that defines, for each ET ε, a total order over the set of holes of ε.
7 Most underspecification frameworks, such as MRS or Hole Semantics, implement such an ET, which does

not correspond to an actual predication of the sentence, but serves as the highest level predication of the
sentence, encompassing the overall semantics. For example, in a typed feature structure formalism like
MRS, this ET contains attribute-value pairs, encoding some global semantic properties of the sentence,
such as the speech act, which is not particular to any individual elementary predication.

8



Manshadi, Gildea, Allen Semantic Coherence for Underspecified Semantics

l2l0 l4

l3 l5

h1 h2h0 h3 h4

l1

(a) Graphical depiction of a fusion function

l0

l3( ),h1

l5( ),h3 l1( ),h4

l4( ),h2

l2( ),h0

(b) TU, f for fusion f on left

Figure 4: Building a solution for a UG

is called a fixed-scopal ET. Floating scopal ETs are required to have a hole as
the right-most child of the root. This hole and its connecting edge (sometimes
distinguished with a label “b” for emphasis) are called the body hole and the
body edge respectively. In practice, floating scopal ETs correspond to (generalized)
quantifiers. Therefore, we use the terms floating-scopal and (generalized) quantifier
interchangeably. Quite often, we do not explicitly define Lq

U , because (generalized)
quantifiers can be recognized from the context. Since quantifiers have one restric-
tion and one body preposition, throughout this paper, we only consider floating
scopals with two holes.

Scopings of a UG are built by fusing labels to holes. We call this a fusion.8

Definition 3 (Fusion)
Given a UG U, a (total) fusion f is a total function from L̃U to HU . A partial fusion f is
a partial function from L̃U to HU .

Figure 4a demonstrates a fusion for the UG U in Figure 3b. Given a fusion f , the
corresponding scoping is denoted by TU, f . We construct the graph of TU, f from U by
removing all the constraint edges and fusing l to f (l) for each l ∈ L̃U , as illustrated in
Figure 4b. Intuitively, we expect scopings to form a tree. Theorem 1 states the necessary
and sufficient condition for TU, f to be a tree.

Theorem 1
Given a UG U and a total fusion f of U, TU, f is a rooted tree, if and only if TU, f is acyclic.

Proof. The “only if” direction is trivial. The “if” direction holds for the following reason.
Since f is a function, every label is fused into at most one hole, hence, has at most one
parent in TU, f . If f is total, then every label except l0 is fused into exactly one hole, hence,

8 We intentionally avoid using the existing term plugging from Hole Semantics, because plugging is defined
as a function from holes to labels (Bos 1996), while, in order to be able to fuse multiple labels to a single
hole, we define fusion in the opposite direction. This gives UG the power to model MRS’s operation of
forming conjunctions by equating labels.
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has exactly one parent in TU, f . Therefore, with U being finite, if we start at any arbitrary
node and follow the sequence of parents, we have to end up at l0. This means TU, f is a
tree rooted at l0 �

Although fusion is defined as any function from L̃ to H, we are only interested in
fusions that result in valid readings, that is, satisfy the constraints.

Definition 4 (Constraint Satisfaction and Admissibility)
Fusion f (similarly TU, f ) satisfies

• a qeq constraint q � (h , l), if h � f (l), or the directed path from h to l in TU, f
9

consists of only the body edges of quantifier ETs (called a b-path);
• a dominance constraint d � (u , v), if u dominates v in TU, f .

Fusion f of U is admissible if TU, f is acyclic and satisfies all the constraints in U.

So far we have informally used the term scoping to refer to a fully scope-
disambiguated UR. Below, we formally define this notion and call it a solution.

Definition 5 (Solution)
T is called a solution of a UG U iff T � TU, f for some admissible, total, and onto10 fusion
f of U. In informal contexts, solutions are sometimes referred to as readings. U is called
satisfiable if U has at least one solution.

In the above definition, admissibility ensures the satisfaction of all constraints,
totality ensures that every label (except the top) is fused into some hole, and onto-ness
ensures that no hole is left unfused. Following Lemma 1, Definition 5 guarantees that
every solution is a tree structure. The fusion in Figure 4a is admissible, total, and onto,
and hence, Figure 4b is a solution.

The following definition will later be used for the comparison of our framework
with other frameworks.

Definition 6 (Merging-free solutions)
The solution TU, f is called a merging-free, if f is a one-to-one function. Otherwise, it is
called a merging solution.

The following lemma directly follows from the definition.

Lemma 1
Given a UG U and a solution T of U, T is merging-free if and only if |L̃U | � |HU |.

Corollary 1
Either all the solutions of a UG are merging-free or none are.

In practice, merging solutions only happen when the underspecified representation
is incomplete, that is, when there are ETs that are floating around and, in order to build

9 Note that each node u of a solution T (except the root) corresponds to exactly one hole hi and at least one
label l jof U with f (l j ) � hi . Hence, when we say node hi , node l j , or node (l j , hi ) of T , in all three cases,
we are referring to the same node u of T .

10 A function f is onto if its image equals to its codomain.

10
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Every(x)

Child(x)
Run(x)

A(y)

Politician(y)

Of(x, y)

And

(a) Hole Semantics UR with stacked ET

Cat(y)

A(y)

Dog(x)

Every(x)

Chase(x, y)

q q

Bark(x)

And

(b) MRS structure for the sentence in Ex. 2

Figure 5: Examples of stacked ETs

a solution, they must be fixed up with other ETs to make conjunctions. In Section 3, we
prove that all solutions of a complete UG are merging-free.

2.2 Variations of UG

The definition of UG requires each ET to be of depth at most one and, when the depth
is exactly one, all the leaf nodes to be hole nodes. This definition perfectly imitates the
notion of elementary predications in MRS, but some frameworks, such as Hole Seman-
tics, use the concept of (labeled) formula, which does not precisely fit into this definition.
Figure 5a shows a graph, roughly corresponding to the UR that Hole Semantics assigns
to the sentence Every child of a politician runs. As seen in this figure, we have to deal
with ETs with depth more than one and leaves which are not necessarily a hole. Even
in MRS, ETs can be stacked to form trees of depth more than one. Figure 5b shows the
MRS structure of the following sentence in graphical notation, obtained from English
Resource Grammar.11

2. Every dog barks and chases a cat.

Finally, a partially scoped UG U, even if all the ETs of U are standard, will inevitably
have these non-standard tree structures. Therefore for the sake of the robustness of our
definitions, we should be able to model these structures. Fortunately, we will be able to
do this without too much effort. This is because a stacked ET can be converted into a
standard ET without affecting the number of solutions of the UG. This conversion has
been demonstrated in Figure 6a. Below we formally express this intuition.

Definition 7 (Stacked ET)
A stacked ET is an ordered tree of arbitrary depth whose interior nodes are all label
nodes, and whose leaves can be holes and/or labels.

Definition 8 (UG.1: variation 1 of UG)
A UG.1 is a 9-tuple U̇ � 〈LU̇ , L

′

U̇
,HU̇ , EU̇ ,QU̇ ,DU̇ , TU̇ , L

q
U̇
, PU̇〉 (L′

U̇
is the only additional

element with respect to standard UG), where FU̇ � 〈LU̇ , L
′

U̇
,HU̇ , EU̇ , PU̇〉 is a forest of

11 http://erg.delph-in.net/
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qq qq

(a) Converting stacked ET into standard ET

q
h1 h2

l2

q
h1 h2

l2

(b) Hole-to-hole into hole-to-label

Figure 6: Conversion to original UG

stacked ETs with L′
U̇

being the set of non-root label nodes. Everything else in Definition 2
remains the same.12

The definition of fusion, admissibility, and solution for UG.1 will be exactly the same
as the definition of those concepts for standard UG, as stated in Definitions 3, 4, and 5.

Theorem 2
Every UG.1 can be converted into a UG, while the solutions remain in a one-to-one
correspondence.

Proof. Consider a UG.1 U̇ with its set of solutions {Ṫ1 , Ṫ2 , . . . ṪK }. We build the UG U by
collapsing the set L′

U̇ ,E
of non-root label nodes of each stacked ET E into its root lE , as

demonstrated in Figure 6a. Similarly, we convert each tree Ṫj into Tj by collapsing the
nodes L′

U̇ ,E
of T into lE for each stacked ET E. It is easy to see that {T1 ,T2 , . . . ,TK } is the

set of solutions of U. �

In defining UG, we ruled out dominance constraints that go from holes to holes.
This does not restrict the power of UG, because hole-to-hole dominance constraints can
be replaced with hole-to-label constraints, while the set of solutions remains the same,
as demonstrated in Figure 6b. In the following, we will state this idea formally.

Definition 9 (UG.2: variation 2 of UG)
A UG.2 is a 8-tuple Ü, in which the constraints in DÜ can go from any node to any node.
Everything else in Definition 2 remains the same.

Theorem 3
Every UG.2 can be transformed into a UG, while the set of solutions remains the same.

Proof. Consider the UG.2 Ü and a constraint d̈ � (h1 , h2) in Ü (Figure 6b), and let l2 be
the parent of h2. We build U by replacing d̈ in Ü with d � (h1 , l2), as demonstrated in
Figure 6b. Ü and U have the same set of solutions. This is because if T is a solution of Ü,
then h1 dominates h2 in T . Since l2 immediately dominates h2 in T , h1 dominates l2 as

12 Note that stacked floating-scopal ETs, exactly the same as standard ones, are required to have a hole as
the right-most child of the root.
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well, hence, T satisfies d. The other direction is trivial. This procedure can be repeated
until all hole-to-hole constraints are transformed. �

Above, we defined two variations of UG that relaxed some restrictions of the orig-
inal definition, but we showed that this did not increase their power. In the following,
we define some other variations, imposing some restrictions on UG. These restrictions,
however, limit the power of UG. The main motivation behind defining these variations
is to be able to compare UG with other frameworks (Section 7).

Definition 10 (Normality)
A UG is said to be normal iff all its dominance constraints go from holes to labels, that
is, DU ⊂ HU × LU .

Therefore normality rules out constraints emanating from a label node.

Definition 11 (Weak Normality)
A UG is said to be weakly normal, iff for every dominance constraint d � (u , v), v is a
label node.

Note that weak normality only rules out label-to-hole constraints.

3. Completeness

In this section, we define the notion of completeness. Intuitively, completeness means
that we have the minimum connectivity in terms of constraints that is required by the
syntax/semantic interface for a complete sentence. Here, we formally define the notion
of completeness and prove some properties.

Definition 12 (Canonical Form)
A UG is in canonical form if

• The body hole of floating scopals is not involved in any qeq edge. Every other hole
has exactly one outgoing qeq edge.

• Floating scopal nodes, as well as the top label, are not involved in any qeq
constraints. Every other label has exactly one incoming qeq edge.

Before we continue, let’s define the notion of spanning sub/super-UG. Intuitively,
spanning sub/super-UG of G has the same ETs as the G, and only its set of constraints
differs. The motivation is to define a type of sub/super relation under which complete-
ness is closed (a regular super-UG of a complete UG is not necessarily complete, because
it may have one or more additional ETs that violate completeness conditions).

Definition 13 (spanning sub-UG)
U′ is a spanning sub-UG of U, if DU′ ⊂ DU and QU′ ⊂ QU . Every other element of the
tuple U′ is identical to the corresponding item in the tuple U. In particular, notice that
the set of ETs is the same in both U and U′, hence, the term spanning. U′ is a spanning
super-UG of U, if U is a spanning sub-UG of U′. Uq is defined as the spanning sub-UG
of U with no dominance edges, that is, DUq �∅ and QUq �QU .

Theorem 4 shows that CF-UGs, ignoring dominance edges, are in the form of
Figure 7.
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Figure 7: Uq of a generic CF-UG U.

Theorem 4
If U is in canonical form, then Uq is a forest of exactly |Lq

U | + 1 trees, rooted at Lq
U ∪ {l0}.

RU �def Lq
U ∪ {l0} are called the roots of U.

Proof. According to the second condition in Definition 12, the n quantifier nodes and l0

are the only nodes with no incoming edge, therefore, they form all and the only n + 1
roots of the graph of a CF-UG. Every other label or hole node must be dominated by
one of those n + 1 roots. According to the first condition of Definition 12, the body holes
of quantifiers have no outgoing edge, therefore, every other node must be either under
the restriction of a quantifier or under h0. �

Since qeq constraints were introduced by MRS, in Section 7.2, we show that, in
practice, all MRS structures generated by MRS’s proposed syntax/semantic interface
are in canonical form. Canonical form defines the smallest complete UG over a set of
ETs:

Definition 14 (Completeness)
A UG is complete if it has a spanning sub-UG in canonical form.

The following definitions become handy throughout the rest of this paper.

Definition 15 (Floating scopal trees/restriction trees/heart tree)
We refer to T1 , T2 , . . . , Tn , the trees in Uq rooted at Lq

U , as floating scopal trees (a. k. a.
quantifier trees); T r

1 , T
r
2 , . . . , T

r
n , the trees rooted at the restriction hole of the floating

scopals, as the restriction trees; and T0, the tree rooted at l0, as the heart tree.

3.1 Equivalence of Qeq and Dominance Relations

In this section, we show that, for every complete UG, qeq and dominance relations
are equivalent. That is, as stated by Theorem 5, if qeq constraints are replaced with
dominance relations, the solutions of the UG remain the same. This fact explains why
frameworks such as Dominance Graph are able to model scope underspecification even

14
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(a) A UG with no quantifier
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⌧ b
n

T̂ 0

(b) Inductive proof

Figure 8: Proof of Lemma 2 and Theorem 5

though they only use dominance constraints, and helps to bridge the gap between the
two sets of formalisms. We first prove this for the case when there is no quantifier in U.

Lemma 2
Let U be a complete UG with no quantifier. Let Û be the UG obtained from U by
treating all qeq edges as dominance constraints, that is, DÛ � DU ∪QU and QÛ � ∅.
Every solution of U is a solution of Û and vice versa.

Proof. The first direction is trivial since qeq is a special case of dominance. In order to
prove the other direction, consider the leaf label nodes of Û (Figure 8a). In any solution
of Û, these label nodes have to be fused to the hole from which they have received a
dominance constraint. Let’s fuse these labels, and then, following Theorem 2, collapse
the EPs with the fused hole(s) into a single node. We can now apply the same argument
to the newly leaf nodes and repeat this until we reach the top (remember that UGs
are finite). This shows that every hole h of Û has to be fused with the label l where
(h , l) ∈ QU . Since h is fused directly with l, following the definition of qeq, the constraint
between h and l is satisfied, even if it is treated as qeq. This means that T̂ is also a
solution of U. �

Theorem 5
Let U be a complete UG, and Û be the UG obtained from U by treating all qeq edges
as dominance constraints, that is, DÛ � DU ∪QU and QÛ � ∅. Every solution of Û is a
solution of U and vice versa.

Proof. Since qeq always implies dominance, it is trivial that every solution of U is a
solution of Û. Using the lemma and induction on n, the number of quantifiers, we prove
the other direction, that is, if T̂ is a solution of Û, then it is also a solution of U.

Let n � 0. Since there is no quantifier in T̂ , according to Lemma 2, every hole h is
fused with l where (h , l) ∈ QU , therefore, every qeq constraint is satisfied.

Now let n > 0 and U be an arbitrary UG with n quantifiers (see Figure 7), and T̂ be
a solution of Û. Consider the quantifier node lq with the longest distance from the root
of T̂ (breaking ties arbitrarily), meaning that lq does not outscope any other quantifier
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node in T̂ . Without loss of generality, assume that lq � lq
n and use τ̂n , τ̂r

n , and τ̂b
n to refer

to the trees rooted at lq
n and the left and the right child of lq

n in T̂ respectively, as shown
in Figure 8b. According to Lemma 2:

(i) All qeq constraints in the quantifier tree T r
n are satisfied in T̂ .

Now let’s remove the quantifier tree rooted at lq
n from U and Û and call the resulting

UGs U′ and Û′ respectively. Accordingly, detach the tree τ̂n from T̂ , replace it with τ̂b
n

and call the new tree T̂ ′, as demonstrated in Figure 8b. T̂ ′ is a solution of Û′, and hence
(based on the induction assumption) is a solution of U′. Therefore, all qeq constraints in
U′ are satisfied in T̂ ′, which also proves:

(ii) All qeq constraints in U′ are satisfied in T̂ .
This is because if two nodes are connected with a b-path in T̂ ′, they are also connected
with a b-path (possibly including an additional b-edge (lq

n , w)) in T̂ .
From (i) and (ii) every (h , l) ∈ QU is satisfied in T̂ , hence, T̂ is a solution of U. �

The next section introduces the heart of our framework, the concept of semantic
coherence.

4. Coherence

In this section, we introduce the notion of sentence-level semantic coherence based on
a simple principle: that every variable introduced in the domain of discourse must
contribute to the overall meaning of the sentence. We formally characterize this quality
as a property of a UG, and refer to sentences whose interpretation is a coherent UG as
coherent sentences. We posit as a general principle of language the requirement that
sentences should be coherent. This general principle goes back at least as far as Frege
(1923), and is widely accepted, although, since it is not a mathematical statement, it
cannot be proved. Our definition of coherent UG, on the other hand, is mathematically
precise, and can be used to prove that all coherent sentences are tractable, as we will see
in Section 5.

4.1 Mathematical characterization of semantic coherence

A variable introduced in the domain of discourse is called relevant if it contributes
to the overall meaning of a sentence. This contribution may happen in two different
ways, either by directly participating in the main predication13 or by participating in the
definition of another relevant variable. If variable x participates in the definition of y,
we say that y is (semantically) dependent on x. To summarize, a variable x is relevant if
either the heart or another relevant variable depends on it. For example, in the sentence
Every child of a politician runs, the variable x, quantified by Every, is relevant, because it
is an argument of the main predication, and the variable y, quantified by A, is relevant,
because x depends on it. Following the above intuitions and given that dependencies
in a UG are encoded in the binding (i.e., dominance) constraints, we formally define
relevance as follows.

13 Here, by participation, we mean filling an argument position.
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Definition 16 (Dependence/Relevance)
Consider a complete U,14 with the top hole l0 and lq

i , l
q
j ∈ Lq

U :

• lq
j (l0, for j � 0) depends on lq

i , if (lq
i , u) ∈ DU for some u in a restriction tree T r

j .

• lq
i is said to be relevant, if
(i) l0 depends on lq

i ; or
(ii) lq

j depends on lq
i , and lq

j is relevant.

Definition 17 (Coherence)
A complete UG U is called coherent, if every lq

i in U is relevant.

Trivially, relevance is closed under the increment of constraint edges, resulting in
the following lemma.

Lemma 3
Coherence is closed under the increment of (dominance) constraint edges.

In Manshadi, Allen, and Swift (2009), we defined the notion of semantic de-
pendency graph and a property of such graphs called heart-connectedness. Heart-
connectedness is nothing but a notational variant of coherence. In this paper, we shall
use the notion of semantic dependency graph to compare our framework with Hole
Semantics (Section 7.3). Therefore, in the rest of this section, we formally define this
notion and prove that the two formulations of coherence are in fact equivalent.

Definition 18 (Semantic Dependency Graph)
Given a CF-UG U, we define semantic dependency graph or SDG of U as SDGU �

(V, E), where

• V � {0, 1, . . . , n}, where n � |Lq
U |.

• (i , j) ∈ E if and only if i , j, i > 0, and (lq
i , u) ∈ DU , where u is a node in T r

j .

Intuitively, SDGU is obtained by taking the CF-UG U and collapsing its heart and
quantifier trees, that is each of the trees T0 , . . . , Tn , into a single node, resulting in a
directed graph G of n + 1 nodes. Figure 9 demonstrates this transformation for two real
life CF-UGs. The dependencies in U are simply encoded in the edges of G. In other
words, if i is the node of G corresponding to Ti , an edge from i to j in G means that lq

j

(l0, if j � 0) depends on lq
i in U. From Definition 18, SDGs are simple graphs, that is, i)

they have no self-loops, and ii) for every i , j there is at most one (directed) edge from
i to j. Node 0, which corresponds to the heart of the CF-UG, hence called the heart of
SDG, has no outgoing edge, therefore, the heart is always a sink node.

Definition 19 (Heart-connectedness)
A SDG G is called heart-connected if every node in G reaches the heart by a directed
path. A CF-UG U is called heart-connected, if SDGU is heart-connected.

Theorem 6
A CF-UG U is coherent if and only if it is heart-connected.

14 Hence, dependence and relevance is defined only if U is complete.
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Figure 9: Constructing semantic dependency graph

The theorem directly follows from the following lemma.

Lemma 4
The node lq

i is relevant in a CF-UG U, if and only if i reaches the heart in SDGU .

Proof. Following Definition 16, the set R of all the relevant nodes in U can be constructed
as follows:

• R0 � {l0}

• R �
⋃n

m�0 Rm , where Rm (m > 0) is the set of nodes that R(m−1) depends on.15

Using induction on m, it is easy to see that for every node lq
i ∈ R, node i reaches the

heart in SDGU using a directed path of length m. �

All examples of UG given so far are acyclic. This may suggest that the SDG of
every sentence is acyclic, but this is not the case. As a counterexample, consider the UG
in Figure 10, motivated by an example from Hobbs and Shieber (1987). This example
shows that coherent UGs form a very broad class of UGs, subsuming other previously
proposed classes, as we will see in Section 7. Notwithstanding their broad applicability,
coherent UGs can be tractably processed, as we will see in the next section.

5. Tractability

An algorithmic problem arising within the context of constraint-based underspecifica-
tion frameworks is to determine whether a given UG has a solution or not. This is called
the satisfiability problem or in short SAT. This becomes important when new con-
straints are incrementally added at the deeper levels of language processing. Another

15 We require that Rm ⊂ Lq
U −
⋃(m−1)

j�0 R j .

18



Manshadi, Gildea, Allen Semantic Coherence for Underspecified Semantics

(a)

2  3  0  1  

(b)

Figure 10: UG and SDG for Somebody hates every politician whom I know a child of

closely related problem commonly studied within the same context is to enumerate all
possible solutions, the enumeration problem, or in short ENUM. All the constraint-
based underspecification frameworks that we have built UG upon (Hole Semantics,
Minimal Recursion Semantics, and Dominance Graph) are intractable in their general
form, meaning that their satisfiability problem is NP-complete. Over the last decade,
there has been a series of work on finding a subset of these frameworks that can be
solved efficiently. The previously found tractable subset is inadequate in that it does not
cover all natural language sentences (see Definition 29 in Section 7.1 for details), leaving
open the question whether there is a tractable subset with sufficient expressivity. In this
section, we answer this question by introducing the largest tractable subset found so
far and prove that every coherent sentence, under our linguistically justified notion of
semantic coherence, belongs to this subset.

5.1 Dominance Graph

In the previous sections, we showed that for coherent (in fact, complete) UGs, qeq and
dominance constraints are equivalent. A UG with only dominance constraints is called
a dominance graph, or in short DG, which is the core concept of the Dominance Graphs
framework. Most of the work on finding a tractable subset of URs has previously been
done within the realm of this framework. Since coherent UGs are a subset of dominance
graphs, our work is built on top of those previous pieces of work, hence, in this section
we only work within this framework.

Remember from Definition 2 that a UG is an 8-tuple 〈L,H, E,Q ,D , T, Lq , P〉. With
no qeq constraints, a dominance graph has no Q component. As a result, there is no
need to distinguish floating scopal (i.e. quantifier) ETs, and hence, there is also no Lq

component, which in turn, it means that there is no designated top ET in dominance
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graphs. Therefore, all labels can potentially form the root of a solution. Below we give a
formal definition of dominance graph.

Definition 20 (Dominance Graph)
A Dominance Graph or DG is a 5-tuple G � 〈LU ,HU , EU ,DU , PU〉 where all the com-
ponents are as defined in Definition 2. Since there is no designated top node, analogous
to L̃U , we define L̃l

G � LU − {l} for every label node l. All the variations of UG defined
in Section 2.2 are defined correspondingly for DG.

It should be noted that in order to build a fusion, we have to first pick an arbitrary
label l, and then, construct f as a function from L̃l

G to H. The node l will be a root of
TU, f (the only root, if f is total). Following this definition, every UG can be converted
into a DG by dropping the top ET and treating all qeq constraints as dominance.

Definition 21 (DG Counterpart)
Given a UG U, GU , the DG counterpart of U, is obtained by removing the top
ET from U and converting all qeq edges into dominance. More precisely, GU �

〈HG , LG , EG ,DG , PG〉 where HG � HU−{h0}, LG � LU−{l0}, EG � EU−{(l0 , h0)},DG �

DU ∪QU−{(u , v) | {u , v} ∩ {l0 , h0} , ∅}, PG � PU .

The following lemma directly results from Theorem 5.

Lemma 5
There is a one-to-one relationship between the solutions of a complete UG U and those
of its DG counterpart GU .

In order to prove the tractability of coherent UG, we define a mathematically (more)
convenient notion, a subset of DG, called hypernet. Hypernet includes all coherent UGs,
and we treat it as the mathematical characterization of coherence within the context of
DGs. The definition of hypernet is motivated by the definition of (weak) nets (Niehren
and Thater 2003), a previously found tractable subset of DG, and it translates our
semantically motivated concept of coherence into (a slightly more powerful version of)
the already popular structures of DG. Built on top of the fairly complex notion of nets
together with the incorporation of heart-connectedness (as the mathematical characteri-
zation of coherence), there should be no surprise that the definition of hypernet is quite
complex. For this reason, instead of presenting the complete definition at once, we step
by step justify our way through the full definition of hypernet.

Remember that our ultimate goal is to efficiently solve (a subset of) DGs. Here is a
recursive approach. Pick an ET for the root of the solution and remove it from the DG.
Recursively solve each of the remaining smaller DGs and plug the root of the resulting
trees into the holes of that ET. Figure 12 demonstrates this procedure and Table 1 lists
the steps. In order for this approach to work, each of the resulting subgraphs should be
a valid DG. Let’s make this intuition formal.

Definition 22 (sub-DG)
A sub-DG G′ of G is a DG whose set of ETs and constraints is a subset of ETs and
constraints in G respectively. A spanning sub-DG of G is a sub-DG which includes all
the ETs in G. An induced sub-DG G′ of G (by a subset F of ETs in G) is a sub-DG of G
in which (the set of ETs is F and) a constraint of G is present in G′, if and only if both its
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Figure 11: DG counterpart of the UG for Every child of a politician runs and a sub-DG of it

1: procedure SOLVE(DG G)
2: If G contains a single (label) node, return that node as a single-node tree T .
3: Pick an ET E satisfying all the conditions to be the root of a solution, otherwise,

fail.
4: Let Gr ,Gb be the two DGs resulted from the removal of E (Figure 12(b)).
5: Let T r �SOLVE(Gr), T b �SOLVE(Gb)
6: Build T by plugging T r into hr and T b into hb .
7: return T .

Table 1: Recursive procedure followed in Figure 12

ends are present in G′. Given a solution T of G and a subtree16
T
′ of T , a sub-DG G′

induced by T ′ is the sub-DG induced by the set of ETs of T ′.

Figure 11 gives an example of the above concepts. The following property, which di-
rectly follows from the definition, will help in proving the completeness of the recursive
method (Section 5.3).

Lemma 6
Consider a DG G, a solution T of G, and a subtree T ′ of T . If G′ is the sub-DG of G
induced by T ′, then T ′ is a solution of G′.

The notion of sub-DG helps in solving DGs recursively, as shown in Figure 12.
Depending on whether at step 3, among all nodes satisfying the conditions, we pick a
node arbitrarily or iteratively determines whether the algorithm will be a SAT algorithm
(generating an arbitrary solution on success) or an iterative ENUM algorithm (every
branch of which builds one solution). Note that, while the total size of the output for
ENUM may be exponential, we are interested in bounding its running per solution
produced.

In the rest of this section, we form this intuition into a detailed algorithm and define
hypernet as a subset of DG for which the algorithm is both sound and complete. Since

16 Throughout this paper, by subtree of a tree T, we mean a node and all of its decedents in T.
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Figure 12: Recursive construction of solutions

label-to-hole constraints add another level of complexity, we first ignore those edges and
only consider weakly normal DGs. We then adopt the algorithm by Koller and Thater
(2007) to take care of label-to-hole constraints.

5.2 Hypernets

A look at the steps in Table 1 reveals that the heart of this procedure is to find the roots
of the solutions. The rest is simply recursing on the smaller DGs.

Definition 23 (Freeness)
A label l is said to be free, if it is the root of some solution T of G. An ET E is called free
if its root is free.

Below, we use some graph theory terminology which we need to define. Remember
that two nodes of a digraph are weakly connected, if there is an undirected path
between the two. Since weak connectedness is an equivalence relation, it partitions the
graph into equivalence classes each of which is called a weakly connected component
or WCC.

Theorem 7 states some necessary conditions for freeness, but first, we state a lemma
which is the key to the proof of this theorem.

Lemma 7
Given a weakly normal DG G and a solution T of G, if nodes u and v in G are weakly
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p1 p2

Figure 13: Illustration of hyper-normal path

connected using an undirected path p, there exists a node w on p such that w dominates
both u and v in T .

This lemma is analogous to Lemma 3 in Bodirsky et al. (2004). A detailed proof of
the lemma can be found there. We are now prepared to prove the theorem.

Theorem 7
Let G be a weakly normal DG and E be an ET with m holes rooted at label l. l can be a
free label, only if

T7a. l has no incoming (constraint) edge; and
T7b. Every distinct hole of E is in a distinct WCC in G− l; and
T7c. G−E consists of at least m WCCs.

Proof. Let T be a solution rooted at l, h a hole of E, and Gh the WCC of G − l containing
h.

T7a. This condition is trivial.
T7b. Following Lemma 7, every node in Gh must be in the scope of h (because for any

arbitrary node u in Gh , there is a node w dominating both h and u in T , but the
only possible w is w � h). Since T is a tree, this proves that every two holes of E
belong to two distinct WCCs.

T7c. This follows from T7b and the fact that no hole may be left unfused. �

We now look for a subset of DG, for which the conditions in T7a through T7c are
not only necessary, but also sufficient. In defining this subset, the following notion from
Althaus et al. (2003) plays an important role.

Definition 24 (Hyper-Normal Connectedness)
Given a DG G, a hyper-normal path is an undirected path with no two consecutive
constraint edges emanating from the same node. Node u is hyper-normally connected
to node v, if there is at least one hyper-normal path between the two. G is called hyper-
normally connected, if every pair of nodes in G are hyper-normally connected.

For example, in Figure 13, p2 is a hyper-normal path, but p1 is not. In spite of that,
the whole graph is hyper-normally connected, because even though p1 is not a hyper-
normal path, there is another hyper-normal path connecting the same two nodes. The
following notion from Thater (2007) will also come in handy.

23



Computational Linguistics Volume 1, Number 1

Definition 25 (Openness)
A label or hole node u is called an open node, if it has no outgoing constraint edge.

For example, l in Figure 14a is an open label node and h2 in Figure 14b is an open
hole.

Definition 26 (Hypernet)
A DG G is called a hypernet if it has a weakly normal spanning sub-DG G′ in which for
every elementary tree E rooted at l:

D26a. E has at most one open node.
D26b. If l1 and l2 are two dominance children of a hole h of E, then l1 and l2 are hyper-

normally connected in G′−h.
D26c. If E has no open hole in G′:

• Each dominance child of l is hyper-normally connected to a hole of E in G′− l.
Otherwise (i.e., when E has an open hole):

• All dominance children of l, not connected to a hole of E in G′− l, are hyper-
normally connected together.

Above, by dominance children of u, we mean nodes v where (u , v) is a dominance
edge. Notice that by enforcing the Conditions D26a through D26c on a spanning sub-
DG of G rather than G itself, we allow hypernet to be closed under the increment of
constraint edges. This is in line with the definition of coherence, which imposes only
a minimum connectivity, hence, closed under the increment of dominance constraint
edges.17 Following condition (D26a), a weakly normal hypernet may have three types
of scopal ET, characterized in the following definition.

Definition 27
Given a DG G and an ET E, E is called

D27a. Open-root: iff only the root of E is open in G
D27b. Open-hole: iff only a hole of E is open in G
D27c. Closed: iff E has no open node in G

Figures 14(a-c) shows the three types of E respectively. Definition 26 guarantees the
following property.

Theorem 8
Let G be a weakly normal hypernet and E be an ET of G with m holes and rooted at l. If
l satisfies the conditions in Theorem 7, G−E consists of exactly m WCCs, each of which
is a (weakly normal) hypernet.

Proof. Following conditions (D26b) and (D26c), G−E consists of at most m WCCs (since
the children of each node of E are hypernormally connected, they stay connected in
G−E). Based on condition (T7c), G−E has at least m WCCs. Therefore, G−E has exactly
m WCCs. To prove that each of these WCCs is a hypernet, we show that, for any two
nodes u and v not belonging to E, if u and v are hyper-normally connected in G, they

17 Koller and Thater (2007) call this property downward connectedness.
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Figure 14: Three types of elementary trees: (a) open-root (b) open-hole (c) closed

are also hyper-normally connected in G−E. We do so by proving that there is no hyper-
normal path between u and v in G that visits some node of E.

Suppose that E is an open-hole ET rooted at l (Figure 14(b); a similar line of
reasoning can be used for open-root and closed ETs). Assume to the contrary that there
is a hyper-normal path p between u and v that visits some node of E. Because an ET
consists of a single label node l with some number of holes as children, one of the
following three cases holds:

i. p visits exactly one node of E.
ii. p visits (at least) two holes of E.

iii. p visits l and exactly one hole of E.

All three cases result in a contradiction: Case (i) means that p is not hyper-normal;
Case (ii) shows that E violates condition (T7b); and Case (iii) proves that G is not a
hypernet, because E violates condition (D26c). �

The following corollary will be helpful in the subsequent subsections when stating
the relation between heart-connectedness and hyper-connectedness.

Corollary 2
Let G be a weakly normal hypernet and T be a solution of G. For any subtree T ′ of T ,
the sub-DG of G induced by T ′ is a (weakly normal) hypernet.

We are now ready to prove the main result of this subsection.

Theorem 9
If G is a satisfiable weakly normal hypernet, the necessary conditions of freeness (The-
orem 7) are also sufficient.

Proof. Let E rooted at l be an ET satisfying the freeness conditions in Theorem 7. Among
all the solutions of G, we pick a solution T in which the depth d of l is minimal. Using
proof by contradiction, we show that d � 0, hence, l is the root of T . Assume to the
contrary that d > 0, meaning that there is some node l′ outscoping l (Figure 15(a)).
Without loss of generality assume that E has only exactly two holes (Left and Right).
We show that at least one of the trees in Figures 15(b,c) is a solution of G, which means
G has a solution in which, the depth of l is smaller than d; a contradiction!
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Figure 15: Proof of Theorem 9

1: procedure SOLVE(Weakly normal hypernet G)
2: If G contains a single (label) node, return the single-node tree T � ({l}, {}).
3: Pick an ET E satisfying the freeness conditions in Theorem 7, otherwise, fail.
. For SAT, pick arbitrarily.
. For ENUM, pick iteratively.

4: Let l be the root and m the number of holes of E.
5: Let G1 ,G2 , . . . ,Gm be WCCs of G−E.
6: Let Ti �SOLVE(Gi) for i � 1, . . . ,m.
7: Let hi be the hole of E connected to Gi in G− l, for i � 1, . . . ,m.

If E has an open hole hk , let Gk be the WCC not connected to any hole of E.
8: Build T by plugging the root of Ti into hi , for i � 1, . . . ,m.
9: return T .

Table 2: SAT and ENUM algorithms for weakly normal hypernets

Figure 15(d) shows G with the two WCCs of G − l called GL and GR. Note that all
the nodes in T2 and T3 have to be in GL and GR respectively (in the figure, G2 and G3

show subgraphs of G induced by T2 and T3). In order to show that Tb or Tc is a solution,
we assume that Tb is not a solution and prove that Tc is. Since Tb is not a solution, there
are some unsatisfied constraints in Tb . However, there aren’t many constraints that are
satisfied in T but not in Tb (for example, any constraints between the two nodes in T1,
in T2, or in T3 are also satisfied in Tb). In fact, an unsatisfied constraint can only be in the
form of (l′, l2) or (h′, l2) with h′ being the right hole of l′ (the hole to which l is fused in
T ), and l2 being a label in T2 (it is true that a constraint from l′ to l is not satisfied in Tb

either, but such a constraint does not exist as l is a free node). Since l2 is in GL and there
is a constraint between l′ or h′ and l2, l′ belongs to GL as well.

Similar to Tb , in order for Tc not to be a solution, there must be a constraint (l′, v3)
or (h′, v3) violated, where v3 is a node in T3, and hence, in GR. But l′ and h′ are in GL,
so such constraints cannot exist. This means there cannot be any unsatisfied constraint
in Tc . This proves that Tc is a solution in which l has a lower depth. �

5.3 SAT and ENUM algorithms

Following Theorems 8 and 9, Table 2 gives the algorithms for SAT and ENUM.
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Theorem 10
ENUM and SAT are correct for all weakly normal hypernets.

Proof. Using Theorem 8 and induction on the depth of recursion, it is easy to see that if
ENUM or SAT return a tree T , T is a solution of G. This proves that ENUM and SAT
are sound.

An inductive proof is used to prove the completeness as well. By completeness,
we mean that any solution of G is arbitrarily/iteratively generated by SAT/ENUM. Let
T be an arbitrary solution of G rooted at the ET E, and T1 , . . . ,Tn be the subtrees of
T under the holes h1 , . . . , hn of E. Following Lemma 6 (Section 5.1), in order for T
to be a solution of G, the subtrees T1 , . . . ,Tn must be the solutions to G1 , . . . ,Gn , the
WCCs of G−E connected to h1 , . . . , hn in G− l respectively (if E has an open hole hk ,
Gk will be the WCC not connected to any hole of E in G− l). Based on the induction
assumption, T1 , . . . ,Tn are arbitrarily/iteratively generated by SOLVE(). Therefore, T is
also arbitrarily/iteratively generated. �

The running time of the algorithms is proportional to the number of recursive
calls to SOLVE(), that is, O(|L |). At each call, it takes O(|G |) to find the set of free ETs
(Bodirsky et al. 2004) and also to compute G−E for some free ET E, where |G | �de f

|L | + |H | + |E | + |D |. Therefore, SAT (as well as each branch of ENUM) runs in O(|L | |G |)
time, meaning that the worst-case time-complexity of SAT (and each branch of ENUM)
is quadratic in the size of G.

The above result was for weakly normal hypernets, that is, when there are no label-
to-hole constraints. Kallmeyer and Romero (2008) demonstrate cases where having such
constraints is meaningful. The function of label-to-hole constraints is quite counter-
intuitive. Consider the two ETs E and E′ rooted at l and l′ and containing holes h and h′

respectively. A label-to-hole constraint (l′, h) results in two types of solutions: those in
which l′ dominates l, and those in which l′ is plugged into h. The algorithm presented
in Table 2 may be easily modified to solve any hypernet by taking care of label-to-hole
constraints after a free ET E is picked. At step 3.1, every label-to-hole constraint (l , h′)
may be replaced with (l , l′). Every (l′, h) is taken care of by plugging l′ into h. This latter
step results in a stacked ET, but we know how to convert this into a standard ET without
affecting the set of solutions (Theorem 2). Note that, here, we have to recursively take
care of the incoming constraints to the holes of E′. Koller and Thater (2007) prove that
adding such a step to the algorithm increases the complexity from quadratic to cubic,
when label-to-hole constraints exist. Following this discussion:

Lemma 8
Every hypernet can be solved in polynomial time.

5.3.1 Weighted Constraints. While we focus on hard constraints on UG solutions in this
article, our findings also have implications for statistical disambiguation systems based
on soft, or weighted, constraints. Hard constraints are equivalent to soft constraints
with infinite weights, so NP-completeness results for hard constraints also apply to
systems with weighted constraints. By defining a framework that is tractable with hard
constraints, we open the theoretical possibility of efficient algorithms for finding the
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1: procedure VITERBI(Weakly normal hypernet G)
2: δ[G]← −∞ . Initialize for all signatures
3: best[G]← ∅
4: if G contains a single (label) node then
5: T � ({l}, {})
6: δ[G, si g(T )]←score(T )
7: best[G, si g(T )]← T
8: return
9: for each ET E satisfying the freeness conditions in Theorem 7 do

10: Let l be the root and m the number of holes of E.
11: Let G1 ,G2 , . . . ,Gm be WCCs of G−E.
12: For i � 1, . . . ,m
13: if not defined best(Gi ) then
14: VITERBI(Gi)
15: for (T1 , . . . ,Tm ) ∈ best[G1] × · · · × best[Gm] do
16: Let hi be the hole of E connected to Gi in G− l, for i � 1, . . . ,m.
17: If E has an open hole hk , let Gk be the WCC not connected to any hole of
E.

18: Build T by plugging the root of Ti into hi , for i � 1, . . . ,m.
19: if score(T ) > δ[G, si g(T )] then
20: δ[G, si g(T )]←score(T )
21: best[G, si g(T )]← T

Table 3: Viterbi algorithm for weakly normal hypernets. We use a function si g to
determine the dynamic programming signature of a solution, an array δ to maintain
the best scores found for partial solutions, and an array best to maintain the best partial
solutions themselves. Arrays δ and best are indexed by a subgraph G and a signature.
We use best[G] to denote the set of all the best solutions found for G, regardless of their
signature.

highest scoring solution according to a set of weighted constraints. We now briefly
discuss two possible approaches to this problem.

The first approach is simply to use the ENUM algorithm can be used as the
framework for search in statistical scope disambiguation systems. We can use ENUM
to list solutions meeting the hard constraints and score each solution individually. This
rescoring approach may take exponential time in the worst case, but may be an effective
algorithm when the hard constraints leave a tractable number of solutions in practice.
This approach has the advantage that it can take advantage of arbitrary weighted
constraints, also known as features, in scoring candidate solutions.

The second approach is to use dynamic programming to score candidate UGs. In
this approach, we use the recursive ENUM algorithm as a framework for scoring partial
solutions to the input UG, as shown in the algorithm of Table 3. Dynamic programming
requires that the features used to score solutions must be local, that is, that they must be
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functions of some local subgraph of the solution. We refer to this local subgraph as the
signature of a solution, and use it to index the dynamic programming chart.

As an example of applying the ENUM together with dynamic programming, sup-
pose that the weighted features of the statistical system are restricted to consider only
an ET and the hole into which it is plugged. In this case, we can construct a dynamic
programming chart indexed by the subset of ETs covered by a partial solution, and the
identity of the ET at the root of the partial solution. The size of this chart is O(n2n ) in the
number of ETs – still exponential in the worst case. However, as with the more general
features, the ENUM algorithm, memoizing recursive calls with the chart, can take ad-
vantage of the hard constraints of the UG to lower the time complexity in practice. More
generally, we can define a dynamic programming chart indexed by whatever features
of the partial solution are distinct to the statistical model, and memoize recursive calls
to ENUM according to this dynamic programming structure.

More efficient algorithms for finding the highest scoring solution may be possible,
and are an important area for future work. Our polynomial-time SAT algorithm does
not translate directly into a Viterbi algorithm that is polynomial in the size of the input
UG. However, we emphasize that for any NP-hard problem with hard constraints, the
weighted generalization is also NP-hard. Therefore, identifying a subset of UGs that is
tractable with hard constraints makes it possible to attempt to find efficient algorithms
for weighted constraints.

5.4 Coherence and Tractability

In this subsection, we show that coherent UGs are a subset of hypernets. Remember
that the key notion for defining hypernets is hyper-normal connectedness and for co-
herence is heart-connectedness. Therefore, as the first step, we demonstrate how heart-
connectedness relates to hyper-normal connectedness.

Theorem 11
Let U be a CF-UG. If i is connected to j through a directed path in SDGU , then lq

i and lq
j

are hyper-normally connected in GU .

Proof. First assume that i is directly connected to j through the edge (i , j). This means
that there is a dominance constraint (lq

i , u) in U for some node u of T r
j . Being the root of

T j , lq
j reaches u by a directed, and hence hyper-normal, path p. The path pi , j between lq

i

and lq
j , which is the concatenation of p and (lq

i , u), is therefore hyper-normal.

Now assume that i is connected to j through a directed path
−→
d . Following the above

result, lq
i is connected to lq

j in GU through a path p, which is the concatenation of hyper-

normal paths corresponding to the edges of
−→
d . Since, at each point of concatenation,

one of the two edges is a solid edge (Figure 16a), the concatenation remains hyper-
normal. �

The above theorem proves that heart-connectedness subsumes hyper-normal con-
nectedness for the following reason. Given any two arbitrary nodes u and v belonging
to trees Ti and T j , both i and j can reach the heart through some directed path in SDGU .
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Figure 16: The relation between heart-connectedness and hyper-normal connectedness

Therefore, lq
i and lq

j are hyper-normally connected to the heart through hyper-normal
paths p1 and p2, as shown in Figure 16b. Concatenating p1 and p2 while taking out the
common part, we can construct a hyper-normal path p connecting u and v.

Corollary 3
If U is a heart-connected CF-UG, GU is hyper-normally connected.

We now have the tools to prove our main theorem.

Theorem 12
For every coherent UG U, GU is a hypernet, and hence, tractable.

Proof. U is coherent, hence according to Theorem 6, U has a heart-connected canonical
form sub-UG U′. Below, we prove that U′ is a hypernet. Since hypernets are closed
under the increment of constraint edges, it follows that U is a hypernet. Let E be an
arbitrary ET in GU′ rooted at l.

T12a. (Proof of Condition D26a) We need to show that E has at most one open hole.
E is of one of the following three types:

• Floating scopal. Since U′ is complete, the only possibly open hole of E is its
body hole. Since U′ is coherent, the root of Eq must also be closed.

• Fixed scopal. Since U′ is complete, E has no open hole, hence, the only
potentially open node, is the root of E.

• Non-scopal. E has a single label node, hence, its only potentially open node.
T12b. (Proof of Condition D26b) We need to prove the following statement. If l1 and

l2 are two dominance children of a hole h of E, l1 and l2 are hyper-normally
connected in G′U−h. This statement is vacuously true, since no hole of G′U can
have two or more dominance children, that is, the antecedent never holds (this is
because, in a CF-UG, the body hole of quantifiers have no outgoing constraint and
every other hole has exactly one).
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T12c. (Proof of Condition D26c) First consider the case where E has no open hole. Since
U′ is a CF-UG, E must be either a fixed scopal or a non-scopal ET. In either case, l
has no dominance children in G′U , hence, the statement is vacuously true.
Now consider the case where E has an open hole. Since U′ is a CF-UG, E must
be a floating scopal ET. Therefore, l has no incoming dominance edge. Let u, v be
the dominance children of l not connected to a hole of E. Following Theorem 3,
u and v are connected together through a hyper-normal path p. p cannot visit l,
otherwise, u or v are hyper-normally connected to a hole of E (l has no incoming
dominance edge, hence, p must go through a hole of E), which is in contradiction
with how we chose u and v at the first place. This proves that p is a path in G− l,
hence, u and v are hyper-normally connected in G− l.

�

This theorem is the main result of our article. Given that coherence seems to be a
natural condition on the semantic interpretation of any sentence, this result implies that
it is tractable to resolve the quantifier scope of any sentence. Formally proving that a
semantic interpretation system always yields coherent representations will depend on
the specifics of the syntax/semantics interface. In Section 7, we will show that the syntax
semantics interfaces specified by Minimal Recursion Semantics and Hole Semantics do
in fact always yield a coherent representation.

6. Quantifier Scoping is An Ordering Problem

Traditionally, scoping has been treated as an ordering problem. For example, all sta-
tistical scope disambiguation systems define scoping as learning to predict an order
(Higgins and Sadock 2003; Srinivasan and Yates 2009; Manshadi, Gildea, and Allen
2013). For this reason, n! has always been considered as the upper bound on the number
of readings of a sentence with n quantifiers. This is in contrast with the frameworks
discussed in this paper in which scoping means predicting a tree structure. A UG with
n quantifiers has 2n holes, hence, (2n)! fusings can be built (assuming that the solutions
are merging-free). Some of these fusings can be filtered out, if we take qeq relations
into account. For example, given the definition of first-order CF-UG below, a first-order
CF-UG with two quantifiers has 4 potential solutions, as shown in Figure 17.

Definition 28 (First Order UG)
A UG U with no fixed-scopal ETs is called a first order UG.

It is easy to calculate this number for n quantifiers.

Lemma 9
If U is a first-order CF-UG with n quantifiers , then Uq has exactly 2n−1n! solutions.

The factor 2n−1 results from the fact that once Q1 is decided to be in the scope of
Q2, there are two possible configurations based on whether Q1 is in the scope of the
restriction or the body of Q2. It seems that in the past it has been taken for granted
that every permutation of quantifiers uniquely imposes a tree structure. One idea is
to filter some of these trees by taking dominance constraints into account, although it
should be noted that, unlike qeq constraints, the distribution of dominance constraints
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Figure 17: All potential solutions for first-order CF-UG with two quantifiers

is not predefined. The good news is that, using the machinery provided and the results
obtained in the last section, we can prove this conjecture. That is, although the exact
distribution of dominance constraints is not given, the minimum connectivity required
by hypernets guarantees this property. Below, we use the notion of tree order, which is
the order in which nodes of a tree are visited and depends on the traversal method (e. g.
in pre-order traversal, first the branches are visited, then the node itself, while the post
order is the opposite). For this theorem, it does not matter which order is picked, but
once picked, we should stick to it.

Theorem 13
Let G be a hypernet, and π be an arbitrary permutation of ETs. There exists at most one
solution T of G with π being a tree order of ETs in T.

Proof. We prove this using induction on e the number of ETs in G. For e � 1, this is
trivial. Assume that it holds for e � k (k > 0) and let G be a DG with k + 1 ETs. If G has
no solution, whose tree order of ETs is π, we are done. Otherwise, E the head of π, is
a free ET. Based on Theorem 7, G − E has exactly m WCCs G1 , . . . ,Gm , where m is the
number of holes in E. Based on the induction assumption, each sub-DG Gi has exactly
one solution Ei whose tree order of ETs matches π. In addition, since G is a hypernet,
following the third condition of Definition 26 (D26c), there is a unique hole of E into
which the root of each Ei can be plugged. Therefore, G has a unique solution whose tree
order of ETs is π. �

The above theorem proves that if the underspecified representation is coherent, then
quantifier scoping is indeed an ordering problem.

7. Comparison with Other Formalisms

In this section, we compare our work with the three frameworks it was built upon.
We show that our definition of coherence extends the set of tractable representations
previously identified by the Dominance Graph framework. We further show that the
semantic representations returned by the syntax/semantics interfaces specified by Min-
imal Recursion Semantics and Hole Semantics are always coherent, and hence tractable.
Our strategy in this section will be to show subsumption relations among classes of
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underspecification graphs, as shown in Figure 1. We say that one class is subsumed by
another if it is a subset of the second class, or if there exists a (generally very simple)
syntactic transformation from elements of the first class to elements of the second class
such that the set of solutions remains the same. In either case, any algorithm for finding
solutions for the second class can be applied to graphs from the first class, which is the
property that we will use to establish tractability.

7.1 Dominance Graphs

Dominance Graphs18 and Underspecification Graphs19 are in fact equivalent when the
underspecified representation is complete. The only difference between the two is that
UG incorporates qeq relations in addition to dominance constraints, but, as we have
shown before, the two constraints become equivalent for complete UGs. The main
reason for us to define UG has been to provide a foundation to prove this equivalence.20

There is also a subtle difference in the terminology between the two frameworks.
What we have defined as solution in our framework corresponds to the notion of config-
uration in Dominance Graphs framework. Therefore, the satisfiability (or enumeration)
algorithm presented in this paper, in Dominance Graphs terminology, decides whether
a DG has a configuration (or enumerates all possible configurations of a DG).

A major contribution of this paper was to extend the coverage of the previously
known tractable subset of DG, called weak net (Niehren and Thater 2003). We achieved
this goal by defining the notion of hypernet, motivated by and built upon weak net.
Below, we give the definition of weak net from Thater (2007), translated into our own
terminology.

Definition 29 (Weak Net)
A weakly normal UG U is a weak net if and only if for every elementary tree E:

D29a. E has exactly one open node.
D29b. If l1, l2 are two dominance children of a node u of E, then l1 and l2 are hyper-

normally connected in U−u.

Comparing the definition of hypernet (Definition 26) with weak net, it is clear that
weak net is a subset of hypernet. By giving examples of natural language sentences
whose underspecified representation is a hypernet but not a weak net, we show that
weak net is a proper subset of hypernet. Consider GU in Figure 18a, where U is the
CF-UG for the following sentence.

3. Every politician, whom I know a child of, probably runs.

18 Dominance Graphs were derived from Dominance Constraints. Dominance Constraints were originally
developed as a broad framework for representing arbitrary tree structures. Dominance Graphs is a
revision of it better suited for modeling scope underspecification. For details on how Dominance Graphs
compare to Dominance Constraints, see Thater (2007).

19 When capitalized, the terms Dominance Constraints, Dominance Graphs, Underspecification Graphs
refer to the frameworks, otherwise, and when abbreviated, they refer to a notion within the framework.

20 Another advantage could be the ability to model an incomplete underspecified representation, e.g. when
dealing with fragments, broken parse trees, etc. The latter, however, is not the subject of this paper.
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Figure 18: A coherent UG which belongs to hypernet but is not a weak net, because the
dominance children of the quantifier Every, labeled Run(x) and Child(x , y), are not
hyper-normally connected, if the quantifier node is removed from the graph as in (b).

Let E be the ET for the quantifier Every and l be the root of E. The two dominance
children of l are not (hyper-normally) connected in GU− l, as shown in Figure 18b.
Therefore, GU is not a weak net. What makes this example special is that SDGU has
a loop. Weak net misses a whole class of sentences with similar structures. Since we
have proved that hypernet covers all coherent UGs, it should not be surprising that GU

is a hypernet, and hence, covered by our framework. This is because hypernet does
not require all the dominance children of the quantifier node u to be hyper-normally
connected in G−u, but only those that are not hyper-normally connected to a hole of
u (Condition D26c). Therefore, for the above UG, since the node labeled Child(x , y) is
hyper-normally connected to a hole of u in G−u, it is not required to be hyper-normally
connected to the node labeled Run(x) in G−u.

7.2 Minimal Recursion Semantics

As the official semantic language of the LinGo English Resource Grammar (Copestake
and Flickinger 2000), Minimal Recursion Semantics has been used relatively widely in
practice. As mentioned before, UG has been defined in a way that it subsumes both
DG and MRS. Although MRS is not originally defined in graph terms, a limited version
of UG can serve as the notational variant of MRS. The limitation is on the usage of
dominance constraints. MRS only implicitly uses dominance constraints, and that is to
satisfy binding constraints, hence, only realizes dominance constraints that go from a
quantifier node to a non-quantifier label node. By restricting UG to only allow those
dominance constraints, we can get a notational variant of MRS in graphical form.

The heart of MRS is the notion of Elementary Predication or EP, a labeled predi-
cation over a set of first order variables x , y , . . . and second order variables h1 , h2 , . . .

l : P(x , y , . . . , h1 , h2 , . . .) (6)

We have defined ET as the notational variant of EP. Similarly, the definition of the three
types of ET, non scopal, fixed scopal, and floating scopal, has been inspired by their EP
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counterparts. MRS does not notation-wise distinguish between holes and labels. They
are both referred to as handle and are represented by the letter h often subscripted with
a number. In defining UG, we followed, for mathematical convenience, the tradition of
Hole Semantics and DG and distinguished between the two terms: a handle that is the
label of an EP is called a label, while the top handle (see below) and any handle that is
an argument of an EP is called a hole. The motivating example given at the beginning
of Section 2 was nothing but an MRS structure as a graph (Figure 2d). Eq. 7 represents
the MRS of the same sentence in the original MRS language as defined by Copestake,
Lascarides, and Flickinger (2001).

〈h0, {h1 � Ever y(x , h2, h3), h4 � Child(x), h5 : A(y , h6, h7), h8 : Politician(y),

h9 : O f (x , y), h10 : Run(x)}, {h0 �q h10, h2 �q h4, h6 �q h8}〉
(7)

The handle represented as h0 is called (global) top handle and plays the role of the top
ET in UG. It is equivalent to having a dummy EP l0 : h0 as the top but then removing
the label node and leaving a floating hole. An MRS is defined as the triple 〈GT, R, C〉,
where GT is the top handle, R is the set of EPs, and C is the set of qeq constraints. As
mentioned before, the implicit binding constraints encoded in the first order variables
x , y of the MRS are made explicit in UG through dominance constraints. Given an
MRS, a scope-resolved structure (equivalent to the notion of solution in UG) is built
by equating handles.

h0 � h1, h2 � h5, h3 � h10, h6 � h8, h7 � h4, h9 � h4 (8)

Note that h9 � h4 in Equation 8 equates the label of two EPs, resulting in the EP
conjunction Child(x) ∧ O f (x , y). UG allows EP conjunctions in two different ways: 1)
by defining fusion as a many-to-one mapping from labels to holes, e.g. fusing both h4
and h9 to h7; 2) Using stacked ETs. The second approach models the case where EP
conjunctions are built during the semantic composition and before any scope resolution
(something that can happen in MRS). Copestake et al. (2005) define a semantic compo-
sition process, presenting an algorithm on building MRS structures from constituency
trees. This algorithm has motivated our notion of canonical form. By following this
algorithm, Manshadi, Allen, and Swift (2008a) proved the following theorem.

Theorem 14
Every output of MRS’s semantic composition process (as spelled out by Copestake et al.
(2005)) is either in canonical form or trivially unsatisfiable.

The detailed proof of this theorem can be found in Manshadi, Allen, and Swift
(2008a). Given that the result of the MRS semantic composition process is in canonical
form, we can use the tools developed in Section 5 to show that it is also tractable.

Theorem 15
Every output M of the semantic composition algorithm on a coherent sentence is either
trivially unsatisfiable or a coherent UG, and therefore tractable.
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Figure 19: Proof of Lemma 10.

Proof. By Theorem 14, every output M of the semantic composition algorithm on a
coherent sentence is either trivially unsatisfiable or in canonical form. By Definition 14, a
canonical form UG is complete. The interpretation of a coherent sentence must be heart-
connected, and by Theorem 6, a heart-connected, complete UG is a coherent UG. By
Theorem 12, a coherent UG is a hypernet, and, by Lemma 8, a hypernet is tractable. �

7.3 Hole semantics

Corresponding to the concept of UG in our framework, Hole Semantics defines the no-
tion of UR (Underspecified Representation). UR21 is a subset of normal DGs, therefore,
it allows for only one type of constraint, hole-to-label dominance constraints. Analogous
to the notion of coherence, which was motivated by the canonical form of the output
of MRS syntax/semantic interface, URs generated by the syntax/semantic interface,
as demonstrated by Koller, Niehren, and Thater (2003), conform to the following two
properties: 1. they are leaf-labeled (they call a DG with no open holes leaf-labeled)
2. they are hyper normally connected. Therefore, Hole Semantics UR equals the set of
all hyper-normally connected leaf-labeled normal DGs.

Below, we show that all satisfiable URs are hypernets.

Lemma 10
Given a hyper-normally connected normal DG G, with a solution T. If T′ is a subtree of
T, then G′, the sub-DG of G induced by T′ is also hyper-normally connected.

Proof. Assume to the contrary that G′ is not hypernormally connected. Consider the two
nodes of G′which are not hypernormally connected in G′, and let P be the hypernormal

21 Throughout this subsection, by UR we mean Hole Semantics’s UR.
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path that connects these two nodes in G. We prove that l, the root of T′, is dominated
by two mutually exclusive nodes, which is a contradiction.

Without loss of generality, we assume that both nodes are label nodes (l1 and l2)
and that P contains no other node in G′.22

Since G is normal, the two nodes immediately after l1 and l2 in P have to be hole
nodes h1 and h2 with outgoing constraint edges to l1 and l2 respectively (see Figure 19).
Note that h1 , h2, otherwise, P is not hypernormal. The path between h1 and h2 cannot
be a directed path, because no solid edge leaves a hole, and no constraint edge leaves h1

or h2 either (otherwise, P would not be a hypernormal path). Therefore, there are two
back-to-back solid edges emanating from a node l3 on P as shown in the figure on the
left.

We consider two options:

1. The segments of P between h3 and l1 and between h4 and l2 are both directed,
hence, l1 and l2 are under the scope of h3 and h4 respectively, which means l is
under the scope of both h3 and h4. Contradiction!

2. One of the two parts, say the segment of P between h4 and l2, is not directed.
Therefore, P has a segment like the one in the figure on the right. Two possible
cases may happen in T: h5 is in the scope of h6 or vice versa. In either case l1 and l2,
and hence l, are under the scope of two mutually exclusive holes. Contradiction!

�

Theorem 16
Every satisfiable hyper-normally connected leaf-labeled normal DG is a hypernet.

Proof. Consider a normal DG G, an arbitrary ET E rooted at l, and a solution T of G. We
have to prove that the three conditions in Definition 26 hold. Condition D26a directly
follows from leaf-labeledness, which guarantees that there is no open hole in a UR.23

To prove Condition D26b, consider l1 and l2, the two dominance children of a hole h
of E, and assume to the contrary that l1 and l2 are not hyper-normally connected in
G − h. Since G is satisfiable, let T be a solution of G, T ′ be the subtree of T rooted at
l, and G′ be the sub-DG of G induced by T ′. l1 and l2 are hyper-normally connected in
G, and, by Lemma 10, are hyper-normally connected in G′, but are not hyper-normally
connected in G′ − h. This means that the hyper-normal path p connecting the two nodes
passes h. Since l is the root of solution T ′, it does not have an incoming dominance edge,
therefore, any path that connects l1 and l2 and passes h must also pass another hole h′

of E. Let l1 be the node that connects to h′ by a path P without first going through l.
Then according to Lemma 7, there is a node u on P such that all the nodes on P are

22 Among all pairs of node not hypernormally connected in G′, consider the pair for which the length of P
is the shortest)

23 In fact, since we are only considering satisfiable URs, we do not need to presume leaf-labeledness,
because it follows from hyper-normal connectedness. Assume to the contrary that this is not the case, and
h is the open hole of E. Let l′ be the label plugged into h in T . Since G is hyper-normally connected, l′ is
hyper-normally connected to l, and hence, to some hole h′ of E in Gl

− l, where Gl is the sub-DG of G
induced by the subtree of T rooted at l. Clearly, h′ , h, because h is open, but h′ is not, hence, according
to Lemma 7, l′ must be dominated by h′ in T , meaning that l′ is dominated by two distinct holes of E;
contradiction!
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dominated by u in T′. The only nodes dominating h′ in T′ are h′ itself and l, but l is
not on P, hence, u � h′. This means that one of the nodes l1 or l2 must be in the scope
of h′, but we know that they both are also in the scope of h. This is a contradiction!
Condition D26c is vacuously true because E has no open hole and l has no dominance
children. �

This theorem shows that, practically speaking, UR is a subset of hypernet. An
important question arising is, given that it does not allow for label-to-label constraints,
whether Hole Semantics is powerful enough to cover all coherent UGs. In other words,
given that some constraints, such as the binding constraints, are inherently label to label,
how Hole Semantics can get away without it? This question has remained unanswered
in the past. Once again, we use our notion of coherence to answer this question. We
show that, in coherent UGs, those label-to-label dominance constraints that implement
variable binding, may be replaced with hole-to-label constraints without affecting the
set of solutions. First, we define some terminology.

Definition 30 (Ancestor/Disjoint)
Consider a complete UG U, SDGU � (V, E), and a node i ∈ V .

• Anc(i) is the set of nodes that reaches i (through a directed path) in SDGU

(including i itself);
• Dis(i) is the set of nodes that reaches the heart (through a directed path) without

going through i (including the heart itself).

For example, for the SDG in Figure 10, Anc(2) � {2, 3},Dis(2) � {0, 1}. If U is
coherent, SDGU is heart-connected, hence the following lemma directly follows from the
above definition.

Lemma 11
Given a coherent UG U and SDGU � (V, E), for every i , j in V :

i. Anc(i) ∪ Dis(i) � V
ii. i < Dis( j) ⇒ j ∈ Dis(i)

Theorem 17
Let U be a coherent UG, and T a solution of U, and consider the quantifiers Qi and Q j ,
where lq

i outscopes lq
j in T .

• if j ∈ Anc(i), lq
j is under the restriction of lq

i in T ;

• if j ∈ Dis(i), lq
j is under the body of lq

i in T .

Proof. Let j ∈ Anc(i), and τr
i and τb

i be the subtrees of T rooted at the restriction and
body hole of lq

i respectively, as shown in Figure 20. We use induction on |P |, the length
of the path P from j to i in SDGU , to show that lq

j is in the restriction of lq
i . For |P | � 1,

j immediately dominates i in SDGU , hence, there is a dominance edge from lq
j to some

node lr
i ∈ T r

i , where T r
i is the restriction tree of lq

i (Definition 13). Therefore, lr
i must be

in the scope of lq
j in T . Since lr

i is in τr
i , lq

j must also be in τr
i .

Now let |P | � n + 1 (n ≥ 1) and k be the node immediately after j on P. Since j
immediately dominates k in SDGU , there is a dominance edge from lq

j to some node lr
k ∈
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Figure 20: Proof of Theorem 17 (lr
k represents an arbitrary node in T r

k ).

T r
k , which means lr

k must be in the scope of lq
j . According to the induction assumption,

lq
k , and hence lr

i , is in τr
i . Therefore, lq

j must also be in τr
i .

A similar argument applies for the second part, that is, when j ∈ Dis(i). �

Corollary 4
Let U be a coherent UG, and Qi and Q j two quantifiers in U. If j ∈ Anc(i) ∩ Dis(i),
then there exists no solution of U in which lq

i outscopes lq
j .

Now, we are ready to prove our main theorem.

Theorem 18
In a coherent UG U, all label-to-label constraints emanating from quantifier label nodes
to some node other than a quantifier label node may be replaced with hole-to-label
constraints with the set of solutions remaining exactly the same.

Proof. Consider a coherent UG U, an arbitrary quantifier Qi labelled at lq
i , and an

arbitrary dominance edge (lq
i , u) emanating from Qi . We need to show that either u

is always (i.e. in all solutions of U) under the body of Qi or always under its restriction.
Since U is coherent, it has a canonical form sub-UG (Figure 7 in Section 3), therefore,
u � lr

j , where lr
j is some node in the tree T r

j . When j � 0, lr
j belongs to the heart tree,

hence, u is always under the body of Qi . Throughout the rest, we only consider the case
where j > 0, that is, u is a node in the restriction tree of Q j .

First, notice that because of the dominance edge (lq
i , l

r
j ), SDGU � (V, E) contains an

edge from i to j. This means:

i ∈ Anc( j) (9)

Now consider Anc(i); depending on whether j ∈ Anc(i) or not, we consider two possi-
ble cases, and prove that the premise holds in both cases.

Case i. j ∈ Anc(i)24

We further consider two situations depending on whether i ∈ Dis( j) or not.

24 In this case, SDGU has a loop, which means, as discussed in the previous subsection (see Figure 18), U is
not a (weak) net. Therefore, as seen below, if it wasn’t for the non-net cases, we could always replace
these label-to-label constraints with constraints emanating from the body hole of the quantifiers.
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(a) i ∈ Dis( j). Following Equation 9, i ∈ Anc( j) ∩ Dis( j), which means Q j

does not dominate Qi in any solution of U (Corollary 4 above). Since Qi

dominates a node in the restriction tree of Q j , they cannot be disjoint
either, hence, Qi outscopes Q j in every solution of U. Since j ∈ Anc(i),
following Theorem 17, Q j is under the restriction of Qi , and so is u.

(b) i < Dis( j). Following Lemma 11: j ∈ Dis(i), hence, j ∈ Anc(i) ∩ Dis(i),
meaning that Q j outscopes Qi in every solution, from which and given
that i ∈ Anc( j), Qi is under the restriction of Q j . This means every node
in the restriction tree of Q j , including u, is under the body of Qi .25

Case ii. j < Anc(i)
Unlike Case i, here, it is possible to simultaneously have both the solutions
where Qi outscopes Q j and those where Q j has the wide scope. Interestingly
(and again unlike Case i), in both types of solution, u is always under the
body of lq

i . We show this for each type separately.
(a) Q j dominates Qi in T

Given that i ∈ Anc( j), Qi is in the restriction of Q j in T , meaning that
every node in T r

j , including u, is under the scope of the body of Qi .
(b) Qi dominates Q j in T

Since j < Anc(i), j ∈ Dis(i), hence, Q j is in the body of Qi , and so is u.

Above we showed that, for a coherent UG, if Qi dominates some node u, it is impossible
to simultaneously have solutions where u is in the body of Qi and those where u is in
the restriction of Q j . This means that it is possible to build a UG U′ by replacing (lq

i , u)
with either (hb

i , u) or (hr
i , u) while the set of solutions of U and U′ is the same. �

Following this theorem, Hole Semantics is able to enforce variable binding using
hole-to-label dominance constraints. Figure 21 summarizes the expressive power of all
proposed subsets. The outcome of the above theorem is demonstrated by the edge from
Hole Semantics’s UR to coherent MRS.

8. Conclusion

We have solved several open questions within the context of the prevalent constraint-
based scope underspecification frameworks: Minimal Recursion Semantics, Hole Se-
mantics, and Dominance Constraints.

Although these frameworks are fundamentally different, there has been a conjecture
that they become equivalent once restricted to the well-formed structures correspond-
ing to actual URs of natural language sentences. Until now, the characterization of this
well-formedness has been an open question, and so has the proof of the conjecture.

Ever since their satisfiability problem was proved to be intractable, there have been
efforts on finding a tractable subset of the frameworks that is expressive enough to cover

25 In the proof of the equivalence of qeq and dominance constraints in complete UGs (Section 3,
Theorem 5), we showed that given a solution T of a complete U, if Qi is plugged in the restriction hole of
Q j , all the nodes u ∈ Tr

j have to be under the scope of the body hole of Qi .
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Figure 21: Summary of subsumption relations shown in this article.

all well-formed structures. But even “(weak) net”, the largest tractable subset previously
found, leaves a group of natural language sentences uncovered.

Figure 21 summarizes this paper. At the top of this figure is UG, a framework we
have defined in this paper to encompass all the rest of constraint-based frameworks
shown here. In the heart of this figure, there are two subsets: coherent UG and hypernet.
Coherent UG is the relevant part of UG. It is, in fact, our characterization of what
has been referred to in the past as well-formedness. We have linguistically justified
that the complete UGs of all coherent sentences belong to this subset. Analogous to
this linguistically motivated subset, we have the mathematically motivated notion of
hypernet, defined to guarantee the mathematical and computational properties we have
been looking for, but to be large enough to cover coherent UG. It is based on the notion of
(weak) net from Dominance Graph but expanded to include all coherent UGs. Another
central notion in this figure is CF or canonical form, whose importance lies in the fact
that, within this subset, qeq and normal dominance constraints become equivalent, and,
hence, the main difference between UG (read MRS) and DG disappears.

There are several other properties of URs which have been taken for granted in the
past. For example, although scoping in general is about predicting a tree structure, it has
been treated as an ordering problem. We prove that for hypernet, and hence all coherent
UGs, scoping is indeed an ordering problem. Finally, a framework like Hole Semantics
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has taken for granted that binding constraints, which are label to label in nature, may
be modeled by hole-to-label constraints. Here, we have proved that for coherent UGs,
label-to-label binding constraints may in fact be replaced with hole-to-label constraints,
bridging another gap between MRS and Hole Semantics.
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Appendix A: Terminology

Notation Term Page
Admissibility 10
Ancestor 38

CF Canonical Form 13
Closed ET 24
Coherence 17
Complete 14
Constraint Satisfaction 10
Dependence 17
DG Counterpart 20
Disjoint 38

DG Dominance graph 20
ET Elementary Tree 7

First Order UG 31
Floating Scopal 14
Freeness 22
Fusion 9
Heart-connected 17

T0 Heart tree 14
Hypernet 24
Hyper-normally connected 23
Induced sub-DG 20
Merging-free 10
Normal 13
Open 23
Open-hole ET 24
Open-root ET 24

Ti Quantifier tree 13
Relevance 17

Tr
i Restriction tree 14

SDG Semantic Dependency Graph 17
Solution 10
Stacked ET 11
Spanning sub-DG 20
Sub-DG 20

UG Underspecification graph 8
Weak Net 33
Weakly Connected 22
Weakly Normal 13
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